

1) Give the coordinates of the points on the following graph.

12)

13)

14) Given the following graph determine: a) where is the graph increasing, b) where is the graph decreasing, c) where is the graph constant.

14)

16)

17) _____

15) Find the *x*- and *y*-intercepts of the following equation.

$$y = x^2 + 2x - 15$$
 15)

16) Graph the function given below and determine the given functional values.

$$f(x) = \begin{cases} (3-x)^2 - 4 & if \quad x \le 3 \\ 5 & if \quad x > 3 \end{cases}; \quad f(-3), f(3), f(6) \end{cases}$$

17) Find
$$\frac{f(x+h)-f(x)}{h}$$
 for $f(x) = x^2 + 2x$

18) Given f(x) and g(x), find $(f \circ g)(x)$ and determine its domain.

$$f(x) = 2x^2 - 5, g(x) = \sqrt{x - 5}$$
 18)

31

Chap	ter 2 Test Form A Name	
	Ratti & McWaters, College Algebra and Trigonometry and F	Precalculus
19)	Find $f^{-1}(x)$ for $f(x) = 3x - 7$	19)
20)	A company that produced toy cars has a monthly a monthly cost of 1,500 dollars and a marginal cost of 3 dollars per toy car. The company makes 8 dollars per toy car in revenue.	
	a) Find the function, $C(x)$, that represents the cost of producing x toy cars.	
	b)Find the function, $R(x)$, that represents the revenue from selling x toy cars.	
	c) Find the function, $P(x)$, that represents the profit from selling x toy cars.	
	d) What would the profit be from selling 2500 toy cars?	20)

Give the coordinates of the points on the following graph.

1)

G 1) 2) Find the distance and midpoint between (5, -7) and (1, 1). 2) Write the equation of the circle centered at (5, -2) with a radius of 4. 3) 3) Determine the equation of the circle in standard form described by 4) $x^2 + 10x + y^2 - 8y + 5 = 0.$ 4) In exercises 5–8, find the equation of the following lines. Write your answer in slope-intercept form. 5) Passing through (-4,3) with slope 5. 5) _____ Passing through (4,1) and (-1,-3). 6) _____ 6) 7) Perpendicular to 2x + 3y = 7 passing through (4,7) 7) Find the equations of the horizontal and vertical line passing through 8) (-8,6). 8) 9) Find the domain of the following function. Write your answer using interval notation. $f(x) = \sqrt{8 - 2x} + \sqrt{x + 5}$ 9) 10) Determine which symmetries the graph of the following equation possesses. $v = x^4 - x^2$ 10) _____ 11) Write the formula for the graph of f(x) below.

14) Given the following graph determine: a) where is the graph increasing, b) where is the graph decreasing, c) where is the graph constant.

15) Find the *x*- and *y*-intercepts of the following equation.

$$y = \sqrt{2x + 16} \tag{15}$$

14)

16) Graph the function given below and determine the given functional values.

$$f(x) = \begin{cases} |3-x| & \text{if } x > -2 \\ -3 & \text{if } x \le -2 \end{cases}; \qquad f(-2), f(2), f(-1) \end{cases}$$

17) Find
$$\frac{f(x+h)-f(x)}{h}$$
 for $f(x) = 3x - 2x^2$

18) Given f(x) and g(x), find $(f \circ g)(x)$ and determine its domain.

$$f(x) = \frac{x^2 + 1}{x^2 + 7}, g(x) = \sqrt{x + 7}$$

35

16)

17) _____

18) _____

Chapt	ter 2 Test Form B Name	
	Ratti & McWaters, College Algebra and Trigonometry and	Precalculus
19)	Find $f^{-1}(x)$ for $f(x) = \frac{5}{x+3}$	19)
20)	A company that produced toy cars has a monthly a monthly cost of 2,000 dollars and a marginal cost of 8 dollars per toy car. The company makes dollars per toy car in revenue.) 15
	a) Find the function, $C(x)$, that represents the cost of producing x toy cars.	
	b) Find the function, $R(x)$, that represents the revenue from selling x to cars.	ру
	c) Find the function, $P(x)$, that represents the profit from selling x toy cars.	
	d) What would the profit be from selling 3250 toy cars?	20)

Give the coordinates of the points on the following graph.

