

2 Chapter Quiz

NAME

1. Write an equation in standard form for the parabola that has vertex $(3,-2)$ and passes through the point $(1,14)$.
2. Draw the graph of $f(x)=0.05 x^{3}+6 x^{2}-2 x-3$ in the $[-15,10]$ by $[-100,175]$ viewing rectangle. How many real zeros are evident from this graph?
A. 1
B. 2
C. 3
D. 0
E. Infinitely many
3. Describe the end behavior of the polynomial function $f(x)=-6 x^{3}+2 x^{2}+3 x-8$.
4. Use the Remainder Theorem to find the remainder when $x^{3}-6 x^{2}+5 x-2$ is divided by $x-6$.
5. Find a polynomial of degree 3 whose zeros are $-3, \frac{3}{2}, 2$.
6. $f(x) \rightarrow$ \qquad as $x \rightarrow-\infty$;

$$
f(x) \rightarrow \ldots \text { as } x \rightarrow \infty
$$

4. \qquad
5. \qquad
A. $2 x^{3}-x^{2}-15 x-18$
B. $2 x^{2}+3 x-9$
C. $2 x^{2}-7 x+6$
D. $2 x^{3}-x^{2}-15 x+18$
E. $2 x^{3}-7 x^{2}-15 x+18$
6. Use long division to find the remainder when
7. \qquad $x^{4}-3 x^{2}+5 x-1$ is divided by $x^{2}-3$.
8. Use synthetic division to divide $\frac{3 x^{3}-2 x^{2}+5 x-3}{x+2}$.
9.

Summarize your results by writing a fraction equation.
$\frac{3 x^{3}-2 x^{2}+5 x-3}{x+2}=$ \qquad
8. A contractor purchases a new bulldozer for $\$ 45,000$. After 15 years the bulldozer will be outdated and have no value. Write a linear equation giving the value V of the equipment during the 15 years it will be used, where t is the number of years after purchase.
1.
2. \qquad
\qquad

2.1-2.4

2 Chapter Quiz (continued)

9. The formula $h=-16 t^{2}+v_{0} t+s_{0}$ gives the height of an object tossed upward where v_{0} represents the initial velocity, s_{0} represents the initial height, and t represents time. A golf ball is hit straight up from the ground level with an initial velocity of $72 \mathrm{ft} / \mathrm{sec}$. Find the maximum height that the ball reaches and the number of seconds it takes to reach that height.
10. The manager of 100 apartments knows that at $\$ 600$ rent per month, all apartments will be rented. For each $\$ 25$ increase, one apartment will not be occupied. Let x represent the number of $\$ 25$ increases to the rent.
(a) Write the revenue as a function of x.
(b) What rent per unit will yield maximum revenue?
(c) What is the maximum revenue?
11. Max. ht. = \qquad
Time $=$
12. (a)
(b)
(c)

2 Chapter Quiz

1. Find the domain of $f(x)=\frac{x^{3}+5 x^{2}-2}{x^{2}-2}$.
A. $(-\infty,-2) \cup(-2,2)$
B. $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$
C. $(-\infty,-\sqrt{2}) \cup(-\sqrt{2}, \sqrt{2})$
D. $(-\infty,-\sqrt{2}) \cup(-\sqrt{2}, \sqrt{2}) \cup(\sqrt{2}, \infty)$
E. $(-\infty, \infty)$
2. Find all rational zeros of $f(x)=2 x^{3}-x^{2}-23 x-20$.
3.
4. \qquad
\qquad
5. Find all the zeros of $f(x)=x^{4}-x^{3}-x^{2}-x-2$.
6.
7. \qquad
8. Write a linear factorization of $f(x)=x^{3}+6 x-7$.
9. \qquad gives the zeros of the graph and their multiplicity?

A. 1 (multiplicity 1), 3 (multiplicity 2)
B. 1 (multiplicity 3), 2 (multiplicity 1)
C. 1 (multiplicity 3), 3 (multiplicity 1)
D. 1 (multiplicity 2), 3 (multiplicity 1)
E. 1 (multiplicity 1), 2 (multiplicity 3)
10. Solve the inequality $\frac{x+5}{|x-2|} \leq 0$.
11. \qquad
12. Solve the rational equation $\frac{x(2 x+1)}{x-2}=\frac{10}{x-2}-\frac{5}{2}$.
13. Find a polynomial of degree 2 with real-number coefficients and zero $3-2 i$.
14. Solve the inequality $\frac{3 x+2}{(x+1)(2 x)} \leq 0$.
15. Find all the asymptotes and the intercepts of the function $f(x)=\frac{x^{2}-3 x+5}{x+2}$.
16. Root:

Extraneous root: \qquad
8. \qquad
9. \qquad
10. \qquad
\square
\qquad

2 Chapter Test

NAME

Directions: Show all work where appropriate. A graphing calculator may be necessary to answer some questions.

1. Divide $x^{3}-2 x^{2}+4 x-2$ by $x-3$.
2. What is the remainder when $x^{29}-7 x^{14}+8$ is divided by $x-1$?
3. An antique vase is projected to be worth $\$ 1,000$ in 2 years and $\$ 1,300$ after 5 years. If the value of the vase continues to appreciate at this same rate, what will it be worth in 8 years?
4. Which one of the following is a polynomial with real coefficients that has 2 and $2-\mathrm{i}$ as zeros?
A. $(x+2)(x-2-i)$
B. $(x-2)(x+2+i)$
C. $(x+2)\left(x^{2}-4 x+5\right)$
D. $(x-2)\left(x^{2}-4 x+5\right)$
E. $(x+2)\left(x^{2}+5\right)$
5. Find all zeros of $f(x)=x^{3}-x^{2}+x-21$ and write a linear factorization of $f(x)$.
6. What is the minimum value for the function $y=2 x^{2}-32 x+256 ?$
7. The line $x=3$ is the axis of symmetry for the graph of a parabola. If the parabola contains the points $(1,0)$ and $(4,-3)$, what is the equation for the parabola?
8. A photograph is 4 in . longer than it is wide. If the frame is 2 in . wide, the combined area of the photograph and the frame is 252 in. ${ }^{2}$. Find the dimensions of the photograph without the frame.
9. Graph the function $2 x^{4}-3 x^{3}-4 x^{2}+2 x+2$. Choose a viewing window that shows three local extremum values and all the x-intercepts. Make a sketch of the grapher window, and show the viewing window dimensions.
10. Quotient: \qquad
Remainder: \qquad
11. \qquad
12. \qquad
13. \qquad
14. Zeros: \qquad

