TEST BANK

\qquad

1) Give the coordinates of the points on the following graph.

2) Find the distance and midpoint between $(-4,3)$ and $(10,-11)$.
3) Write the equation of the circle centered at $(-3,4)$ with a radius of 8 .
4) Determine the equation of the circle in standard form described by $x^{2}-4 x+y^{2}+6 y-36=0$.
5) \qquad
6) \qquad
7) \qquad
8) \qquad

In exercises 5-8, find the equation of the following lines. Write your answer in slope-intercept form.
5) Passing through $(5,-3)$ with slope -2 .
5) \qquad
6) Passing through $(-3,7)$ and $(1,5)$.
6) \qquad
7) Parallel to $-3 x+2 y=-5$ passing through $(3,-2)$.
7) \qquad
8) Find the equations of the horizontal and vertical line passing through $(5,8)$.
8) \qquad
9) Find the domain of the following function. Write your answer using interval notation.

$$
f(x)=\frac{x-2}{(x-4)(x+1)}
$$

9) \qquad
10) Determine which symmetries the graph of the following equation possesses.

$$
x^{2}-y^{2}=4
$$

10) \qquad
11) Write the formula for the graph of $f(x)$ below.

12) \qquad
13) List the transformations to the basic graph and graph the function.

$$
f(x)=-2(x-3)^{2}+9
$$

12) \qquad
13) Determine the a) domain and b) range of the function graphed below.

13) \qquad
14) Given the following graph determine: a) where is the graph increasing, b) where is the graph decreasing, c) where is the graph constant.

14) \qquad
15) Find the x - and y-intercepts of the following equation.

$$
y=x^{2}+2 x-15
$$

15) \qquad
16) Graph the function given below and determine the given functional values.

$$
f(x)=\left\{\begin{array}{ccc}
(3-x)^{2}-4 & \text { if } & x \leq 3 \\
5 & \text { if } & x>3
\end{array} ; \quad f(-3), f(3), f(6)\right.
$$

16) \qquad
17) Find $\frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{2}+2 x$
17) \qquad
18) Given $f(x)$ and $g(x)$, find $(f \circ g)(x)$ and determine its domain.

$$
f(x)=2 x^{2}-5, g(x)=\sqrt{x-5}
$$

18) \qquad

Chapter 2 Test Form A

19) Find $f^{-1}(x)$ for $f(x)=3 x-7$
20) A company that produced toy cars has a monthly a monthly cost of 1,500 dollars and a marginal cost of 3 dollars per toy car. The company makes 8 dollars per toy car in revenue.
a) Find the function, $C(x)$, that represents the cost of producing x toy cars.
b) Find the function, $R(x)$, that represents the revenue from selling x toy cars.
c) Find the function, $P(x)$, that represents the profit from selling x toy cars.
d) What would the profit be from selling 2500 toy cars?
21) \qquad
22) \qquad
\qquad
23) Give the coordinates of the points on the following graph.

24) \qquad
25) Find the distance and midpoint between $(5,-7)$ and $(1,1)$.
26) \qquad
27) Write the equation of the circle centered at $(5,-2)$ with a radius of 4 .
28) \qquad
29) Determine the equation of the circle in standard form described by

$$
x^{2}+10 x+y^{2}-8 y+5=0 .
$$

4) \qquad
In exercises 5-8, find the equation of the following lines. Write your answer in slope-intercept form.
5) Passing through $(-4,3)$ with slope 5 .
6) \qquad
7) Passing through $(4,1)$ and $(-1,-3)$.
8) \qquad
9) Perpendicular to $2 x+3 y=7$ passing through $(4,7)$
10) \qquad
11) Find the equations of the horizontal and vertical line passing through $(-8,6)$.
12) \qquad
13) Find the domain of the following function. Write your answer using interval notation.

$$
f(x)=\sqrt{8-2 x}+\sqrt{x+5}
$$

9) \qquad
10) Determine which symmetries the graph of the following equation possesses.

$$
y=x^{4}-x^{2}
$$

10) \qquad
11) Write the formula for the graph of $f(x)$ below.

