TEST BANK

2.1–2.4	ſE					
2 Chapter Quiz	NAME					
1. Write an equation in standard form for the parabola that has vertex $(3, -2)$ and passes through the point $(1, 14)$.	1					
 2. Draw the graph of f(x) = 0.05x³ + 6x² - 2x - 3 in the [-15, 10] by [-100, 175] viewing rectangle. How many real zeros are evident from this graph? A. 1 B. 2 C. 3 D. 0 E. Infinitely many 	2					
3. Describe the end behavior of the polynomial function $f(x) = -6x^3 + 2x^2 + 3x - 8.$	3. $f(x) \to ___$ as $x \to -\infty;$					
	$f(x) \to ___$ as $x \to \infty$					
4. Use the Remainder Theorem to find the remainder when $x^3 - 6x^2 + 5x - 2$ is divided by $x - 6$.	en 4.					
5. Find a polynomial of degree 3 whose zeros are $-3, \frac{3}{2}, \frac{3}{2}$ A. $2x^3 - x^2 - 15x - 18$ B. $2x^2 + 3x - 9$ C. $2x^2 - 7x + 6$ D. $2x^3 - x^2 - 15x + 18$ E. $2x^3 - 7x^2 - 15x + 18$	2. 5					
6. Use long division to find the remainder when $x^4 - 3x^2 + 5x - 1$ is divided by $x^2 - 3$.	6					
7. Use synthetic division to divide $\frac{3x^3 - 2x^2 + 5x - 3}{x + 2}$. Summarize your results by writing a fraction equation. $\frac{3x^3 - 2x^2 + 5x - 3}{x + 2} = $	7					
8. A contractor purchases a new bulldozer for $$45,000$. After 15 years the bulldozer will be outdated and have no value. Write a linear equation giving the value V o the equipment during the 15 years it will be used, whe t is the number of years after purchase.	8 f re					

Œ

2.1-2.4

2 Chapter Quiz (continued)

- 9. The formula $h = -16t^2 + v_0t + s_0$ gives the height of an object tossed upward where v_0 represents the initial velocity, s_0 represents the initial height, and *t* represents time. A golf ball is hit straight up from the ground level with an initial velocity of 72 ft/sec. Find the maximum height that the ball reaches and the number of seconds it takes to reach that height.
- 10. The manager of 100 apartments knows that at \$600 rent per month, all apartments will be rented. For each \$25 increase, one apartment will not be occupied. Let x represent the number of \$25 increases to the rent.
 - (a) Write the revenue as a function of x.
 - (b) What rent per unit will yield maximum revenue?
 - (c) What is the maximum revenue?

9. Max. ht. = _____

NAME

Time = _____

10. (a)______(b)______(c)_____

15

2.5-2.8

Chaptor Test	ME				
Directions: Show all work where appropriate. A graphing calculator may be necessary to answer some questions.					
1. Divide $x^3 - 2x^2 + 4x - 2$ by $x - 3$.	1. Quotient:				
	Remainder:				
2. What is the remainder when $x^{29} - 7x^{14} + 8$ is divided by $x - 1$?	2				
3. An antique vase is projected to be worth \$1,000 in 2 years and \$1,300 after 5 years. If the value of the vase continues to appreciate at this same rate, what will it be worth in 8 years?	3				
4. Which one of the following is a polynomial with <i>real</i> coefficients that has 2 and $2 - i$ as zeros?	4				
A. $(x + 2)(x - 2 - i)$ B. $(x - 2)(x + 2 + i)$ C. $(x + 2)(x^2 - 4x + 5)$ D. $(x - 2)(x^2 - 4x + 5)$ E. $(x + 2)(x^2 + 5)$					
5. Find all zeros of $f(x) = x^3 - x^2 + x - 21$ and write a linear factorization of $f(x)$.	5. Zeros:				
6. What is the minimum value for the function $y = 2x^2 - 32x + 256$?	6				
7. The line $x = 3$ is the axis of symmetry for the graph of a parabola. If the parabola contains the points $(1, 0)$ and $(4, -3)$, what is the equation for the parabola?	7				
8. A photograph is 4 in. longer than it is wide. If the frame is 2 in. wide, the combined area of the photograph and the frame is 252 in. ² . Find the dimensions of the photograph without the frame.	8				
9. Graph the function $2x^4 - 3x^3 - 4x^2 + 2x + 2$. Choose a viewing window that shows three local extremum values and all the <i>x</i> -intercepts. Make a sketch of the grapher window, and show the viewing window dimensions.	9. y				

Ŧ

FORM A

by the data below. Find a cubic regression equation (with coefficients expressed to the nearest thousandth), and graph it together with a scatter plot of the data.

t(sec)	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
D(m)	2.8	3.9	4.3	4.0	3.3	2.5	1.8	1.2	0.9	1.6	2.7

16. Solve the inequality
$$\frac{(x-5)^3}{x(x+2)} \ge 0$$
.

4

Time (sec)

 5^{y}_{r}

5

4

2

1

0

Distance (m) 3

14.

16. _

14. In the space below, identify all asymptotes and

FORM B DA	DATE				
2 Chapter Test	NAME				
Directions: Show all work where appropriate. A graphing ca	alculator may be necessary to answer				
1. Divide $x^3 + 3x^2 - 8x + 7$ by $x - 2$.	1. Quotient:				
	Remainder:				
2. What is the remainder when $x^{32} - 5x^{15} + 12$ is divided by $x + 1$?	2				
3. The value of an antique chair is projected to appreciate \$60 each year. If the chair will be worth \$650 in 2 years, what will it be worth in 10 years?	3				
4. Which one of the following is a polynomial with <i>real</i> coefficients that has -2 and $2 + i$ as zeros?	4				
A. $(x + 2)(x - 2 - i)$ B. $(x - 2)(x + 2 + i)$ C. $(x + 2)(x^2 - 4x + 5)$ D. $(x - 2)(x^2 - 4x + 5)$ E. $(x + 2)(x^2 + 5)$					
5. Find all zeros of $f(x) = x^3 + 7x - 22$ and write a linear factorization of $f(x)$.	5. Zeros: $f(x) =$				
6. What is the minimum value for the function $y = 3x^2 - 60x + 194?$	6				
7. The line $x = 3$ is the axis of symmetry for the graph of a parabola. If the parabola contains the points $(5, -3)$ and $(-1, 9)$, what is the equation for the parabola?	7				
8. A swimming pool is 8 ft longer than it is wide. The pool is surrounded by a walkway of width 4 ft. The combined area of the pool and the walkway is 1280 ft ² . Find the dimensions of the pool without the walkway.	8				
9. Graph the function $y = -3x^4 + 2x^3 + 6x^2 - 5x + 1$. Choose a viewing window that shows three local extremum values and all the <i>x</i> -intercepts. Make a sketch of the grapher window, and show the viewing window dimensions.	9. y				

Œ

 \oplus

14. In the space below, identify all asymptotes and intercepts of the function $g(x) = \frac{x+6}{x^2+x-12}$. Sketch a graph of g(x).

16. Solve the inequality
$$\frac{(x-4)^3}{x(x+3)} \le 0$$

 $f(x) \rightarrow ___$ as $x \rightarrow \infty$

