TEST BANK

University Chemistry (Siska)

Chapter 1

1) For the following reaction, $3.36 \mathrm{~g} \mathrm{NaHCO}_{3}$ was reacted with 20.0 mL of 1.00 M HCl . What volume of $\mathrm{CO}_{2}(g)$ is produced in L at STP?
$\mathrm{HCl}(a q)+\mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g)$
A) $8.93 \times 10^{-4} \mathrm{~L}$
B) 0.896 L
C) 0.448 L
D) $1.79 \times 10^{-3} \mathrm{~L}$

Answer: C
Topic: Reaction stoichiometry
Skill: Quantitative Multiple Choice Questions
2) For the reaction between $\mathrm{Al}(s)$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)$, suppose that $5.40 \mathrm{~g} \mathrm{Al}(s)$ is reacted with 50.0 mL of 1.50 M $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$. Calculate the amount in grams of aluminum sulfate that is formed.
A) 8.55 g
B) 25.7 g
C) 85.5 g
D) 4.05 g

Answer: A
Topic: Reaction stoichiometry
Skill: Quantitative Multiple Choice Questions
3) A 0.0125 L sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (sulfuric acid) is titrated with 0.0394 L of 0.2697 M NaOH . What is the concentration in mols/ L of the sulfate ion $\mathrm{SO}_{4}{ }^{2-}$ at the moment 0.0394 L of the NaOH was added? Your answer must contain the maximum number of significant figures that the data allow.
A) 0.1024 M
B) 0.102 M
C) 0.205 M
D) 0.2047 M

Answer: B
Topic: Reaction stoichiometry
Skill: Quantitative Multiple Choice Questions
4) A 5.78 L balloon at STP contains a $1: 1$ ratio by volume of $\mathrm{H}_{2}(g)$ and $\mathrm{O}_{2}(g)$. The mixture is sparked, and the explosive water forming reaction proceeds. What mass in grams of water is formed?
A) $1.17 \times 10^{3} \mathrm{~g}$
B) $2.33 \times 10^{3} \mathrm{~g}$
C) 1.16 g
D) 2.32 g

Answer: D
Topic: Reaction stoichiometry
Skill: Quantitative Multiple Choice Questions
5) You need to make oxygen by decomposing KClO_{3} according to
$\mathrm{KClO}_{3}(s) \rightarrow \mathrm{KCl}(\mathrm{s})+\mathrm{O}_{2}(g) . \quad$ (not balanced)
What volume of $\mathrm{O}_{2}(\mathrm{~g})$ can you generate at STP if you have 5.22 g of $\mathrm{KClO}_{3}(s)$?
A) 0.954 L
B) $2.85 \times 10^{-3} \mathrm{~L}$
C) 1.43 L
D) $1.90 \times 10^{-3} \mathrm{~L}$

Answer: C
Topic: Reaction stoichiometry
Skill: Quantitative Multiple Choice Questions
6) Use Avogadro's Principle $(\mathrm{V} \propto \mathrm{N})$ to determine the volume (cubic meters) of air you need to collect at STP so that you can extract 0.450 g of neon. Air is 0.00182 mole $\% \mathrm{Ne}$ at STP.
A) $27.4 \mathrm{~m}^{3}$
B) $2.74 \times 10^{5} \mathrm{~m}^{3}$
C) $2.74 \mathrm{~m}^{3}$
D) $274 \mathrm{~m}^{3}$

Answer: A
Topic: Reaction stoichiometry
Skill: Quantitative Multiple Choice Questions
7) The mass spectrum of $\operatorname{Br}_{2}(g)$ shows three peaks at mass numbers 158,160 , and 162. Predict the relative peak heights by using the \% abundance for the only two isotopes of Br :

79 Br: $50.69 \% \quad$ 81Br: 49.31%.

The relative peak heights for the peaks at 158, 160, and 162 are, respectively,
A) $0.5069: 0.2888: 0.4931$.
B) $0.1690: 0.6666: 0.1644$.
C) $0.8009: 0.8064: 0.7988$.
D) $0.2569: 0.4999: 0.2431$.