1)

.-8 .:.-6 .:.-4 .:.-2 .:. 6 ... 8 ... 10 x-10 -----1) 2) Find the distance and midpoint between (8,5) and (4,-9). 2) Write the equation of the circle centered at (-3,5) with a radius of 6. 3) 3) 4) Determine the equation of the circle in standard dorm described by $x^{2}-6x+y^{2}+10y+9=0$. 4) In exercises 5–8, find the equation of the following lines. Write your answer in slope-intercept form. 5) Passing through (1, -2) with slope -3. 5) Passing through (-2,1) and (4,-4). 6) 6) 7) Parallel to 5x - 3y = 4 passing through (-10,3)7) 8) Find the equations of the horizontal and vertical line passing through (-3, -4). 8) 9) Find the domain of the following function. Write your answer using interval notation. $f(x) = \frac{x}{x-2} + \frac{x}{x+4}$ 9) 10) Determine which symmetries the graph of the following equation possesses. $x^{3}v^{2} + x = 4$ 10)

11) Write the formula for the graph of f(x) below.

14) Given the following graph determine: a) where is the graph increasing, b) where is the graph decreasing, c) where is the graph constant.

15) Find the *x*- and *y*-intercepts of the following equation.

$$y = \sqrt[3]{2x+8}$$
 15) _____

16) Graph the function given below and determine the given functional values.

$$f(x) = \begin{cases} 3 & if \quad x > 4 \\ 3 - 2x & if \quad x \le 4 \end{cases}; f(-4), f(4), f(8) \end{cases}$$

17) Find
$$\frac{f(x+h)-f(x)}{h}$$
 for $f(x) = 4x^2 - 7x$.

18) Given f(x) and g(x), find $(f \circ g)(x)$ and determine its domain.

$$f(x) = 3x^2 + 2, g(x) = \sqrt{7 - x}$$
¹⁸

14)

16) _____

17) _____

Chapter 2 Test Form C

Name

Chap	ter 2 Test Form C Iname	
	Ratti & McWaters, College Algebra and Trigonometry and Pro-	ecalculus
19)	Find $f^{-1}(x)$ for $f(x) = x^3 + 8$	19)
20)	A company that produced toy cars has a monthly a monthly cost of 1,800 dollars and a marginal cost of 5 dollars per toy car. The company makes 13 dollars per toy car in revenue.	
	a) Find the function, $C(x)$, that represents the cost of producing x toy cars.	
	b) Find the function, $R(x)$, that represents the revenue from selling x toy cars.	
	c) Find the function, $P(x)$, that represents the profit from selling x toy cars.	
	d) What would the profit be from selling 1500 toy cars?	20)

1) Give the coordinates of the points on the following graph. -10 .-8 .:-6 .:-4 .:-2 1) 2) Find the distance and midpoint between (-6,1) and (4,-9). 2) Write the equation of the circle centered at (-5,2) with a radius of 5. 3) 3) Determine the equation of the circle in standard form described by 4) $x^2 - 14x + y^2 + 8y + 56 = 0.$ 4) In exercises 5–8, find the equation of the following lines. Write your answer in slope-intercept form. 5) Passing through (-2,3) with slope 4 5) Passing through (-1,-2) and (4,2)6) _____ 6) 7) Perpendicular to -4x - 3y = 5 passing through (-8,5)7) 8) Find the equations of the horizontal and vertical line passing through (2, -7).8) 9) Find the domain of the following function. Write your answer using interval notation. $f(x) = \frac{x+3}{(x-2)(x+5)}$ 9) 10) Determine which symmetries the graph of the following equation possesses. $v = 3x^5 - 4x^3$ 10)

11) Write the formula for the graph of f(x) below.

14) Given the following graph determine: a) where is the graph increasing, b) where is the graph decreasing, c) where is the graph constant.

15) Find the *x*- and *y*-intercepts of the following equation.

$$y = x^2 - 25$$
 15) _____

14)

16) Graph the function given below and determine the given functional values.

$$f(x) = \begin{cases} -x^2 + 9 & if \quad x < 1 \\ -5 & if \quad x \ge 1 \end{cases}; \qquad f(-1), f(1), f(5)$$

17) Find
$$\frac{f(x+h)-f(x)}{h}$$
 for $f(x) = x^3 + x$

18) Given f(x) and g(x), find $(f \circ g)(x)$ and determine its domain.

$$f(x) = \frac{x^2}{x^2 + 3}, g(x) = \sqrt{x - 2}$$
 18)

43

17) _____

16)

Chapt	ter 2 Test Form D Name	
	Ratti & McWaters, College Algebra and Trigonometry and	l Precalculus
19)	Find $f^{-1}(x)$ for $f(x) = 8 - 3x$	19)
20)	A company that produced toy cars has a monthly a monthly cost of 2,40 dollars and a marginal cost of 10 dollars per toy car. The company make 25 dollars per toy car in revenue.	0 es
	a) Find the function, $C(x)$, that represents the cost of producing x toy cars.	
	b) Find the function, $R(x)$, that represents the revenue from selling x t cars.	оу
	c) Find the function, $P(x)$, that represents the profit from selling x toy cars.	
	d) What would the profit be from selling 600 toy cars?	20)

In exercises 1–4, refer to the graph to the right.

