TEST BANK

Chapter 2: MOTION ALONG A STRAIGHT LINE

- 1. A particle moves along the x axis from x_1 to x_2 . Of the following values of the initial and final coordinates, which results in the displacement with the largest magnitude?
 - A. $x_1 = 4 \,\mathrm{m}, x_2 = 6 \,\mathrm{m}$
 - B. $x_1 = -4 \,\mathrm{m}, x_2 = -8 \,\mathrm{m}$
 - C. $x_1 = -4 \,\mathrm{m}, x_2 = 2 \,\mathrm{m}$
 - D. $x_1 = 4 \,\mathrm{m}, x_2 = -2 \,\mathrm{m}$
 - E. $x_1 = -4 \,\mathrm{m}, x_2 = 4 \,\mathrm{m}$
 - Ans: E
- 2. A particle moves along the x axis from x_1 to x_2 . Of the following values of the initial and final coordinates, which results in a displacement that is in the negative x direction?
 - A. $x_1 = 4 \,\mathrm{m}, x_2 = 6 \,\mathrm{m}$
 - B. $x_1 = -4 \,\mathrm{m}, x_2 = -8 \,\mathrm{m}$
 - C. $x_1 = -4 \,\mathrm{m}, x_2 = 2 \,\mathrm{m}$
 - D. $x_1 = -4 \,\mathrm{m}, x_2 = -2 \,\mathrm{m}$
 - E. $x_1 = -4 \,\mathrm{m}, x_2 = 4 \,\mathrm{m}$
 - Ans: B
- 3. The average speed of a moving object during a given interval of time is always:
 - A. the magnitude of its average velocity over the interval
 - B. the distance covered during the time interval divided by the time interval
 - C. one-half its speed at the end of the interval
 - D. the magnitude of its acceleration multiplied by the time interval
 - E. one-half the magnitude of its acceleration multiplied by the time interval.
 - Ans: B
- 4. Two automobiles are 150 kilometers apart and traveling toward each other on a straight road. One automobile is moving at $60 \,\mathrm{km/h}$ and the other is moving at $40 \,\mathrm{km/h}$ mph. In how many hours will they meet?
 - A. 2.5
 - B. 2.0
 - C. 1.75
 - D. 1.5
 - E. 1.25
 - Ans: D
- 5. A car travels 40 kilometers at an average speed of $80\,\mathrm{km/h}$ and then travels 40 kilometers at an average speed of $40\,\mathrm{km/h}$. The average speed of the car for this 80-km trip is:
 - A. $40 \,\mathrm{km/h}$
 - B. $45 \,\mathrm{km/h}$
 - $C. 48 \,\mathrm{km/h}$
 - D. $53 \,\mathrm{km/h}$
 - $E. 80 \, \text{km/h}$
 - Ans: D

6.	6. A car starts from Hither, goes 50 km in a straight line to Yon, immediately turns are and returns to Hither. The time for this round trip is 2 hours. The magnitude of the average velocity of the car for this round trip is:	
	C. D.	$\begin{array}{c} 0 \\ 50 \text{ km/hr} \\ 100 \text{ km/hr} \\ 200 \text{ km/hr} \\ \text{cannot be calculated without knowing the acceleration} \\ \text{Ans: A} \end{array}$

- 7. A car starts from Hither, goes 50 km in a straight line to Yon, immediately turns around, and returns to Hither. The time for this round trip is 2 hours. The average speed of the car for this round trip is:
 - A. 0
 - B. 50 km/h
 - C.~100 km/h
 - D. 200 km/h
 - E. cannot be calculated without knowing the acceleration

Ans: B

- 8. The coordinate of a particle in meters is given by $x(t) = 16t 3.0t^3$, where the time t is in seconds. The particle is momentarily at rest at t =
 - A. $0.75 \, \mathrm{s}$
 - B. 1.3 s
 - C. 5.3 s
 - D. 7.3 s
 - E. 9.3 s

Ans: B

- 9. A drag racing car starts from rest at time t=0 and moves along a straight line with velocity given by $\vec{v}=bt^2\,\hat{\bf i}$, where b is a constant. The expression for the distance traveled by this car from its position at t=0 is:
 - A. bt^3
 - B. $bt^3/3$
 - C. $4bt^2$
 - D. $3bt^2$
 - E. $bt^{3/2}$

Ans: B

- 10. A ball rolls up a slope. At the end of three seconds its velocity is $(20\,\mathrm{cm/s})\hat{i}$; at the end of eight seconds its velocity is 0. Its average acceleration from the third to the eighth second is:
 - A. $2.5 \, \text{cm/s}^2$
 - B. $4.0 \, \text{cm/s}^2$
 - C. $5.0 \, \text{cm/s}^2$
 - D. $6.0 \, \text{cm/s}^2$
 - E. $6.67 \, \text{cm/s}^2$