Answer: D
Topic: Reaction stoichiometry
Skill: Quantitative Multiple Choice Questions
8) How many kilograms of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, can be made from the carbon atoms that are present in a sample of $\mathrm{C}_{2} \mathrm{H}_{6}$ that has a volume of $17.42 \mathrm{~m}^{3}$ at STP?
A) $1.016 \times 10^{4} \mathrm{~kg}$
B) 20.25 kg
C) 10.13 kg
D) $10.16 \times 10^{2} \mathrm{~kg}$

Answer: B
Topic: Reaction stoichiometry
Skill: Quantitative Multiple Choice Questions
9) A typical solid protein sample has a density of $0.830 \mathrm{~g} / \mathrm{cm}^{3}$, composed of globular (roughly spherical) protein molecules with an average molecular mass of $2.00 \times 10^{4} \mathrm{amu}$. What is the estimated diameter of this protein in \AA ?
A) $3.02 \times 10^{-7} \AA$
B) $4.00 \times 10-20 \AA$
C) $3.02 \AA$
D) $34.2 \AA$

Answer: D
Topic: Estimates and Avogadro's number
Skill: Quantitative Multiple Choice Questions
10) A roll of aluminum foil, assumed to be $100 \% \mathrm{Al}$ metal, is 0.0200 mm thick, 30.4 cm wide, and 22.8 m long. Its mass is 374 g . Estimate the diameter of an aluminum atom in \AA
A) $2.55 \AA$
B) $1.66 \AA$
C) $8.35 \AA$
D) $2.03 \AA$

Answer: A
Topic: Estimates and Avogadro's number
Skill: Quantitative Multiple Choice Questions
11) Given that silver has two isotopes, ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}$, determine the fractional abundance of each if their masses are 106.905 and 108.905 amu , respectively.
A) $107 \mathrm{Ag}: 0.482$
${ }^{109}$ Ag: 0.518
B) $107 \mathrm{Ag}: 0.518$
${ }^{109}$ Ag: 0.482
C) $107 \mathrm{Ag}: 0.500$
${ }^{109}$ Ag: 0.500
D) $107 \mathrm{Ag}: 48.2$
$109 \mathrm{Ag}: 51.8$
Answer: B
Topic: Estimates and Avogadro's number
Skill: Quantitative Multiple Choice Questions
12) Assuming that the mechanical energy of a gaseous chlorine molecule is entirely kinetic, estimate its velocity in cm / s at $\mathrm{T}=22.0^{\circ} \mathrm{C}$.
A) $1.07 \times 10^{-11} \mathrm{~cm} / \mathrm{s}$
B) $1.07 \times 10^{-9} \mathrm{~cm} / \mathrm{s}$
C) $2.63 \times 10^{4} \mathrm{~cm} / \mathrm{s}$
D) $8.32 \times 10^{2} \mathrm{~cm} / \mathrm{s}$

Answer: C
Topic: Estimates and Avogadro's number
Skill: Quantitative Multiple Choice Questions
13) Express in Coulombs the total negative charge contained in a 4.09 g chunk of bismuth Bi.
A) $1.89 \times 10^{3} \mathrm{C}$
B) $1.57 \times 10^{5} \mathrm{C}$
C) $5.11 \times 10^{3} \mathrm{C}$
D) $5.29 \times 10^{-4} \mathrm{C}$

Answer: B
Topic: Estimates and Avogadro's number
Skill: Quantitative Multiple Choice Questions
14) How much energy in eV is required to raise the temperature of 1.00 L of water by $5.0^{\circ} \mathrm{C}$?
A) $4.55 \times 10-15 \mathrm{eV}$
B) $5.00 \times 10^{4} \mathrm{eV}$
C) $8.11 \times 10^{23} \mathrm{eV}$
D) $1.3 \times 10^{23} \mathrm{eV}$

Answer: D
Topic: Estimates and Avogadro's number
Skill: Quantitative Multiple Choice Questions
15) A free electron with a kinetic energy of 12.0 eV in a helium discharge tube passes within $2.40 \times 10-10 \mathrm{~m}$ of a He^{2+} ion. What is the kinetic energy in eV of the electron at this distance from the He^{2+} ion?
A) 30.0 eV
B) 24.0 eV
C) 12.0 eV
D) 0 eV ; The electron has stopped.

Answer: B
Topic: Coulomb's Law and kinetic and potential energy
Skill: Quantitative Multiple Choice Questions
16) To estimate the potential energy of interaction in eV between an aluminum ion Al^{3+} and a water molecule, treat $\mathrm{H}_{2} \mathrm{O}$ as a linear dipole with partial charges of $-0.88 e$ and $+0.88 e$. The charges are separated along a line as follows:

$$
\begin{array}{cc}
\mathrm{Al}^{3+}-------\mathrm{O}^{-} 0.88 & -------\mathrm{H}_{2}+0.88 \\
R & r
\end{array}
$$

where $R=1.90 \AA$ and $r=0.44 \AA$. (Since they are in the same dipole, do not consider any interaction between the two ends of the water molecule with each other.) The estimated potential energy of interaction is
A) -1.25 eV .
B) -36.3 eV .
C) -0.322 eV .
D) -3.76 eV .