12) \qquad
13) List the transformations to the basic graph and graph the function.

$$
f(x)=\frac{1}{2}(x+5)^{2}-4
$$

12) \qquad
13) Determine the a) domain and b) range of the function graphed below.

13) \qquad
14) Given the following graph determine: a) where is the graph increasing, b) where is the graph decreasing, c) where is the graph constant.

14) \qquad
15) Find the x - and y-intercepts of the following equation.

$$
y=\sqrt{2 x+16}
$$

15) \qquad
16) Graph the function given below and determine the given functional values.

$$
f(x)=\left\{\begin{array}{ccc}
|3-x| & \text { if } & x>-2 \\
-3 & \text { if } & x \leq-2
\end{array} ; \quad f(-2), f(2), f(-1)\right.
$$

16) \qquad
17) Find $\frac{f(x+h)-f(x)}{h}$ for $f(x)=3 x-2 x^{2}$
17) \qquad
18) Given $f(x)$ and $g(x)$, find $(f \circ g)(x)$ and determine its domain.

$$
f(x)=\frac{x^{2}+1}{x^{2}+7}, g(x)=\sqrt{x+7}
$$

18) \qquad

Chapter 2 Test Form B

19) Find $f^{-1}(x)$ for $f(x)=\frac{5}{x+3}$
20) A company that produced toy cars has a monthly a monthly cost of 2,000 dollars and a marginal cost of 8 dollars per toy car. The company makes 15 dollars per toy car in revenue.
a) Find the function, $C(x)$, that represents the cost of producing x toy cars.
b) Find the function, $R(x)$, that represents the revenue from selling x toy cars.
c) Find the function, $P(x)$, that represents the profit from selling x toy cars.
d) What would the profit be from selling 3250 toy cars?
21) \qquad
\qquad
22) Give the coordinates of the points on the following graph.

23) \qquad
24) Find the distance and midpoint between $(8,5)$ and $(4,-9)$.
25) \qquad
26) Write the equation of the circle centered at $(-3,5)$ with a radius of 6 .
27) \qquad
28) Determine the equation of the circle in standard dorm described by
$x^{2}-6 x+y^{2}+10 y+9=0$.
29) \qquad
In exercises 5-8, find the equation of the following lines. Write your answer in slope-intercept form.
30) Passing through $(1,-2)$ with slope -3 .
31) \qquad
32) Passing through $(-2,1)$ and $(4,-4)$.
33) \qquad
34) Parallel to $5 x-3 y=4$ passing through $(-10,3)$
35) \qquad
36) Find the equations of the horizontal and vertical line passing through $(-3,-4)$.
37) \qquad
38) Find the domain of the following function. Write your answer using interval notation.

$$
f(x)=\frac{x}{x-2}+\frac{x}{x+4}
$$

9) \qquad
10) Determine which symmetries the graph of the following equation possesses.

$$
x^{3} y^{2}+x=4
$$

10) \qquad
11) Write the formula for the graph of $f(x)$ below.

12) \qquad
13) List the transformations to the basic graph and graph the function.

$$
f(x)=3(x+2)^{2}-9
$$

12) \qquad
13) Determine the a) domain and b) range of the function graphed below.

13) \qquad
14) Given the following graph determine: a) where is the graph increasing, b) where is the graph decreasing, c) where is the graph constant.

14) \qquad
15) Find the x - and y-intercepts of the following equation.
$y=\sqrt[3]{2 x+8}$
15) \qquad
16) Graph the function given below and determine the given functional values.
$f(x)=\left\{\begin{array}{ccc}3 & \text { if } & x>4 \\ 3-2 x & \text { if } & x \leq 4\end{array} ; f(-4), f(4), f(8)\right.$

16) \qquad
17) Find $\frac{f(x+h)-f(x)}{h}$ for $f(x)=4 x^{2}-7 x$.
17) \qquad
18) Given $f(x)$ and $g(x)$, find $(f \circ g)(x)$ and determine its domain.

$$
f(x)=3 x^{2}+2, g(x)=\sqrt{7-x}
$$

18) \qquad

Chapter 2 Test Form C

19) Find $f^{-1}(x)$ for $f(x)=x^{3}+8$
20) A company that produced toy cars has a monthly a monthly cost of 1,800 dollars and a marginal cost of 5 dollars per toy car. The company makes 13 dollars per toy car in revenue.
a) Find the function, $C(x)$, that represents the cost of producing x toy cars.
b) Find the function, $R(x)$, that represents the revenue from selling x toy cars.
c) Find the function, $P(x)$, that represents the profit from selling x toy cars.
d) What would the profit be from selling 1500 toy cars?