Ans: B

8 Chapter 2: MOTION ALONG A STRAIGHT LINE

- 11. The coordinate of an object is given as a function of time by $x = 7t 3t^2$, where x is in meters and t is in seconds. The magnitude of its average velocity over the interval from t = 0 to t = 4 s is:
 - A. $5 \,\mathrm{m/s}$
 - B. $-5 \,\mathrm{m/s}$
 - $C. 11 \,\mathrm{m/s}$
 - D. $-11 \,\mathrm{m/s}$
 - E. $-14.5 \,\mathrm{m/s}$

Ans: B

- 12. The velocity of an object is given as a function of time by $\vec{v} = (4t 3t^2)\hat{i}$, where \vec{v} is in m/s and t is in seconds. Its average velocity over the interval from t = 0 to t = 2 s:
 - A. is 0
 - B. is $(-2 \,\mathrm{m/s})\,\hat{\mathrm{i}}$
 - C. is $(2 \text{ m/s}) \hat{i}$
 - D. is $(-4 \,\mathrm{m/s})\,\hat{\mathrm{i}}$
 - E. cannot be calculated unless the initial position is given

Ans: A

- 13. The coordinate of an object is given as a function of time by $x = 4t^2 3t^3$, where x is in meters and t is in seconds. Its average acceleration over the interval from t = 0 to t = 2 s is:
 - A. $(-4 \,\mathrm{m/s}^2)\,\hat{\mathrm{i}}$
 - B. $(4 \,\mathrm{m/s}^2)\,\hat{\mathrm{i}}$
 - C. $(-10 \,\mathrm{m/s}^2)\,\hat{\mathrm{i}}$
 - D. $(10 \,\mathrm{m/s}^2)\,\hat{\mathrm{i}}$
 - E. $(-13 \,\text{m/s}^2) \,\hat{i}$

Ans: C

14. Each of four particles move along an x axis. Their coordinates (in meters) as functions of time (in seconds) are given by

particle 1: $x(t) = 3.5 - 2.7t^3$ particle 2: $x(t) = 3.5 + 2.7t^3$

particle 3: $x(t) = 3.5 + 2.7t^2$

particle 4: $x(t) = 3.5 - 3.4t - 2.7t^2$

Which of these particles have constant acceleration?

- A. All four
- B. Only 1 and 2
- C. Only 2 and 3
- D. Only 3 and 4
- E. None of them

15. Each of four particles moves along an x axis. Their coordinates (in meters) as functions of time (in seconds) are given by

```
particle 1: x(t) = 3.5 - 2.7t^3
particle 2: x(t) = 3.5 + 2.7t^3
particle 3: x(t) = 3.5 + 2.7t^2
particle 4: x(t) = 3.5 - 3.4t - 2.7t^2
```

Which of these particles is speeding up for t > 0?

- A. All four
- B. Only 1
- C. Only 2 and 3
- D. Only 2, 3, and 4
- E. None of them

Ans: A

- 16. An object starts from rest at the origin and moves along the x axis with a constant acceleration of $(4 \,\mathrm{m/s^2})\,\hat{\mathrm{i}}$. Its average velocity as it goes from $x=2 \,\mathrm{m}$ to $x=8 \,\mathrm{m}$ is:
 - A. $(1 \,\mathrm{m/s})\,\hat{\mathrm{i}}$
 - B. $(2 \,\mathrm{m/s})\,\hat{\mathrm{i}}$
 - C. $(3 \,\mathrm{m/s})\,\hat{\mathrm{i}}$
 - D. $(5 \,\mathrm{m/s})\,\mathrm{i}$
 - E. $(6 \,\mathrm{m/s}) \,\hat{\mathrm{i}}$

Ans: E

- 17. Of the following situations, which one is impossible?
 - A. A body having velocity east and acceleration east
 - B. A body having velocity east and acceleration west
 - C. A body having zero velocity and non-zero acceleration
 - D. A body having constant acceleration and variable velocity
 - E. A body having constant velocity and variable acceleration

Ans: E

- 18. Throughout a time interval, while the speed of a particle increases as it moves along the x axis, its velocity and acceleration:
 - A. might be in the positive and negative x directions, respectively
 - B. might be in the negative and positive x directions, respectively
 - C. might both be in the negative x direction
 - D. might be in the negative x direction and zero, respectively
 - E. might be in the positive x direction and zero, respectively

Ans: C

- 19. A particle moves on the x axis. When its acceleration is in the positive x direction and increasing in magnitude:
 - A. its velocity must be in the positive x direction
 - B. its velocity must be in the negative x direction
 - C. it must be slowing down
 - D. it must be speeding up
 - E. none of the above must be true

