
TEST BANK

Section 2.1 Displacement Section 2.2 Speed and Velocity

- A particle travels along a curved path between two points P and Q as shown. The displacement of the particle does *not* depend on
 - (a) the location of P.
 - (b) the location of Q.
 - (c) the distance traveled from P to Q.
 - (d) the shortest distance between P and Q.
 - (e) the direction of Q from P.

- □ 2. For which one of the following situations will the path length equal the magnitude of the displacement?
 - (a) A jogger is running around a circular path.
 - (b) A ball is rolling down an inclined plane.
 - (c) A train travels 5 miles east before it stops. It then travels 2 miles west.
 - (d) A ball rises and falls after being thrown straight up from the earth's surface.
 - (e) A ball on the end of a string is moving in a vertical circle.
- □ 3. Which one of the physical quantities listed below is *not* correctly paired with its SI unit and dimension?

	<u>Quantity</u>	<u>Unit</u>	<u>Dimension</u>
(a)	velocity	m/s	[L]/[T]
(b)	path length	m	[L]
(c)	speed	m/s	[L]/[T]
(d)	displacement	m/s^2	$[L]/[T]^2$
(e)	speed \times time	m	[L]

- □ 4. A car travels in a straight line covering a total distance of 90.0 miles in 60.0 minutes. Which one of the following statements concerning this situation is *necessarily* true?
 - (a) The velocity of the car is constant.
 - (b) The acceleration of the car must be non-zero.
 - (c) The first 45 miles must have been covered in 30.0 minutes.
 - (d) The speed of the car must be 90.0 miles per hour throughout the entire trip.
 - (e) The average velocity of the car is 90.0 miles per hour in the direction of motion.
- **1** 5. At time t = 0 s, an object is observed at x = 0 m; and its position along the x axis follows this expression: $x = -3t + t^3$, where the units for distance and time are meters and seconds, respectively. What is the object's displacement Δx between t = 1.0 s and t = 3.0 s?
 - (a) +20 m

(c) +10 m

(e) -2 m

(b) -20 m

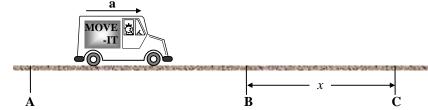
(d) +2 m

(b) 1.10 m/s

Questions 6 and 7 pertain to the situation described below:

Peter noticed a bug crawling along a meter stick and decided to record the bug's position in five-second intervals. After the bug crawled off the meter stick, Peter created the table shown.

time (s)	position (cm)
0.00	49.6
5.00	39.2
10.0	42.5
15.0	41.0
20.0	65.7


	6.	What is the displacement of the bu (a) +39.9 cm (b) -39.9 cm	(c)	tween $t = 0.00$ s and $t = 20.0$ s? +65.7 cm -16.1 cm	(e)	+16.1 cm
0	7.	What is the total distance that the bonly changed directions at the end (a) 39.9 cm (b) 65.7 cm	of a (c)			0.0 s? Assume the bug 26.5 cm
	8.	In the process of delivering mail, a turns around and walks 194 m, due (a) 33 m, due west (b) 33 m, due east	wes (c)		emei	
0	9.	A Canadian goose flew 845 km fro 30.5 m/s. How long, in hours, did (a) 27.7 h (b) 8.33 h	it tal (c)		y?	n average speed of 7.70 h
	10.	When the outdoor emergency warr took 7.0 s to reach her house locate (a) 240 m/s (b) 340 m/s	ed 2. (c)		the	
	11.	A bus leaves New York City, takes minutes later. If the distance betwee average velocity? (a) 37.2 km/h (b) 41.4 km/h	een t		s the	
0	12.	Carole's hair grows with an averag 0.30 m ? Note: $1 \text{ yr} = 3.156 \times 10^7 \text{ s}$ (a) 1.9 yr (b) 1.3 yr	s. (c)	eed of 3.5×10^{-9} m/s. How long 0.37 yr 5.4 yr		es it take her hair to grow 2.7 yr
	13.	Carl Lewis set a world record for the line, Mr. Lewis walked directly back average velocity for the 200.0 m? (a) 0 m/s	ck to		t is	_