3
19) \qquad
\qquad

1) Give the coordinates of the points on the following graph.

2) \qquad
3) Find the distance and midpoint between $(-6,1)$ and $(4,-9)$.
4) \qquad
5) Write the equation of the circle centered at $(-5,2)$ with a radius of 5 .
6) \qquad
7) Determine the equation of the circle in standard form described by
$x^{2}-14 x+y^{2}+8 y+56=0$.
8) \qquad
In exercises 5-8, find the equation of the following lines. Write your answer in slope-intercept form.
9) Passing through $(-2,3)$ with slope 4
10) Passing through $(-1,-2)$ and $(4,2)$
11) Perpendicular to $-4 x-3 y=5$ passing through $(-8,5)$
12) Find the equations of the horizontal and vertical line passing through $(2,-7)$.
13) Find the domain of the following function. Write your answer using interval notation.

$$
f(x)=\frac{x+3}{(x-2)(x+5)}
$$

9) \qquad
10) Determine which symmetries the graph of the following equation possesses.

$$
y=3 x^{5}-4 x^{3}
$$

10) \qquad
11) Write the formula for the graph of $f(x)$ below.

12) \qquad
13) List the transformations to the basic graph and graph the function.

$$
f(x)=-2(x+5)^{2}+6
$$

12) \qquad
13) Determine the a) domain and b) range of the function graphed below.

13) \qquad
14) Given the following graph determine: a) where is the graph increasing, b) where is the graph decreasing, c) where is the graph constant.

14) \qquad
15) Find the x - and y-intercepts of the following equation.

$$
y=x^{2}-25
$$

15) \qquad
16) Graph the function given below and determine the given functional values.

$$
f(x)=\left\{\begin{array}{ccc}
-x^{2}+9 & \text { if } & x<1 \\
-5 & \text { if } & x \geq 1
\end{array} ; \quad f(-1), f(1), f(5)\right.
$$

16) \qquad
17) Find $\frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{3}+x$
17) \qquad
18) Given $f(x)$ and $g(x)$, find $(f \circ g)(x)$ and determine its domain.

$$
f(x)=\frac{x^{2}}{x^{2}+3}, g(x)=\sqrt{x-2}
$$

18) \qquad
Chapter 2 Test Form D Name

Ratti \& McWaters, College Algebra and Trigonometry and Precalculus
19) Find $f^{-1}(x)$ for $f(x)=8-3 x$
20) A company that produced toy cars has a monthly a monthly cost of 2,400 dollars and a marginal cost of 10 dollars per toy car. The company makes 25 dollars per toy car in revenue.
a) Find the function, $C(x)$, that represents the cost of producing x toy cars.
b) Find the function, $R(x)$, that represents the revenue from selling x toy cars.
c) Find the function, $P(x)$, that represents the profit from selling x toy cars.
d) What would the profit be from selling 600 toy cars?
20) \qquad
\qquad

In exercises $1-4$, refer to the graph to the right.

1) What are the coordinates of point A ?
a) $(-3,9)$
b) $(3,-9)$
c) $(9,-3)$
d) $(-9,3)$
2) What are the coordinates of point B ?
a) $(-5,9)$
b) $(-5,-9)$
c) $(-9,5)$
d) $(5,-9)$
3) What are the coordinates of point C ?