Ans: E

- 20. A particle moves along the x axis according to the equation $x = 6t^2$, where x is in meters and t is in seconds. Therefore:
 - A. the acceleration of the particle is $(6 \text{ m/s}^2)\hat{i}$
 - B. t cannot be negative
 - C. the particle follows a parabolic path
 - D. each second the speed of the particle changes by 9.8 m/s
 - E. none of the above

Ans: E

- 21. Over a short interval near time t = 0 the coordinate of an automobile in meters is given by $x(t) = 27t 4.0t^3$, where t is in seconds. At the end of 1.0 s the acceleration of the auto is:
 - A. $(27 \text{ m/s}^2) \hat{i}$
 - B. $(4.0 \text{ m/s}^2) \hat{i}$
 - C. $(-4.0 \text{ m/s}^2)\hat{i}$
 - D. $(-12 \text{ m/s}^2) \hat{i}$
 - E. $(-24 \text{ m/s}^2)\hat{i}$

Ans: E

- 22. Over a short interval, starting at time t = 0, the coordinate of an automobile in meters is given by $x(t) = 27t 4.0t^3$, where t is in seconds. The magnitudes of the initial (at t = 0) velocity and acceleration of the auto respectively are:
 - A. 0; $(12 \text{ m/s}^2) \hat{i}$
 - B. 0; $(24 \text{ m/s}^2)\hat{i}$
 - C. $(27 \,\mathrm{m/s})\,\hat{i};\,0$
 - D. $(27 \text{ m/s})\hat{i}$; $(12 \text{ m/s}^2)\hat{i}$
 - E. $(27 \text{ m/s}) \hat{i}$; $(24 \text{ m/s}^2) \hat{i}$

Ans: C

- 23. At time t=0 a car has a velocity of $(16\,\mathrm{m/s})\hat{\mathrm{i}}$. It slows down with an acceleration given by $(10\,\mathrm{m/s})\hat{\mathrm{i}}$. It stops at t=
 - A. 64 s
 - B. 32 s
 - C. 16 s
 - D. 8.0 s
 - E. 4.0 s

- 24. At time t = 0 a car has a velocity of $(16 \,\mathrm{m/s})\hat{\mathrm{i}}$. It slows down with an acceleration given by $(-0.50 \,\mathrm{m/s}^3)t\,\hat{\mathrm{i}}$. At the end of 4.0 s it has traveled:
 - A. 0
 - B. 12 m
 - C. 14 m
 - D. 25 m
 - E. 59 m
 - Ans: E
- 25. At time t = 0 a car has a velocity of $(16 \,\mathrm{m/s}\,\hat{\mathrm{i}})$. It slows down with an acceleration given by $(-0.50 \,\mathrm{m/s}^3)t\,\hat{\mathrm{i}}$. By the time it stops it has traveled:
 - A. 15 m
 - B. 31 m
 - C. 62 m
 - D. 85 m
 - E. 100 m
 - Ans: D
- 26. Starting at time t=0, an object moves along a straight line with velocity given by $\vec{v}=\left[(98\,\mathrm{m/s})-(2\,\mathrm{m/s}^3)t^2\right]\,\hat{i}$. When it momentarily stops its acceleration is:
 - A. 0
 - B. $(-4.0 \,\mathrm{m/s}^2)\,\hat{\mathrm{i}}$
 - C. $(-9.8 \,\mathrm{m/s^2})\,\hat{\mathrm{i}}$
 - D. $(-28 \,\mathrm{m/s}^2)\,\hat{\mathrm{i}}$
 - E. $(49 \,\mathrm{m/s}^2) \,\hat{i}$
 - Ans: D
- 27. Starting at time t = 0, an object moves along the x axis. Its coordinate is given by $x(t) = (75 \text{ m/s})t (1.0 \text{ m/s}^3)t^3$, where t is in seconds. When it momentarily stops its acceleration is:
 - A. 0
 - B. $(-73 \,\mathrm{m/s}^2)\,\hat{\mathrm{i}}$
 - C. $(-30 \,\mathrm{m/s^2})\hat{i}$
 - D. $(-9.8 \,\mathrm{m/s}^2)\,\hat{\mathrm{i}}$
 - E. $(9.2 \times 10^3 \,\text{m/s}^2)\,\hat{i}$
 - Ans: C
- 28. A car, initially at rest, travels 20 m in 4 s along a straight line with constant acceleration. The magnitude of the acceleration of the car is:
 - A. $0.4 \,\mathrm{m/s^2}$
 - B. $1.3 \,\mathrm{m/s}^2$
 - C. $2.5 \,\mathrm{m/s}^2$
 - D. $4.9 \,\mathrm{m/s^2}$
 - E. $9.8 \,\mathrm{m/s}^2$

