
TEST BANK

Ch02

True.		e hether the statement is true or false.
	1.	The Babbage difference engine is an example of an optical computing device.
	2.	A program is a stored set of instructions that implements a specific task, such as calculating payroll and then generating paychecks or electronic fund transfers.
	3.	A special-purpose processor is capable of executing many different instructions in many different sequences or combinations.
	4.	Comparison instructions are used to solve algorithmic but not formulaic problems.
	5.	The control unit is the 'plumbing' that connects all computer system components.
	6.	The primary components of a CPU are the control unit, arithmetic logic unit, and primary storage.
	7.	Registers are a component of a CPU.
	8.	The ALU retrieves input data directly from primary storage.
	9.	The contents of registers can be accessed by the CPU more quickly than the contents of primary storage.
	10.	Primary storage is a component of a CPU.
	11.	Programs not currently being executed are held in primary storage.
	12.	Data inputs to the currently executing instruction are held in registers.
	13.	Comparison instructions are executed by the control unit.
	14.	Data movement instructions are executed by the control unit.
	15.	The CPU always determines the next instruction to fetch by adding one to the address of the previously fetched instructions.
	16.	Most of a currently executing program's data is held in registers.
	17.	Primary storage devices can't be used to implement secondary storage because their capacity is too small.
	18.	Most primary storage devices can't be used to implement secondary storage because they're volatile.
	19.	Most of a currently executing program's instructions are held in registers.
	20.	According to the text, the computer class with the smallest computational capacity is the microcomputer.

 21.	The most important difference between a network computer and other workstations is a lack of locally stored application and/or system software.
 22.	A mainframe generally supports more simultaneous users than a midrange computer.
 23.	The computer class with the greatest I/O capacity is the mainframe.
 24.	A microcomputer cannot be used as a server.
 25.	The computer class with the greatest computational capacity is the mainframe.
 26.	A workstation is generally implemented with the latest and most expensive cutting-edge technology.
 27.	A cluster contains multiple computer systems housed in a single cabinet.
 28.	A cluster is a group of similar or identical computers, connected by a high speed network, that cooperate to provide services or execute a common application.
 29.	System software is specialized to a specific user need.
	True/False nether the statement is true or false. If false, change the identified word or phrase to make the statement
 30.	The term <u>systems architecture</u> describes the structure, interaction, and technology of computer system components
 31.	Quantum physics describes the behavior of matter at the subatomic level.
 32.	An atom, or any other matter that stores data in multiple simultaneous quantum states, is called a(n) quantum byte.
 33.	A(n) <u>instruction</u> is a signal or command to a processor to perform one of its functions.
 34.	A(n) general-purpose processor is, in essence, a processor with a single internal program.
 35.	Most useful computational tasks, such as recalculating a spreadsheet, are accomplished by executing a long sequence of instructions called a(n) <u>program</u> .
 36.	The <u>control unit</u> is the 'plumbing' that connects all computer system components.
 37.	The <u>input/output unit</u> is a general-purpose processor that executes all instructions and controls all data movement within the computer system
38.	The ALU retrieves input data directly from primary storage.

	39.	A powerful CPU needs a high-capacity <u>I/O unit</u> to keep it supplied with instructions and data from primary storage
	40.	Programs not currently being executed are held in <u>primary storage</u> .
	41.	Data inputs to the currently executing instruction are held in <u>registers</u> .
	42.	Most of a currently executing program's instructions are held in <u>registers</u> .
	43.	Most of a currently executing program's data is held in <u>registers</u> .
	44.	A(n) <u>network computer</u> is a microcomputer with minimal secondary storage capacity and little or no installed software.
	45.	The computer class with the smallest computational capacity is the <u>microcomputer</u> .
	46.	A(n) <u>supercomputer</u> generally supports more simultaneous users than a midrange computer.
	47.	The computer class with the greatest I/O capacity is the <u>mainframe</u> .
	48.	A(n) <u>supercomputer</u> is generally implemented with the latest and most expensive cutting-edge technology.
	49.	The computer class with the greatest computational capacity is the <u>mainframe</u> .
	50.	A <u>grid</u> is a group of similar or identical computers, connected by a high speed network, that cooperate to provide services or execute a common application.
	51.	Application software is specialized to a specific user need.
	52.	A(n) <u>application program</u> is a collection of utility programs that supports users and application programs, allocates computer resources among multiple users and application programs, and controls access to computer hardware.
	53.	<u>Debugging tools</u> are used to simulate program execution and enable programmers to trace errors.
	54.	A(n) <u>computer network</u> is a set of hardware and software components that enables multiple users and computer systems to share information, software, and hardware resources.
Multi Identij		Choice choice that best completes the statement or answers the question.
	55.	Which of the following terms describes the structure, interaction, and technology of computer system components? a. Computer network c. Operating system