In exercises 9–12, find the equation of the following lines. Write your answer in slope-intercept form.

9)	Passi	ng through $(-1, 4)$) wit	th slope 3.					9)
	a)	y = 3x + 7	b)	y = 3x + 4	c)	y = 3x - 1	d)	y = 3x - 13	
10)	Passi	ng through $(-4, 3)$) and	₫ (2,4).					10)
	a)	y = 6x + 27	b)	y = -6x - 21	c)	$y = \frac{1}{6}x + \frac{11}{3}$	d)	$y = -\frac{1}{6}x + \frac{7}{3}$	
11)	Paral	lel to $2x + 5y = 1$	3 pa	ssing through $(5, -$	-3).				11)
	a)	$y = \frac{5}{2}x - \frac{31}{2}$	b)	$y = \frac{2}{5}x - 5$	c)	$y = -\frac{5}{2}x + \frac{19}{2}$	d)	$y = -\frac{2}{5}x - 1$	
12)	Find	the equations of the	he ho	rizontal line passi	ng th	rough $(7, -6)$.			12)
	a)	x = -6	b)	y = -6	c)	<i>x</i> = 7	d)	y = 7	
13)	Find	the equations of th	he ho	rizontal passing th	nroug	h $(-1, -3)$.			13)
	a)	x = -1	b)	y = -1	c)	x = -3	d)	y = -3	
14)	Find	the domain of $f($	(x) =	$\frac{x+3}{\sqrt{5x+20}}$. Write	your	answer using inte	erval	notation.	14)
	a)	$\left[-4,\infty ight)$	b)	$(-4,\infty)$	c)	$[4,\infty)$	d)	$(4,\infty)$	
15)	Deter	rmine which symr	netrie	es the graph of the	xy +	$-x^3 = y$ possesse	es.		15)
	a)	x-axis	b)	y-axis	c)	origin	d)	none	
16)	Write the ri	e the formula for t ght	he fu	nction graphed to	÷	······	y 		16)
	a)	f(x) = -3 x + 4	4 + 5			8 			
	b)	$f(x) = \frac{1}{3} \left x - 4 \right $	+5			4 2 2			
	c)	f(x) = -2 x-x	4 + 5		-10	-2	1		
	d)	f(x) = -3 x-x	4 + 5				<i>[</i>	N.	

In exercises 19–20, refer to the graph to the right.

19) Determine the domain of the function.

a)
$$(-\infty, 4]$$

b) $(-\infty, -6) \cup (-6, -1) \cup (-1, 4]$
c) $(-\infty, -3) \cup (-3, 7]$

d)
$$(-\infty, 7]$$

20) Determine the range of the function.

a)
$$(-\infty, 4]$$

b) $(-\infty, -6) \cup (-6, -1) \cup (-1, 4]$
c) $(-\infty, -3) \cup (-3, 7]$
d) $(-\infty, 7]$

In exercises 21–23, refer to the graph to the right.

21) When is the graph to the right increasing?

a)	(-2, 2)	b)	(6,9)
c)	$(-\infty,-2)\cup(2,6)$	d)	Never

- 22) When is the graph to the right decreasing?
 - a) (-2,2) b) (6,9)
 - c) $(-\infty, -2) \cup (2, 6)$ d) Never
- 23) When is the graph to the right constant?
 - a) (-2,2) b) (6,9)c) $(-\infty,-2)\cup(2,6)$ d) Never