(d) 5.60 m/s

	14.	During the first 18 minutes of a 1.0 average speed of the car be during speed of 21 m/s for the entire trip?				
		(a) 21 m/s (b) 23 m/s		25 m/s 27 m/s	(e)	29 m/s
	15.	A turtle takes 3.5 minutes to walk stops and picks up the turtle. The average speed of 12 m/s. What is to journey?	drive	r takes the turtle to a town 1.1 k	m to	the north with an
		(a) 3.6 m/s (b) 9.8 m/s		6.0 m/s 2.6 m/s	(e)	11 m/s
		Questions 16 through 19 pertain t	o the	e situation described below:		
		A racecar, traveling at constant spe Note: The circumference of a circle		=	tracl	x of radius r in a time t .
	16.	When the car has traveled halfway the starting point?	arou	and the track, what is the magnit	ude	of its displacement from
		(a) r (b) 2r	(c) (d)	πr $2\pi r$	(e)	zero meters
0	17.	What is the average speed of the ca	ar fo	r one complete lap?		
		(a) $\frac{r}{t}$	(c)	$\frac{\pi r}{t}$	(e)	zero meters/second
		(b) $\frac{2r}{t}$	(d)	$\frac{\pi r}{t}$ $\frac{2\pi r}{t}$		
0	18.	Determine the <i>magnitude</i> of the <i>av</i>	erag	e velocity of the car for one con	nplet	e lap.
		(a) $\frac{r}{t}$	(c)	$\frac{\pi r}{t}$	(e)	zero meters/second
		(a) $\frac{r}{t}$ (b) $\frac{2r}{t}$	(d)	$\frac{\pi r}{t}$ $\frac{2\pi r}{t}$		
	19.	 Which one of the following statem (a) The displacement of the car do (b) The instantaneous velocity of f (c) The average speed of the car is (d) The average velocity of the car (e) The average speed of the car of velocity over the same time into 	the case the	ot change with time. ar is constant. same over any time interval. he same over any time interval. any time interval is equal to the	mag	nitude of the average
	Sec	ction 2.3 Acceleration				
	20.	In which one of the following situation (a) The car travels westward at co			accel	eration?
		(b) The car travels eastward and s(c) The car travels westward and s	peed	s up.		
		(d) The car travels eastward and s	lows	down.		
		(e) The car starts from rest and mo	ves	toward the east.		

26.	Which one of the following is not a	a vector quantity?	
	(a) acceleration	(c) displacement	(e) instantaneous velocity
	(b) average speed	(d) average velocity	
27.		ity t acceleration	
28.	Which one of the following stateme	ents must be true if the expression	$x = v_0 t + \frac{1}{2}at^2$ is to be used?
	(a) x is constant.	(c) t is constant.	(e) Both v_0 and t are constant.
	(b) v is constant.	(d) a is constant.	

- 29. Starting from rest, a particle confined to move along a straight line is accelerated at a rate of 5.0 m/s². Which one of the following statements accurately describes the motion of this particle?
 - (a) The particle travels 5.0 m during each second.
 - (b) The particle travels 5.0 m *only* during the first second.
 - (c) The speed of the particle increases by 5.0 m/s during each second.
 - (d) The acceleration of the particle increases by 5.0 m/s² during each second.
 - (e) The final speed of the particle will be proportional to the distance that the particle covers.
- 30. Which one of the following situations is *not* possible?
 - (a) A body has zero velocity and non-zero acceleration.
 - (b) A body travels with a northward velocity and a northward acceleration.
 - (c) A body travels with a northward velocity and a southward acceleration.
 - (d) A body travels with a constant velocity and a time-varying acceleration.
 - (e) A body travels with a constant acceleration and a time-varying velocity.
- \square 31. A truck accelerates from rest at point **A** with constant acceleration of magnitude *a* and, subsequently, passes points **B** and **C** as shown in the figure.

The distance between points \mathbf{B} and \mathbf{C} is x, and the time required for the truck to travel from \mathbf{B} to \mathbf{C} is t. Which expression determines the *average speed* of the truck between the points \mathbf{B} and \mathbf{C} ?