4) \qquad
5) \qquad
6) \qquad
a) $(-4,0)$
b) $(4,0)$
c) $(0,4)$
d) $(0,-4)$
7) What are the coordinates of point D ?
a) $(-4,0)$
b) $(4,0)$
c) $(0,4)$
d) $(0,-4)$

In exercises 5-6, use the points $(-2,1)$ and $(6,-7)$.
5) Find the distance between the points.
a) $4 \sqrt{5}$
b) 4
c) $2 \sqrt{13}$
d) $8 \sqrt{2}$
6) Find the midpoint between the points.
a) $(4,-4)$
b) $(2,-3)$
c) $(-4,4)$
d) $(-2,3)$
7) Write the equation of the circle centered at $(4,-5)$ with a radius of 9 .
a) $(x+4)^{2}+(y-5)^{2}=81$
b) $(x-4)^{2}+(y+5)^{2}=81$
c) $(x+4)^{2}+(y-5)^{2}=9$
d) $(x-4)^{2}+(y+5)^{2}=9$
8) Determine the equation of the circle described by $x^{2}-8 x+y^{2}+10 y-59=0$.
6) \qquad
7) \qquad
8) \qquad
a) $(x-8)^{2}+(y+10)^{2}=59$
b) $(x-4)^{2}+(y+5)^{2}=41$
c) $(x-4)^{2}+(y+5)^{2}=100$
d) $(x-4)^{2}+(y+5)^{2}=59$
\qquad
Ratti \& McWaters, College Algebra and Trigonometry and Precalculus
In exercises 9-12, find the equation of the following lines. Write your answer in slope-intercept form.
9) Passing through $(-1,4)$ with slope 3 .
9) \qquad
a) $y=3 x+7$
b) $y=3 x+4$
c) $y=3 x-1$
d) $y=3 x-13$
10) Passing through $(-4,3)$ and $(2,4)$.
a) $y=6 x+27$
b) $y=-6 x-21$
c) $y=\frac{1}{6} x+\frac{11}{3}$
d) $y=-\frac{1}{6} x+\frac{7}{3}$
11) Parallel to $2 x+5 y=13$ passing through $(5,-3)$.
11) \qquad
a) $y=\frac{5}{2} x-\frac{31}{2}$
b) $y=\frac{2}{5} x-5$
c) $y=-\frac{5}{2} x+\frac{19}{2}$
d) $y=-\frac{2}{5} x-1$
12) Find the equations of the horizontal line passing through $(7,-6)$.
12) \qquad
a) $x=-6$
b) $y=-6$
c) $x=7$
d) $y=7$
13) Find the equations of the horizontal passing through $(-1,-3)$.
13) \qquad
a) $x=-1$
b) $y=-1$
c) $x=-3$
d) $y=-3$
14) Find the domain of $f(x)=\frac{x+3}{\sqrt{5 x+20}}$. Write your answer using interval notation.
14) \qquad
a) $[-4, \infty)$
b) $(-4, \infty)$
c) $[4, \infty)$
d) $(4, \infty)$
15) Determine which symmetries the graph of the $x y+x^{3}=y$ possesses.
15) \qquad
a) x -axis
b) y-axis
c) origin
d) none
16) Write the formula for the function graphed to the right
a) $\quad f(x)=-3|x+4|+5$
b) $\quad f(x)=\frac{1}{3}|x-4|+5$
c) $\quad f(x)=-2|x-4|+5$
d) $\quad f(x)=-3|x-4|+5$

16) \qquad
17) Which of the following is not a transformation of the basic function in \qquad $g(x)=\frac{1}{2}(x+3)^{2}-1$
a) vertical shift of 1 down
b) vertical reflection
c) vertical stretch of $\frac{1}{2}$
d) horizontal shift of 3 to the left
18) Graph $f(x)=-2(x-3)^{2}+2$
18) \qquad
a)

b)

c)

d)

\qquad

In exercises 19-20, refer to the graph to the right.
19) Determine the domain of the function.
a) $(-\infty, 4]$
b) $(-\infty,-6) \cup(-6,-1) \cup(-1,4]$
c) $(-\infty,-3) \cup(-3,7]$
d) $(-\infty, 7]$
20) Determine the range of the function.
a) $(-\infty, 4]$
b) $(-\infty,-6) \cup(-6,-1) \cup(-1,4]$

19) \qquad
20) \qquad
c) $(-\infty,-3) \cup(-3,7]$
d) $(-\infty, 7]$

In exercises 21-23, refer to the graph to the right.
21) When is the graph to the right increasing?
a) $(-2,2)$
b) $(6,9)$
c) $(-\infty,-2) \cup(2,6)$
d) Never
22) When is the graph to the right decreasing?
a) $(-2,2)$
b) $(6,9)$
c) $(-\infty,-2) \cup(2,6)$
d) Never
23) When is the graph to the right constant?