24) Find the coordinates of the intercepts of $y = x^2 - x - 30$

a)
$$(30,0),(0,5),(0,-6)$$

b) $(30,0),(0,-5),(0,6)$
c) $(0,-30),(5,0),(-6,0)$
d) $(0,-30),(-5,0),(6,0)$

24) _____

Chapter 2 Test Form E Name _____ Ratti & McWaters, College Algebra and Trigonometry and Precalculus 29) Find $\frac{f(x+h)-f(x)}{h}$ for $f(x) = x^3 - x$. 29) b) $h^2 + 3hx + 3x^2 - 1$ a) $h^2 - 1$ c) $h^2 + 3hx + 3x^2 + 1$ d) $3x^2 - 1$ 30) Given f(x) and g(x), find $(f \circ g)(x)$ and determine its domain. 30) $f(x) = 7x^2 + 4, g(x) = \sqrt{8-x}$ a) $\sqrt{4-7x^2}$; $(-\infty,\infty)$ b) $\sqrt{4-7x^2}$; $(-\infty,8]$ d) 60-7x; $[8,\infty)$ c) $60-7x; (-\infty, 8]$ 31) Given $f(x) = \sqrt[3]{x-27}$, find $f^{-1}(x)$. 31) b) $f^{-1}(x) = \frac{1}{\sqrt[3]{x-27}}$ a) $f^{-1}(x) = \sqrt[3]{x+27}$ c) $f^{-1}(x) = x^3 + 27$ d) $f^{-1}(x) = -\sqrt[3]{x-27}$ A company that produced toy cars has a monthly a monthly cost of 2,300 dollars and a marginal cost of 4 dollars per toy car. The company makes 11 dollars per toy car in revenue. With this information, answer exercises 32-35. 32) 32) Find the function, C(x), that represents the total cost of producing x toy cars. a) C(x) = 4xb) C(x) = 11x + 2300c) C(x) = 4x + 2300d) C(x) = 2300x + 433) Find the function, R(x), that represents the revenue from selling x toy cars. 33) a) R(x) = 11x - 2300b) R(x) = 11xc) R(x) = 4xd) R(x) = 7xFind the function, P(x), that represents the profit from selling x toy cars. 34) _____ 34) a) P(x) = 11x - 2300b) P(x) = 7x - 2300d) P(x) = 2300 - 7xc) P(x) = 7xWhat would the profit be from selling 1150 toy cars? 35) 35) \$8,050 b) -\$5,750 c) \$10,350 a) d) \$5,750

In exercises 1–4, refer to the graph to the right.

1) What are the coordinates of point A? 1) a) (6, -7)b) (-7,6)c) (-7, -6)d) (-6,7)-10 -8 -6 -4 -2 -2 -2 -2 -2 -4 -6 -8 -10 What are the coordinates of point B? 2) 2) (3,0)b) (-3,0)a) (0,3)c) d) (0, -3)What are the coordinates of point C? 3) 3) a) (2, -2)b) (-2,2)c) (-2, -2)d) (2,2)What are the coordinates of point D? 4) 4) b) (4,0) a) (-4,0)d) (0, -4)c) ((0,4)In exercises 5–6, use the points (5, -4) and (-7, 10). 5) Find the distance between the points. 5) a) $2\sqrt{85}$ b) $2\sqrt{13}$ c) $\sqrt{26}$ d) $2\sqrt{10}$ 6) Find the midpoint between the points. 6) b) (6, -7)c) (-7,6)a) (-1,3)d) (1, -3)7) Write the equation of the circle centered at (-4,3) with a radius of 7. 7) a) $(x-4)^2 + (y+3)^2 = 7$ b) $(x-4)^2 + (y+3)^2 = 49$ c) $(x+4)^2 + (y-3)^2 = 7$ d) $(x+4)^2 + (y-3)^2 = 49$ Determine the equation of the circle described by $x^2 + 6x + y^2 - 8y - 56 = 0$. 8) 8) b) $(x+3)^2 + (y-4)^2 = 81$ a) $(x+6)^2 + (y-8)^2 = 56$ d) $(x+3)^2 + (y-4)^2 = 56$ c) $(x+3)^2 + (y-4)^2 = 25$

In exercises 9–12, find the equation of the following lines. Write your answer in slope-intercept form.