12

Ans: C

29.	A racing car traveling with constant acceleration increases its speed from 10 m/s to 50 m/s over a distance of 60 m. How long does this take? A. 2.0 s B. 4.0 s C. 5.0 s D. 8.0 s E. The time cannot be calculated since the speed is not constant Ans: B
30.	A car starts from rest and goes down a slope with a constant acceleration of magnitude 5 m/s². After 5 s its speed, in meters per second, is: A. 1 B. 12.5 C. 25 D. 50 E. 160 Ans: C
31.	A car moving with an initial velocity of 25 m/s north has a constant acceleration of 3 m/s² south. After 6 seconds its velocity will be: A. 7 m/s north B. 7 m/s south C. 43 m/s north D. 20 m/s north E. 20 m/s south Ans: A
32.	An object with an initial velocity of 12 m/s west experiences a constant acceleration of 4 m/s² west for 3 seconds. During this time the object travels a distance of: A. 12 m B. 24 m C. 36 m D. 54 m E. 144 m Ans: D
33.	How far does a car travel in 6 s if its initial velocity is 2 m/s and its acceleration is 2 m/s² in the forward direction? A. 12 m B. 14 m C. 24 m D. 36 m E. 48 m Ans: E

34.	At a stop light, a truck traveling at 15 m/s passes a car as it starts from rest. The truck travels
	at constant velocity and the car accelerates at 3 m/s ² . How much time will it take for the car
	to catch up to the truck?

- A. 5 s
- B. 10 s
- C. 15 s
- D. 20 s
- E. 25 s

Ans: B

- 35. The area under a velocity-time graph represents:
 - A. acceleration
 - B. change in acceleration
 - C. speed
 - D. change in velocity
 - E. displacement

Ans: E

- 36. Displacement can be obtained from:
 - A. the slope of an acceleration-time graph
 - B. the slope of a velocity-time graph
 - C. the area under an acceleration-time graph
 - D. the area under a velocity-time graph
 - E. the slope of an acceleration-time graph

Ans: D

- 37. An object has a constant acceleration of magnitude 3 m/s^2 . The coordinate versus time graph for this object has a slope:
 - A. that increases with time
 - B. that is constant
 - C. that decreases with time
 - D. of 3 m/s
 - E. of 3 m/s^2

Ans: A

- 38. The coordinate-time graph of an object is a straight line with a positive slope. The object has:
 - A. constant displacement
 - B. steadily increasing acceleration
 - C. steadily decreasing acceleration
 - D. constant velocity
 - E. steadily increasing velocity

39. Which of the following five coordinate versus time graphs represents the motion of an object moving with a constant nonzero speed?

Ans: B

40. Which of the following five acceleration versus time graphs is correct for an object moving in a straight line at a constant velocity of 20 m/s?

41. Which of the following five coordinate versus time graphs represents the motion of an object whose speed is increasing?

Ans: A

42. A car accelerates from rest on a straight road. A short time later, the car decelerates to a stop and then returns to its original position in a similar manner, by first speeding up and then slowing to a stop. Which of the following five coordinate versus time graphs best describes the motion?

D

43. The acceleration of an object, starting from rest, is shown in the graph below. Other than at t = 0, when is the velocity of the object equal to zero?

- A. During the interval from $1.0 \mathrm{s}$ to $3.0 \mathrm{s}$
- B. At $t = 3.5 \,\mathrm{s}$
- C. At $t = 4.0 \,\mathrm{s}$
- D. At $t = 5.0 \,\mathrm{s}$
- E. At no other time less than or equal to $5\,\mathrm{s}$

Ans: E

44. The diagram shows a velocity-time graph for a car moving in a straight line. At point Q the car must be:

- A. moving with zero acceleration
- B. traveling downhill
- C. traveling below ground-level
- D. reducing speed
- E. traveling in the reverse direction to that at point P

45. The diagram shows a velocity-time graph for a car moving in a straight line. At point P the car must be:

- A. moving with zero acceleration
- B. climbing the hill
- C. accelerating
- D. stationary
- E. moving at about 45° with respect to the x axis

Ans: C

46. The graph represents the straight line motion of a car. How far does the car travel between t=2 s and t=5 s?

- A. 4 m
- B. 12 m
- C. 24 m
- D. 36 m
- E. 60 m

47. The diagram represents the straight line motion of a car. Which of the following statements is true?

- A. The car accelerates, stops, and reverses
- B. The car accelerates at 6 m/s² for the first 2 s
- C. The car is moving for a total time of 12 s
- D. The car decelerates at 12 m/s^2 for the last 4 s
- E. The car returns to its starting point when $t=9~\mathrm{s}$

Ans: B

48. Consider the following five graphs (note the axes carefully). Which of these represents motion at constant speed?

- A. IV only
- B. IV and V only
- C. I, II, and III only
- D. I and II only
- E. I and IV only