	b. System software	d.	Systems architecture
 56.	The Babbage difference engine is an example of a. Mechanical b. Electrical	c.	hat type of computing device? Optical Quantum
 57.	 Which of the following statements about optica a. Optical devices are at the leading edge of c b. Optical devices are gradually replacing ele c. Some input/output devices are based on op d. Optical data communication is still not conrelatively large distances. 	comp ctric otica	puter hardware technology. cal and magnetic storage devices. l technologies and devices.
 58.	For which of the following computing problem developed? a. Simulation b. Transaction Processing	c.	ces have experimental quantum computers already been Cryptography Data Mining
 59.	A(n)is a device that performs data manipa a. instruction b. processor	c.	ion and transformation functions. algorithm operating system
 60.	Most useful computational tasks, such as recald long sequence of instructions called a(n) a. instruction b. program	c.	algorithm processor
 61.	A(n)is a program in which different sets of a. I/O device b. algorithm	c.	astructions are applied to different data input values. processor central processing unit
 62.	Comparison instructions are part of a group of decision-making behavior. a. conditions b. logic programs	c.	_, implying a relationship to intelligent, application programs logic instructions
 63.	Which of the following is not one of the major a. processing b. storage	c.	ctions of computer hardware? external communication data manipulation
 64.	 What is the purpose of the I/O units within a coa. To execute instructions. To hold programs not currently being exected. To implement external communication fund. To connect all other communication devices. 	utec	i.
 65.	The primary components of a CPU are a. control unit, primary storage, and secondar b. control unit, arithmetic logic unit, and prim c. primary storage, secondary storage, and bu d. control unit, arithmetic logic unit, and regis	nary is	storage
 66.	Which of the following is a general-purpose pr movement within the computer system?	oces	ssor that executes all instructions and controls all data

	a. Operating systemb. I/O unit	c. CPUd. Primary storage
67	7. Which of the following contains electrical cira. Control unitb. ALU	cuits that implement instructions? c. Register d. Primary storage
68	Which of the following stores data or instructa. Registersb. ALU	ions that are needed immediately or frequently? c. Control unit d. Secondary storage
69	Which of the following is not one of the compa. control unitb. ALU	c. system bus d. registers
70	Which of the following is not a component ofa. arithmetic logic unitb. registers	Ca central processing unit? c. primary storage d. control unit
71	Where are data inputs to the currently executia. control unitb. registers	ng instruction held? c. primary storage d. secondary storage
72	2. From where does the ALU retrieve its input da. registersb. primary storage	ata? c. main memory d. secondary storage
73	Which storage device can be accessed most qa. primary storageb. secondary storage	uickly by the CPU? c. main memory d. registers
74	Which of the following is not an instruction toa. additionb. division	ype executed by the ALU? c. comparison d. data movement
75	5. Primary storage is also referred to asa. registerb. ROM	c. main memory d. I/O
76	5 provides the access speed required by the memory locations.a. ROMb. Secondary storage	the CPU and allows the CPU to read or write to specific c. RAM d. ALU
77	7. What component is the 'plumbing' that connecta. control unitb. system bus	cts all computer system components? c. CPU d. arithmetic logic unit
78	3. Why can't primary storage be used for the sana. It is volatileb. It is non-volatile	ne purposes as secondary storage? c. It is too fast d. It is too expensive
79		•