21) \qquad
22) \qquad
23) \qquad
a) $(-2,2)$
b) $(6,9)$
c) $(-\infty,-2) \cup(2,6)$
d) Never
24) Find the coordinates of the intercepts of $y=x^{2}-x-30$ \qquad
a) $(30,0),(0,5),(0,-6)$
b) $(30,0),(0,-5),(0,6)$
c) $(0,-30),(5,0),(-6,0)$
d) $(0,-30),(-5,0),(6,0)$

In exercises 25-28, use $f(x)=\left\{\begin{array}{cll}|2-x|-5 & \text { if } & x \leq 4 \\ 3 & \text { if } & x>4\end{array}\right.$
25) Graph $f(x)$.
25) \qquad
a)

b)

c)

d)

26) Determine the value of $f(4)$.
a) -3
b) 1
c) 7
d) 3
27) Determine the value of $f(-4)$.
a) -1
b) -3
c) 3
d) 1
28) Determine the value of $f(6)$.
28) \qquad
a) 1
b) 3
c) -3
d) -1
\qquad
29) Find $\frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{3}-x$.
29) \qquad
a) $h^{2}-1$
b) $h^{2}+3 h x+3 x^{2}-1$
c) $h^{2}+3 h x+3 x^{2}+1$
d) $3 x^{2}-1$
30) Given $f(x)$ and $g(x)$, find $(f \circ g)(x)$ and determine its domain.
30) \qquad
$f(x)=7 x^{2}+4, g(x)=\sqrt{8-x}$
a) $\sqrt{4-7 x^{2}} ;(-\infty, \infty)$
b) $\sqrt{4-7 x^{2}} ;(-\infty, 8]$
c) $60-7 x ;(-\infty, 8]$
d) $60-7 x ;[8, \infty)$
31) Given $f(x)=\sqrt[3]{x-27}$, find $f^{-1}(x)$.
31) \qquad
a) $f^{-1}(x)=\sqrt[3]{x+27}$
b) $f^{-1}(x)=\frac{1}{\sqrt[3]{x-27}}$
c) $f^{-1}(x)=x^{3}+27$
d) $f^{-1}(x)=-\sqrt[3]{x-27}$

A company that produced toy cars has a monthly a monthly cost of 2,300 dollars and a marginal cost of 4 dollars per toy car. The company makes 11 dollars per toy car in revenue. With this information, answer exercises 32-35.
32) Find the function, $C(x)$, that represents the total cost of producing x toy cars.
32) \qquad
a) $\quad C(x)=4 x$
b) $C(x)=11 x+2300$
c) $C(x)=4 x+2300$
d) $C(x)=2300 x+4$
33) Find the function, $R(x)$, that represents the revenue from selling x toy cars.
33) \qquad
a) $\quad R(x)=11 x-2300$
b) $\quad R(x)=11 x$
c) $\quad R(x)=4 x$
d) $\quad R(x)=7 x$
34) Find the function, $P(x)$, that represents the profit from selling x toy cars.
34) \qquad
a) $P(x)=11 x-2300$
b) $\quad P(x)=7 x-2300$
c) $P(x)=7 x$
d) $P(x)=2300-7 x$
35) What would the profit be from selling 1150 toy cars?
35) \qquad
a) $\$ 8,050$
b) $-\$ 5,750$
c) $\$ 10,350$
d) $\$ 5,750$
\qquad

In exercises 1-4, refer to the graph to the right.