Answer: D
Topic: Coulomb's Law and kinetic and potential energy
Skill: Quantitative Multiple Choice Questions
17) Hooke's Law of Springs can be written as $F=-k\left(r-r_{\mathrm{e}}\right)$. Once integrated, this formula provides the potential energy that is created when the spring is stretched from its equilibrium position. Consider a molecule of HCN for which $k=580 \mathrm{~N} / \mathrm{m}$ for the C-H bond. Assuming that this bond can be approximated by Hooke's Law, how much kinetic energy in eV will a hydrogen atom have when it returns to r_{e} if it had been stretched $0.15 \AA$ from r_{e} prior to being released?
A) 6.5 eV
B) 44 eV
C) 0.41 eV
D) 0.97 eV

Answer: C
Topic: Coulomb's Law and kinetic and potential energy
Skill: Quantitative Multiple Choice Questions
18) What potential energy in eV would the single electron of a Be^{3+} ion possess? Note that the nucleus/electron separation is $1.32 \times 10^{-11} \mathrm{~m}$.
A) -545 eV
B) -436 eV
C) $4.36 \times 10^{12} \mathrm{eV}$
D) 2.80 eV

Answer: B
Topic: Coulomb's Law and kinetic and potential energy
Skill: Quantitative Multiple Choice Questions
19) If we could place a helium nucleus a distance of $3.00 \times 10-12 \mathrm{~cm}$ away from a platinum nucleus and allow the nuclei to fly apart, what is the maximum velocity that the helium nucleus could have? Assume that the helium nucleus inherits all of the potential energy that was initially available when the two nuclei were placed side by side. The mass of the helium nucleus is 4.00 amu .
A) $1.9 \times 10^{7} \mathrm{~m} / \mathrm{s}$
B) $7.7 \times 10^{-7} \mathrm{~m} / \mathrm{s}$
C) $1.9 \times 10^{3} \mathrm{~m} / \mathrm{s}$
D) $5.9 \times 10^{11} \mathrm{~m} / \mathrm{s}$

Answer: A
Topic: Coulomb's Law and kinetic and potential energy
Skill: Quantitative Multiple Choice Questions
20) What is the Coulomb force in dynes between a Ba^{2+} ion and a S2- ion that are separated by $1.46 \AA$?
A) -6.32×10^{-11} dyne
B) -1.08×10^{-3} dyne
C) -4.33×10^{-3} dyne
D) -1.73×10^{-2} dyne

Answer: C
Topic: Coulomb's Law and kinetic and potential energy
Skill: Quantitative Multiple Choice Questions
21) Among the experiments that Rutherford and his students used to deduce the existence of the atomic nucleus was one in which α-particles $\left(\mathrm{He}^{2+}\right)$ were scattered from silver foil. What minimum kinetic energy in MeV would an α-particle need to penetrate to within $0.00200 \AA$ of a silver nucleus? (Ignore the effects of the electrons in the silver atom.)
A) 35.2 MeV
B) 0.0470 MeV
C) $4.70 \times 10^{4} \mathrm{MeV}$
D) 0.677 MeV

Answer: D
Topic: Coulomb's Law and kinetic and potential energy
Skill: Quantitative Multiple Choice Questions
22) The area under the curve of a force versus displacement graph is:
A) always negative.
B) work.
C) given by $-d V / d x$.
D) equal to $-k\left(r-r_{\mathrm{e}}\right)^{2}$.

Answer: B
Skill: Qualitative Multiple Choice Questions
23) The mass defect is due to
A) the weighted average of the isotopes of a given element.
B) the unique structure of the ${ }^{12}$ C isotope.
C) limitations of mass spectrometry.
D) conversion of nuclear mass into binding energy.

Answer: D
Skill: Qualitative Multiple Choice Questions
24) Newton's famous second law is
A) $F=-d p / d t$.
B) $F=m\left(d v^{2} / d t^{2}\right)$.
C) $F=m\left(d^{2} x / d t^{2}\right)$.
D) $F=1 / 2 m v^{2}$.

Answer: C
Skill: Qualitative Multiple Choice Questions
25) If 2.0 L of hydrogen gas are reacted with excess solid carbon, what volume of $\mathrm{C}_{2} \mathrm{H}_{6}$ gas can be formed?
A) 0.67 L
B) 6.0 L
C) 2.0 L
D) 1.5 L

Answer: A
Skill: Qualitative Multiple Choice Questions
26) Potential energy exists only when
A) charged particles interact.
B) there is a force acting on the object of interest.
C) Newton's inverse-square law of force does not apply.
D) kinetic energy is zero.