	b. registers	d. secondary storage
 80.	Where is most or all of a currently executing pra. control unit b. registers	rogram's instructions held? c. primary storage d. secondary storage
 81.	Where are programs not currently being execut a. control unit b. registers	ted held? c. primary storage d. secondary storage
 82.	Why aren't secondary storage devices generally a. they're too expensive b. their capacity is too small	y used to implement primary storage? c. they're volatile d. they're too slow
 83.	Which class of computer has the lowest computer a. microcomputer b. midrange computer	tational capacity? c. mainframe d. supercomputer
 84.	A(n)is a microcomputer with minimal sec a. supercomputer b. mainframe	condary storage capacity and little or no installed software c. network computer d. midrange computer
 85.	Which of the following is the most important d microcomputers (MC)? a. NC is able to access files on a server b. NC lacks permanently stored software c. NC has more limited primary storage capac d. NC has more limited CPU capabilities	lifference between a network computer (NC) and other city
 86.	Which class of computer has the greatest I/O ca a. microcomputer b. midrange computer	apacity? c. mainframe d. supercomputer
 87.		ystem that manages one or more shared resources such as access these resources over a local- or wide-area network? c. Personal computer d. Workstation
 88.	Which computer class is generally implemented technology? a. workstation b. midrange computer	c. mainframe d. supercomputer
 89.	Which class of computer has the highest computer a. microcomputer b. midrange computer	utational capacity? c. mainframe d. supercomputer
 90.	Which of the following multicomputer configura. blade b. cluster computer	rations doesn't require specialized hardware? c. grid d. network computer
 91.	The computer scientist asserted that compsecond (MIPS), is proportional to the square of a. Moore	puting power, as measured by millions of instructions per f the cost of hardware. c. Rock

	b. Grosch	d.	Mammoth
 92.	Which of the following is not a function or lay		
	a. system services		hardware interface
	b. resource allocation	d.	high-speed computation
 93.	Which of the following statements about softw	are	is not true?
	a. Most system software is intended for end-t	ıser	interaction.
	b. Most utility programs used by application	soft	ware operate invisibly in the background.
	c. Programs that allocate computer resources	amo	ong application programs operate in the
	background.	1	•
	d. Most application software is intended for e	ena-i	iser interaction.
 94.	A(n) is a collection of utility programs th	at sı	apports users and application programs, allocates
	computer resources among multiple users and	appl	ication programs, and controls access to computer
	hardware.		
	a. operating system	c.	network software
	b. systems software	d.	computer network
95.	Which of the following is considered a functio	n of	an aparating system?
 93.	a. Resource allocation	n oi c.	
	b. System services		File manipulation
	b. System services	u.	The manipulation
 96.	free programmers from the need to specif	fy ev	very CPU instruction individually.
	a. Programming languages	c.	Debugging tools
	b. Program editors	d.	System development tools
07	Which of the following is a way to minimize a	oftr	vera development aeste?
 97.	Which of the following is a way to minimize so a. software reuse		debugging
	a. software reuseb. system analysis		software maintenance
	b. System analysis	u.	software maintenance
 98.	How does system software make application d		
	a. it provides reusable utility programs		
	b. it provides system development tools	d.	it creates debugging tools
99.	A(n) is a program that translates instructi	one	in a programming language into CDI Linetructions
 99.	a. program editor		in a programming language into CPU instructions. debugging tool
	b. program translator	c.	application development software
	o. program translator	u.	application development software
 100.	A program translator translates a program writ	ten i	n a language such as Java or FORTRAN into
	a. algorithms	c.	CPU instructions
	b. system software	d.	registers
101	William Sala Sala Sala and American Market Sala Sala Sala Sala Sala Sala Sala Sal		1
 101.		oes c	hanges in software development from the earliest days
	of computing to the present?		
	a. substitution of computer hardware for prog		
	b. substitution of computer hardware for prog	-	•
	c. relative consumption of computer hardwar		
	d. operating systems have reduced software r	euse	thus increasing programming labor
 102.	Which of the following supports the simultane	ous	execution of multiple instructions?
	a. 80386	c.	Pentium and Pentium Pro
	b. 80486	d.	Pentium II, III, and 4