1) What are the coordinates of point A ?
a) $(6,-7)$
b) $(-7,6)$
c) $(-7,-6)$
d) $(-6,7)$
2) What are the coordinates of point B?
a) $(3,0)$
b) $(-3,0)$
c) $(0,3)$
d) $(0,-3)$
3) What are the coordinates of point C ?
a) $(2,-2)$
b) $(-2,2)$
c) $(-2,-2)$
d) $(2,2)$
4) What are the coordinates of point D ?
a) $(-4,0)$
b) $(4,0)$
c) $(0,4)$
d) $(0,-4)$

In exercises 5-6, use the points $(5,-4)$ and $(-7,10)$.
5) Find the distance between the points.
a) $2 \sqrt{85}$
b) $2 \sqrt{13}$
c) $\sqrt{26}$
d) $2 \sqrt{10}$
6) Find the midpoint between the points.
a) $(-1,3)$
b) $(6,-7)$
c) $(-7,6)$
d) $(1,-3)$
7) Write the equation of the circle centered at $(-4,3)$ with a radius of 7 .
a) $(x-4)^{2}+(y+3)^{2}=7$
b) $(x-4)^{2}+(y+3)^{2}=49$
c) $(x+4)^{2}+(y-3)^{2}=7$
d) $(x+4)^{2}+(y-3)^{2}=49$
8) Determine the equation of the circle described by $x^{2}+6 x+y^{2}-8 y-56=0$.
6) \qquad
7) \qquad
a) $(x+6)^{2}+(y-8)^{2}=56$
b) $(x+3)^{2}+(y-4)^{2}=81$
c) $(x+3)^{2}+(y-4)^{2}=25$
d) $(x+3)^{2}+(y-4)^{2}=56$
\qquad
Ratti \& McWaters, College Algebra and Trigonometry and Precalculus
In exercises 9-12, find the equation of the following lines. Write your answer in slope-intercept form.
9) Passing through $(-5,4)$ with slope -3 .
9) \qquad
a) $y=-3 x+17$
b) $y=-3 x-1$
c) $y=-3 x+4$
d) $y=-3 x-11$
10) Passing through $(-3,-2)$ and $(2,5)$.
10) \qquad
a) $y=-\frac{7}{5} x+\frac{39}{5}$
b) $y=\frac{7}{5} x+\frac{11}{5}$
c) $y=-\frac{5}{7} x+\frac{45}{7}$
d) $y=\frac{5}{7} x-\frac{25}{7}$
11) Perpendicular to $-4 x+3 y=11$ passing through $(6,5)$.
11) \qquad
a) $y=-\frac{3}{4} x+\frac{19}{2}$
b) $y=\frac{3}{4} x+\frac{1}{2}$
c) $y=-\frac{1}{4} x+\frac{13}{2}$
d) $y=\frac{1}{4} x+\frac{7}{2}$
12) Find the equations of the vertical line passing through $(7,-6)$.
12) \qquad
a) $x=-6$
b) $y=-6$
c) $x=7$
d) $y=7$
13) Find the equations of the vertical line passing through $(-1,-3)$.
13) \qquad
a) $x=-1$
b) $y=-1$
c) $x=-3$
d) $y=-3$
14) Find the domain of $f(x)=\frac{x-5}{\sqrt{24-6 x}}$. Write your answer using interval notation.
14) \qquad
a) $(-\infty, 4)$
b) $(4, \infty)$
c) $(-\infty, 4]$
d) $[4, \infty)$
15) Determine which symmetries the graph of the $x^{2} y^{2}-x^{4}=y$ possesses.
15) \qquad
a) x -axis
b) y-axis
c) origin
d) none
16) Write the formula for the function graphed to the right
a) $\quad f(x)=-2|x+3|-2$
b) $\quad f(x)=2|x+3|-2$
c) $\quad f(x)=\frac{1}{2}|x+3|-2$
d) $f(x)=2|x-3|-2$

16) \qquad
17) Which of the following is not a transformation of the basic function in
17) \qquad $g(x)=-3(x-2)^{2}+7$
a) vertical stretch of $\frac{1}{3}$
b) vertical reflection
c) horizontal shift of 2 to the right
d) vertical shift of 7 up
18) Graph $f(x)=\frac{1}{2}(x+3)^{2}-5$
18) \qquad
a)

b)

c)

d)

\qquad

In exercises 19-20, refer to the graph to the right.
19) Determine the domain of the function.
a) $(-\infty, \infty)$
b) $(-\infty,-8) \cup(-8,0) \cup[5,10]$
c) $[-6,6) \cup(6, \infty)$
d) $(-\infty, 0) \cup[5,10]$
20) Determine the range of the function.
a) $[-6, \infty)$
b) $(-\infty,-8) \cup(-8,0) \cup[5,10]$