$$
f(x)=
$$

\qquad
6. \qquad
7. \qquad
8. \qquad
9.

10. Describe the end behavior of the polynomial function $f(x)=-2 x^{4}-3 x^{3}+3 x-5$.
11. Identify the horizontal and vertical asymptotes for the function $f(x)=\frac{3 x^{2}}{x^{2}-7 x+12}$.
12. Solve the inequality $\frac{x-6}{|2 x-4|} \leq 0$.
13. Raymond's distance D from a motion detector is given by the data below. Find a cubic regression equation (with coefficients expressed to the nearest thousandth), and graph it together with a scatter plot of the data.

$t(\mathrm{sec})$	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
$D(m)$	2.8	3.9	4.3	4.0	3.3	2.5	1.8	1.2	0.9	1.6	2.7

14. In the space below, identify all asymptotes and intercepts of the function $g(x)=\frac{x-5}{x^{2}+x-6}$. Then sketch a graph of $g(x)$.
15. Tell how the graph of $y=-3+\frac{4}{x+2}$ can be obtained from the graph of $y=\frac{1}{x}$ by using transformations.
16. Solve the inequality $\frac{(x-5)^{3}}{x(x+2)} \geq 0$.
17. $f(x) \rightarrow$ \qquad as $x \rightarrow-\infty$;
$f(x) \rightarrow$ \qquad as $x \rightarrow \infty$
18. Horizontal: \qquad
Vertical: \qquad
19.
20.

14.

15. \qquad
\qquad
\qquad
16. \qquad

FORM B

2 Chapter Test

DATE
NAME

Directions: Show all work where appropriate. A graphing calculator may be necessary to answer some questions.

1. Divide $x^{3}+3 x^{2}-8 x+7$ by $x-2$.
2. What is the remainder when $x^{32}-5 x^{15}+12$ is divided by $x+1$?
3. The value of an antique chair is projected to appreciate $\$ 60$ each year. If the chair will be worth $\$ 650$ in 2 years, what will it be worth in 10 years?
4. Which one of the following is a polynomial with real coefficients that has -2 and $2+i$ as zeros?
A. $(x+2)(x-2-i)$
B. $(x-2)(x+2+i)$
C. $(x+2)\left(x^{2}-4 x+5\right)$
D. $(x-2)\left(x^{2}-4 x+5\right)$
E. $(x+2)\left(x^{2}+5\right)$
5. Find all zeros of $f(x)=x^{3}+7 x-22$ and write a linear factorization of $f(x)$.
6. What is the minimum value for the function $y=3 x^{2}-60 x+194$?
7. The line $x=3$ is the axis of symmetry for the graph of a parabola. If the parabola contains the points $(5,-3)$ and $(-1,9)$, what is the equation for the parabola?
8. A swimming pool is 8 ft longer than it is wide. The pool is surrounded by a walkway of width 4 ft . The combined area of the pool and the walkway is $1280 \mathrm{ft}^{2}$. Find the dimensions of the pool without the walkway.
9. Graph the function $y=-3 x^{4}+2 x^{3}+6 x^{2}-5 x+1$. Choose a viewing window that shows three local extremum values and all the x-intercepts. Make a sketch of the grapher window, and show the viewing window dimensions.
10. Quotient: \qquad
Remainder: \qquad
11.
12. \qquad
13. \qquad
14. Zeros: \qquad

$$
f(x)=
$$

\qquad
6. \qquad
7. \qquad
8. \qquad
9.

FORM B

2 Chapter Test

10. Describe the end behavior of the polynomial function $f(x)=-3 x^{5}+2 x^{4}+5 x-3$.
11. Identify the horizontal and vertical asymptotes for the function $f(x)=\frac{5 x^{2}}{2 x^{2}-11 x+12}$.
12. Solve the inequality $(x-4) \sqrt{x+2} \geq 0$.
13. Jennifer's distance D from a motion detector is given by the data below. Find a cubic regression equation (with coefficients expressed to the nearest thousandth), and graph it together with a scatter plot of the data.

$t(\mathrm{sec})$	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
$D(m)$	2.2	1.1	0.7	1.0	1.7	2.5	3.3	4.0	4.4	3.8	2.8

14. In the space below, identify all asymptotes and intercepts of the function $g(x)=\frac{x+6}{x^{2}+x-12}$. Sketch a graph of $g(x)$.
15. Tell how the graph of $y=5+\frac{2}{x-4}$ can be obtained from the graph of $y=\frac{1}{x}$ by using transformations.
16. Solve the inequality $\frac{(x-4)^{3}}{x(x+3)} \leq 0$.
17. $f(x) \rightarrow$ \qquad as $x \rightarrow-\infty$; $f(x) \rightarrow$ \qquad as $x \rightarrow \infty$
18. Horizontal: \qquad
Vertical: \qquad
19.
20.

14.

15. \qquad
\qquad
\qquad
16. \qquad