103.		nardware and software components that enables multiple users and tion, software, and hardware resources.	ļ
	a. Operating system	c. System software	
	b. Computer network	d. Server	
104.		ommunication hardware is attached to a(n)	
	a. system busb. I/O device	c. CPUd. physical network	
	b. I/O device	d. physical network	
Completio			
Complete e	each statement.		
105.	A(n) is a p	program in which different sets of instructions are applied to diffe	rent
	data input values.		
106.	Comparison instructions are part of	f a group of, implying a relationship to	
	intelligent, decision-making behavior		
107.	instruction	ns are used to solve algorithmic but not formulaic problems.	
108.	The is a go data movement within the computer	general-purpose processor that executes all instructions and control	ls all
	•	•	
109.	Data inputs to the currently executing	ng instruction are held in	
110.	The contents of	can be accessed by the CPU more quickly than the contents	s of
	primary storage.	• •	
111.	Most of a currently executing progra	ram's instructions are held in	
112.	The is the	e 'plumbing' that connects all computer system components.	
113.	may also t	be called main memory and is generally implemented using rando	m
	access memory (RAM).		
114.	Programs not currently being execu-	ated are held in	
115.	Most of a currently executing progra	ram's data is held in	
116.		microcomputer with minimal secondary storage capacity and little	or
	no installed software.		
117.	The computer class with the smalles	est computational capacity is the	
	-		
118.	The computer class with the greates	st I/O capacity is the	
119.	A(n) is a c	computer that manages shared resources and allows access to then	n
	through a network.		

120.	A(n) class computer can be used as a server.				
121.	The computer class with the greatest computational capacity is the				
122.	software is specialized to a specific user need.				
123.	A(n) is a collection of utility programs that supports users and application programs, allocates computer resources among multiple users and application programs, and controls access to computer hardware.				
124.	tools simulate program execution and enable programmers to trace errors.				
Short Ans	wer				
125.	What is/are the difference(s) between a formulaic and algorithmic problem?				
126.	What are the advantage(s) of network computers as compared to 'ordinary' microcomputers for organizations with large numbers of desktop computers?				
127.	How does a network computer differ from an 'ordinary' microcomputer?				
128.	How does a supercomputer differ from a mainframe?				
129.	What characteristics differentiate a mainframe computer from a supercomputer?				
130.	Why can't computer system classes such as "midrange computer" and "supercomputer" be defined in terms of facts and figures such as processor speed, primary storage capacity, and disk storage capacity?				
131.	What is the difference between an application program and a systems program?				
Essay					

E

- 132. Grosch's Law states that computer hardware power, as measured by the number of instructions a processor can execute in a fixed time interval, increases in proportion to the square of hardware cost. Is the law true and valid at present? Why or why not?
- 133. Which is generally "ahead" in terms of technological development computer hardware or software?

Ch02 Answer Section

TRUE/FALSE

1.	ANS:	F	PTS:	1	REF:	22
2.	ANS:	T	PTS:	1	REF:	27
3.	ANS:	F	PTS:	1	REF:	27
4.	ANS:	T	PTS:	1	REF:	29
5.	ANS:	F	PTS:	1	REF:	32
6.	ANS:	F	PTS:	1	REF:	32
7.	ANS:	T	PTS:	1	REF:	33
8.	ANS:	F	PTS:	1	REF:	33
9.	ANS:	T	PTS:	1	REF:	33
10.	ANS:	F	PTS:	1	REF:	34
11.	ANS:	F	PTS:	1	REF:	34
12.	ANS:	T	PTS:	1	REF:	33
13.	ANS:	F	PTS:	1	REF:	34
14.	ANS:	T	PTS:	1	REF:	33
15.	ANS:	F	PTS:	1	REF:	34
16.	ANS:	F	PTS:	1	REF:	34
17.	ANS:	F	PTS:	1	REF:	34
18.	ANS:	T	PTS:	1	REF:	34
19.	ANS:	F	PTS:	1	REF:	34
20.	ANS:	T	PTS:	1	REF:	36
21.	ANS:	T	PTS:	1	REF:	36
22.	ANS:	T	PTS:	1	REF:	37
23.	ANS:	T	PTS:	1	REF:	38
24.	ANS:	F	PTS:	1	REF:	37
25.	ANS:	F	PTS:	1	REF:	37
26.	ANS:	F	PTS:	1	REF:	37
27.	ANS:	F	PTS:	1	REF:	40
28.	ANS:	T	PTS:	1	REF:	40
29.	ANS:	F	PTS:	1	REF:	45

MODIFIED TRUE/FALSE

	ANS:		PTS: PTS:	-	REF: 22 REF: 25
32.	ANS:	F, qubit			
	PTS:				
33.	ANS:	T	PTS:	1	REF: 27
34.	ANS:	F, special-purpose processor			