9)	Passing through $(-5, -4)$	4) with slope -3 .		9)
	a) $y = -3x + 17$	b) $y = -3x - 1$	c) $y = -3x + 4$ d) $y = -3x - 11$	
10)	Passing through $(-3, -3)$	-2) and (2,5).		10)
	a) $y = -\frac{7}{5}x + \frac{39}{5}$	b) $y = \frac{7}{5}x + \frac{11}{5}$	c) $y = -\frac{5}{7}x + \frac{45}{7}$ d) $y = \frac{5}{7}x - \frac{25}{7}$	
11)	Perpendicular to $-4x$	+3y = 11 passing the	hrough $(6,5)$.	11)
	a) $y = -\frac{3}{4}x + \frac{19}{2}$	b) $y = \frac{3}{4}x + \frac{1}{2}$	c) $y = -\frac{1}{4}x + \frac{13}{2}$ d) $y = \frac{1}{4}x + \frac{7}{2}$	
12)	Find the equations of t	the vertical line passi	ing through $(7, -6)$.	12)
	a) $x = -6$	b) $y = -6$	c) $x = 7$ d) $y = 7$	
13)	Find the equations of t	the vertical line passi	ing through $(-1, -3)$.	13)
	a) $x = -1$	b) $y = -1$	c) $x = -3$ d) $y = -3$	
14)	Find the domain of f	$(x) = \frac{x-5}{\sqrt{24-6x}} \cdot Wr$	rite your answer using interval notation.	14)
	a) $(-\infty,4)$	b) $(4,\infty)$	c) $(-\infty,4]$ d) $[4,\infty)$	
15)	Determine which sym	metries the graph of	the $x^2y^2 - x^4 = y$ possesses.	15)
	a) x-axis	b) y-axis	c) origin d) none	
16)	Write the formula for the right	the function graphed	l to	16)
	a) $f(x) = -2 x+$	-3 -2		
	b) $f(x) = 2 x+3 $	-2		
	c) $f(x) = \frac{1}{2} x+3 $	3 - 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	d) $f(x) = 2 x-3 $	-2		

In exercises 19–20, refer to the graph to the right.

19) Determine the domain of the function.

a)
$$(-\infty,\infty)$$

b)
$$(-\infty, -8) \cup (-8, 0) \cup [5, 10]$$

c)
$$\left[-6,6\right)\cup\left(6,\infty\right)$$

d)
$$(-\infty, 0) \cup [5, 10]$$

20) Determine the range of the function.

a)
$$[-6,\infty)$$

b) $(-\infty,-8)\cup(-8,0)\cup[5,10]$
c) $[-6,6)\cup(6,\infty)$
d) $(-\infty,0)\cup[5,10]$

In exercises 21–23, refer to the graph to the right.

21) When is the graph to the right increasing?

a)	$(-\infty,-2)\cup(5,9)$	b)	(2,5)
c)	(-2, 2)	d)	Never

22) When is the graph to the right decreasing?

a)	$(-\infty,-2)\cup(5,9)$	b)	(2,5)
----	-------------------------	----	-------

- c) (-2, 2) d) Never
- 23) When is the graph to the right constant?
 - a) $(-\infty, -2) \cup (5,9)$ b) (2,5)c) (-2,2) d) Never

24) Find the coordinates of the intercepts of $y = \sqrt[3]{3x - 27}$

- a) (3,0), (0,-9) b) (-3,0), (0,9)
- c) (0,-3),(-9,0) d) (0,-3),(9,0)

30) _____

30) Given f(x) and g(x), find $(f \circ g)(x)$ and determine its domain.

$$f(x) = \frac{x^2 - 3}{x^2 + 2}, g(x) = \sqrt{x + 3}$$
a) $\sqrt{\frac{4x^2 + 3}{x^2 + 2}}; (-\infty, \infty)$ b) $\sqrt{\frac{4x^2 + 3}{x^2 + 2}}; [-3, \infty)$
c) $\frac{x}{x + 5}; (-\infty, -3]$ d) $\frac{x}{x + 5}; [-3, \infty)$
31) Given $f(x) = \frac{4}{x - 5}, \text{ find } f^{-1}(x).$
a) $f^{-1}(x) = \frac{5x + 4}{x}$ b) $f^{-1}(x) = \frac{x - 5}{4}$
c) $f^{-1}(x) = -\frac{4}{x - 5}$ d) $f^{-1}(x) = \frac{4}{x + 5}$
A company that produced toy cars has a monthly a monthly cost of 3,300 dollars and a marginal cost of 14 dollars per toy car. The company makes 32 dollars per toy car in revenue. With this information, answer exercises 32–35.
32) Find the function, $C(x)$, that represents the total cost of producing x toy cars.
32) ...
a) $C(x) = 14x$ b) $C(x) = 32x + 3300$
c) $C(x) = 3300x + 14$ d) $C(x) = 14x + 3300$
33) Find the function, $R(x)$, that represents the revenue from selling x toy cars.
33) ...
a) $R(x) = 32x - 3300$ b) $R(x) = 18x$

c) R(x) = 32x d) R(x) = 14x

34) Find the function, P(x), that represents the profit from selling x toy cars. a) P(x) = 32x - 3300 b) P(x) = 3300 - 18x

a) 1(x) 10x 2500	c)	P(x) = 18x - 3300	d) $P(x) = 18x$
------------------	----	-------------------	-----------------

- 35) What would the profit be from selling 750 toy cars?
 35)
 - a) \$10,200 b) \$20,700 c) \$13,500 d) -\$10,200