Answer: B
Skill: Qualitative Multiple Choice Questions
27) Why does Maxwell's theory of electricity and magnetism predict atomic collapse of the electron into the nucleus, yet it does not predict planets collapsing into the sun?
A) The atom contains charged particles.
B) The kinetic energy of the electron is much less than that of a planet.
C) The distance between the bodies of interest is smaller in the atom.
D) The gravitational force acting between two bodies is of greater magnitude in the atom than in the solar system.
Answer: A
Skill: Qualitative Multiple Choice Questions
28) The Coulomb potential energy equation in cgs units is $V=q_{1} q_{2} / r$. What is the relationship between work and the potential energy between a proton and electron?
A)

$$
w=\int_{x_{1}}^{x_{2}} V d x
$$

B) Since work is defined only in terms of force, no relationship exists.
C) The potential energy is equal to the work required to separate completely the electron from the nucleus.
D) The potential energy is equal to the negative of the work required to separate completely the electron from the nucleus.
Answer: D
Skill: Qualitative Multiple Choice Questions
29) On the surface the mks and cgs unit systems look vastly different. Their magnitudes and names, in particular, are quite different. Despite this, only one quantity is fundamentally different. This quantity is
A) momentum.
B) the speed of light.
C) charge.
D) force.

Answer: C
Skill: Qualitative Multiple Choice Questions
30) Joe is on the second story of a building. The floor of this story is a distance $3 h$ above the ground where Peter stands. Joe raises a book of mass m a distance h from the floor and reports that the potential energy of the object is $m g h$. Peter disagrees and says that the potential energy is $4 m g h$. Who is right?
A) Peter
B) both Peter and Joe
C) Joe
D) neither because the potential energy must be negative in this case

Answer: B
Skill: Qualitative Multiple Choice Questions

Short Answer Questions

A simplified, schematic drawing of J. J. Thomson's device for measuring the charge to mass ratio of ions or electrons is shown below. In a thought experiment we send a mixture of second row atoms ($\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$) and electrons through the device. Match the location of each spot (A, B, C, D, E) on the detection screen with the particle that produced it. Note that $\operatorname{mass}(\mathrm{W})>\operatorname{mass}(\mathrm{X})>\operatorname{mass}(\mathrm{Y})>\operatorname{mass}(\mathrm{Z})$.

31) W^{2+}

Answer: D
32) an electron

Answer: A
33) Y2-

Answer: C
34) Z^{2-}

Answer: B
35) X^{2+}

Answer: E
Match each potential energy curve shown below with the interaction from which it arose. The curves are not quantitatively exact, but assignments can still be made.

36) electron-electron interaction

Answer: B
37) electron-beryllium nucleus interaction

Answer: E
38) electron-proton interaction

Answer: C
39) electron-helium nucleus interaction

Answer: D
40) an interaction of two particles each with a charge less than $+e$

Answer: A
41) Uniform circular motion results from \qquad acceleration.
Answer: centripetal
42) Negative total energy indicates a \qquad electron, whereas positive total energy indicates a \qquad electron.
Answer: bound, free
43) The \qquad difference $-\Delta V / \Delta r$ approximates F because F equals \qquad .
Answer: finite, $-d V / d r$
44) 100. mL of blood serum contains $10 . \mathrm{mg}$ of calcium in the form of Ca^{2+} ions. How many Ca^{2+} ions are present in a single drop, 0.040 mL ?
Answer: 6.0×10^{16} ions
45) Verify Dalton's Law of Multiple Proportions by determining the ratio of the ratios of the combining masses, $m \mathrm{~S} / m_{\mathrm{O}}$, for SO_{2} to SO_{3}. The ratio of the ratios is

Answer: 3/2.
46) Boron and chlorine both have two isotopes. This gives rise to \qquad peaks in the mass spectrum of BCl_{3}. The most intense peak in the spectrum arises from the combination of the most \qquad isotopes of each element.
Answer: eight, abundant
47) If a proton is accelerated through an electric potential difference of exactly two volts, the kinetic energy that the proton has acquired is \qquad _.
Answer: 2 eV
48) A certain property of an electric field, the \qquad potential, is measured in joules per coulomb. Answer: electric
49) While modern atomic theory has proposed "pieces" of positive charge in the nucleus called quarks, the charge for which can be $(2 / 3) e$ for example, no such fractional charge is thought to exist in the \qquad .
Answer: electron
50) After an object has minimized its potential energy as far as possible, it has reached a state called \qquad .
Answer: equilibrium

1) C
2) A
3) B
4) D
5) C
6) A
7) D
8) B
9) D
10) A
11) B
12) C
13) B
14) D
15) B
16) D
17) C
18) B
19) A
20) C
21) D
22) B
23) D
24) C
25) A
26) B
27) A
28) D
29) C
30) B
31) D
32) A
33) C
34) B
35) E
36) B
37) E
38) C
39) D
40) A
41) centripetal
42) bound, free
43) finite, $-d V / d r$
44) 6.0×10^{16} ions
45) $3 / 2$.
46) eight, abundant
47) 2 eV
48) electric
49) electron
50) equilibrium