	ANS:	1 T F, system bus	REF:	27	PTS:	1	REF:	27
37.	ANS:	1 F l processing un		32				
38.		1 F, registers	REF:	32				
39.		1 F, system bus	REF:	33				
40.		1 F, secondary s		34				
	PTS:	1	REF:	34				
	ANS:				PTS:	1	REF:	33
42.	ANS:	F, primary sto	rage					
	PTS.	1	RFF.	34				
43.	ANS:		KLI.	34	PTS:	1	REF:	35
	ANS:					1	REF:	
	ANS:				PTS:		REF:	
46.	ANS:	F, mainframe						
	DTC	1	DEE	27				
47	ANS:	1 T	REF:	3/	DTC.	1	DEE.	27
	ANS:				PTS: PTS:		REF:	
		F, supercompt	ıter		115.	1	KLI.	31
17.	71110.	1, supercompe	101					
	PTS:	1	REF:	37				
50.	ANS:	F, cluster						
	PTS:	1	REF:	40				
51	ANS:		IXLI.	40	PTS.	1	RFF.	45
		F, operating sy	vstem		1 15.	1	IXLI.	7.5
		-, ·F	, ~~~~					
	PTS:		REF:	48				
	ANS:				PTS:		REF:	
54.	ANS:	T			PTS:	1	REF:	55
MULTIPL	E CHO	DICE						
	4 3 7 6	ъ	DEC		DEE	22		

PTS: 1

PTS: 1

REF: 22

REF: 22

55. ANS: D

56. ANS: A

57.	ANS:	D	PTS:	1	REF:	24
58.	ANS:	C	PTS:	1	REF:	26
59.	ANS:	В	PTS:	1	REF:	27
60.	ANS:	В	PTS:	1	REF:	27
61.	ANS:	В	PTS:	1	REF:	28
62.	ANS:	D	PTS:	1	REF:	29
63.	ANS:	D	PTS:	1	REF:	31
64.	ANS:	С	PTS:	1	REF:	32
65.	ANS:		PTS:	1	REF:	32
66.	ANS:	С	PTS:	1	REF:	32
67.	ANS:	_	PTS:	1	REF:	33
68.	ANS:		PTS:	1	REF:	33
69.	ANS:		PTS:	1	REF:	33
70.	ANS:		PTS:	1	REF:	33
71.	ANS:	В	PTS:	1	REF:	33
72.	ANS:		PTS:	1	REF:	33
73.	ANS:	D	PTS:	1	REF:	33
73. 74.	ANS:	_	PTS:	1	REF:	34
74. 75.	ANS:		PTS:	1	REF:	34
75. 76.	ANS:	C	PTS:	1	REF:	34
		_	PTS:			34 34
77. 78.	ANS:			1	REF:	34 34
	ANS:		PTS:			
79.	ANS:		PTS:	1	REF:	34
80.	ANS:		PTS:	1	REF:	34
81.	ANS:	D	PTS:	1	REF:	34
82.	ANS:	D	PTS:	1	REF:	35
83.	ANS:	A	PTS:	1	REF:	36
84.	ANS:	C	PTS:	1	REF:	36
85.	ANS:	В	PTS:	1	REF:	36
86.	ANS:	C	PTS:	1	REF:	37
87.	ANS:	A	PTS:	1	REF:	37
88.	ANS:	D	PTS:	1	REF:	37
89.		D	PTS:	1	REF:	37
90.	ANS:		PTS:	1	REF:	40
91.		В	PTS:	1	REF:	41
92.	ANS:		PTS:	1	REF:	46
93.	ANS:		PTS:	1	REF:	45
94.	ANS:		PTS:	1	REF:	47
95.		D	PTS:	1	REF:	48
96.	ANS:		PTS:	1	REF:	49
97.	ANS:		PTS:	1	REF:	50
98.	ANS:		PTS:	1	REF:	50
99.		В	PTS:	1	REF:	49
100.	ANS:	C	PTS:	1	REF:	49
101.	ANS:	В	PTS:	1	REF:	50
102.	ANS:	D	PTS:	1	REF:	54
103.	ANS:	В	PTS:	1	REF:	55