19) \qquad
20) \qquad
c) $[-6,6) \cup(6, \infty)$
d) $(-\infty, 0) \cup[5,10]$

In exercises 21-23, refer to the graph to the right.
21) When is the graph to the right increasing?
a) $(-\infty,-2) \cup(5,9)$
b) $(2,5)$
c) $(-2,2)$
d) Never
22) When is the graph to the right decreasing?
a) $(-\infty,-2) \cup(5,9)$
b) $(2,5)$
c) $(-2,2)$
d) Never
23) When is the graph to the right constant?

21) \qquad
22) \qquad
23) \qquad
a) $(-\infty,-2) \cup(5,9)$
b) $(2,5)$
c) $(-2,2)$
d) Never
24) Find the coordinates of the intercepts of $y=\sqrt[3]{3 x-27}$
24) \qquad
a) $(3,0),(0,-9)$
b) $(-3,0),(0,9)$
c) $(0,-3),(-9,0)$
d) $(0,-3),(9,0)$

In exercises 25-28, use $f(x)=\left\{\begin{array}{cll}-3 & \text { if } & x \geq 3 \\ |1-x|+2 & \text { if } & x<3\end{array}\right.$
25) Graph $f(x)$.
a)

b)

c)

d)

26) Determine the value of $f(3)$.
26) \qquad
a) -3
b) 6
c) 2
d) 18
27) Determine the value of $f(-3)$.
a) -3
b) 6
c) 4
d) 0
28) Determine the value of $f(0)$.
a) 3
b) 0
c) 5
d) -3
29) Find $\frac{f(x+h)-f(x)}{h}$ for $f(x)=2 x^{2}-3 x$.
29) \qquad
a) $2 h+3$
b) $4 x-1$
c) $2 h+4 x-3$
d) $2 h+4 x+3$
\qquad
30) Given $f(x)$ and $g(x)$, find $(f \circ g)(x)$ and determine its domain.
30) \qquad
$f(x)=\frac{x^{2}-3}{x^{2}+2}, g(x)=\sqrt{x+3}$
a) $\sqrt{\frac{4 x^{2}+3}{x^{2}+2}} ;(-\infty, \infty)$
b) $\sqrt{\frac{4 x^{2}+3}{x^{2}+2}} ;[-3, \infty)$
c) $\frac{x}{x+5} ;(-\infty,-3]$
d) $\frac{x}{x+5} ;[-3, \infty)$
31) Given $f(x)=\frac{4}{x-5}$, find $f^{-1}(x)$.
31) \qquad
a) $f^{-1}(x)=\frac{5 x+4}{x}$
b) $\quad f^{-1}(x)=\frac{x-5}{4}$
c) $f^{-1}(x)=-\frac{4}{x-5}$
d) $f^{-1}(x)=\frac{4}{x+5}$

A company that produced toy cars has a monthly a monthly cost of 3,300 dollars and a marginal cost of 14 dollars per toy car. The company makes 32 dollars per toy car in revenue. With this information, answer exercises 32-35.
32) Find the function, $C(x)$, that represents the total cost of producing x toy cars.
32) \qquad
a) $C(x)=14 x$
b) $C(x)=32 x+3300$
c) $C(x)=3300 x+14$
d) $C(x)=14 x+3300$
33) Find the function, $R(x)$, that represents the revenue from selling x toy cars.
33) \qquad
a) $\quad R(x)=32 x-3300$
b) $\quad R(x)=18 x$
c) $\quad R(x)=32 x$
d) $R(x)=14 x$
34) Find the function, $P(x)$, that represents the profit from selling x toy cars.
34) \qquad
a) $\quad P(x)=32 x-3300$
b) $\quad P(x)=3300-18 x$
c) $\quad P(x)=18 x-3300$
d) $P(x)=18 x$
35) What would the profit be from selling 750 toy cars?
35) \qquad
a) $\$ 10,200$
b) $\$ 20,700$
c) $\$ 13,500$
d) $-\$ 10,200$