104. ANS: D PTS: 1 REF: 57

COMPLETION

105. ANS: algorithm

PTS: 1 REF: 28

106. ANS: logic instructions

PTS: 1 REF: 29

107. ANS:

Comparison Branching

PTS: 1 REF: 29

108. ANS:

central processing unit

CPU

PTS: 1 REF: 32

109. ANS: registers

PTS: 1 REF: 33

110. ANS: registers a register

PTS: 1 REF: 33

111. ANS:

memory

main memory

RAM

random access memory

primary storage

PTS: 1 REF: 34

112. ANS:

bus

system bus

PTS: 1 REF: 34

113. ANS: Primary storage

PTS: 1 REF: 34

114. ANS: secondary storage

PTS: 1 REF: 35

115. ANS: memory

main memory RAM random access memory primary storage PTS: 1 REF: 35 116. ANS: network computer PTS: 1 **REF: 36** 117. ANS: microcomputer personal computer PC PTS: 1 REF: 36 118. ANS: mainframe PTS: 1 REF: 37 119. ANS: server PTS: 1 REF: 37 120. ANS: microcomputer personal computer PC midrange computer mainframe supercomputer PTS: 1 REF: 38 121. ANS: supercomputer PTS: 1 REF: 37 122. ANS: Application **Applications** PTS: 1 REF: 45 123. ANS: operating system REF: 47 PTS: 1

SHORT ANSWER

125. ANS:

124. ANS: Debugging

REF: 49

PTS: 1

With a formula, the same series of processing steps are applied to all data inputs, regardless of their value. For example, the formula for converting Fahrenheit temperature to Celsius temperature is the same regardless of the input Fahrenheit temperature. A processor that implements a formula uses only computation and data movement instructions.

With an algorithm, processing steps vary depending on the value(s) of data input(s). For example, an algorithm that implements a progressive income tax computation applies different tax rates to different levels of income. A processor that implements an algorithm uses computation, data movement, comparison, and branching instructions.

PTS: 1 REF: 28

126. ANS:

They are easier to administer and configure because they obtain all their software and configuration information from a server. They are also slightly cheaper.

PTS: 1 REF: 36

127. ANS:

It contains little or no secondary storage and does not permanently store system or application software.

PTS: 1 REF: 36

128. ANS:

A supercomputer supports high-speed computation - other capabilities are significant only to the extent they support computation. A supercomputer typically has no interactive users.

A mainframe supports hundreds to thousands of simultaneous interactive users or network access to shared resources. To fill this role a mainframe is optimized for input/output and secondary storage access - other capabilities are significant only to the extent they support I/O and secondary storage access.

PTS: 1 REF: 37

129. ANS:

Cost, I/O capacity, computational capacity, and number of simultaneous users. A supercomputer has higher cost and higher computational capacity. A mainframe has higher I/O capacity and can support a larger number of simultaneous users.

PTS: 1 REF: 37

130. ANS:

Computer technology and user needs and expectations change rapidly. The "specifications" of today's mainframe become those of tomorrow's midrange computer and those of a personal computer several years hence. Due to rapid improvements in computer specifications, and computer class definition based only on facts and figures soon becomes outdated.

PTS: 1 REF: 37-38

131. ANS:

An application program is customized to the needs of a specific user or organization. A systems program is general-purpose.

PTS: 1 REF: 44

132. ANS:

Grosch's Law may be true of processors in isolation but it isn't true of computer systems in general. Today, cost per unit of processor power increases with computer class. That is, as measured in terms of processor instruction execution speed, "bang for the buck" decreases as you move prom microcomputer, to midrange computer, to mainframe, and ultimately to supercomputer.

The reasons that Grosch's Law no longer include the existence of distinct computer classes with vastly different production economies of scale and the relevance of things other than processor speed to computer system power. Smaller computers are manufactured in larger quantities and are thus more economical. Larger computers, particularly mainframes, provide important capabilities other than raw processor speed such as high-speed I/O and large secondary storage capacities.

PTS: 1 REF: 41

133. ANS:

There is a push-pull relationship between hardware and software, though hardware usually leads. Hardware designers add new features and capabilities in response to or in anticipation of needs that will be expressed in software. Software may be constructed in anticipation of future hardware capabilities or new hardware capabilities may be developed in anticipation of future software needs. In terms of the things end users see in working information systems, hardware usually leads the way because it takes time for software developers to write programs that take advantage of the latest hardware advances.

PTS: 1 REF: 54