(a)
$$v^2 = 2ax$$

(c)
$$v = xt$$

(e)
$$v = at$$

(b)
$$v = \frac{x}{t}$$

(d)
$$v = \frac{1}{2}at^2$$

- 32. Two objects A and B accelerate from rest with the same constant acceleration. Object A accelerates for twice as much time as object B, however. Which one of the following statements is true concerning these objects at the end of their respective periods of acceleration?
 - (a) Object A will travel twice as far as object B.
 - (b) Object A will travel four times as far as object B.
 - (c) Object A will travel eight times further than object B.
 - (d) Object A will be moving four times faster than object B.
 - (e) Object A will be moving eight times faster than object B.
- 33. Two cars travel along a level highway. It is observed that the distance between the cars is *increasing*. Which one of the following statements concerning this situation is *necessarily* true?
 - (a) The velocity of each car is increasing.
 - (b) At least one of the cars has a *non-zero* acceleration.
 - (c) The leading car has the greater acceleration.
 - (d) The trailing car has the smaller acceleration.
 - (e) Both cars could be accelerating at the same rate.
- □ 34. A car, starting from rest, accelerates in a straight-line path at a constant rate of 2.5 m/s². How far will the car travel in 12 seconds?
 - (a) 180 m

(c) 30 m

(e) 4.8 m

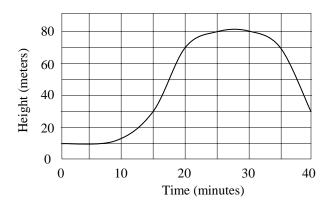
(b) 120 m

(d) 15 m

•	35.	(c) An object that is decelerating	n is necessarily true? s positive. on is in the same direction as the dishas a negative acceleration. on is in the direction opposite to that	splacement.
•	36.	A car starts from rest and accelerate covers a distance of 2.0 meters. However, a distance of 2.0 meters and accelerate covers a distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters. However, a distance of 2.0 meters are distance of 2.0 meters	es at a constant rate in a straight lin ow fast will the car be moving at the (c) 2.0 m/s (d) 32 m/s	
	37.	A car starts from rest and accelerate covers a distance of 2.0 meters. His second of its motion? (a) 2.0 m (b) 4.0 m	es at a constant rate in a straight lin ow much <i>additional</i> distance will the (c) 6.0 m (d) 8.0 m	
•	38.	A car is initially traveling at 50.0 k 35 m. What was magnitude of the (a) 2.8 m/s ² (b) 5.4 m/s ²	cm/h. The brakes are applied and the car's acceleration while it was brak (c) 36 m/s ² (d) 71 m/s ²	
	39.	The minimum takeoff speed for a continuous the plane must leave a runway of leavness. (a) 1.5 m/s ² (b) 3.0 m/s ²	certain airplane is 75 m/s. What minength 950 m? Assume the plane state (c) 4.5 m/s ² (d) 6.0 m/s ²	
0	40.	A car traveling along a road begins direction of motion. After travelin speed of the car when it began accordant (a) 1.5 m/s (b) 7.0 m/s	g 392 m at this acceleration, its spec	
0	41.	A train passes through a town with accelerates at 0.33 m/s ² until it reacaccelerating? (a) 0.029 km (b) 0.53 km	a constant speed of 16 m/s. After the ches a speed of 35 m/s. How far di (c) 1.5 km (d) 2.3 km	
•	42.	A cheetah is walking at a speed of cheetah accelerates at 9.55 m/s ² , he doesn't move? (a) 4.29 s (b) 3.67 s	1.10 m/s when it observes a gazelle ow long does it take the cheetah to r (c) 3.05 s (d) 1.94 s	

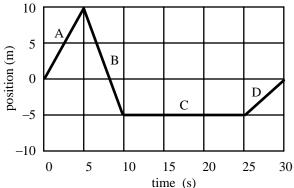
	43.		.0 m/s, what was the body's accelera	ation?
		(a) 0.25 m/s^2 (b) 2.0 m/s^2	(c) 4.0 m/s^2 (d) 9.8 m/s^2	(e) 1.6 m/s^2
0	44.	A racecar has a speed of 80 m/s who deceleration of -4 m/s^2 , how far w	ill the car travel before it stops?	-
		(a) 20 m (b) 200 m	(c) 400 m (d) 800 m	(e) 1000 m
0	45.	A car is stopped at a red traffic light acceleration and crosses the 9.10-reacceleration?	nt. When the light turns to green, the intersection in 2.47 s. What is the	
		(a) 1.77 m/s^2	(c) 3.60 m/s^2	(e) 9.80 m/s^2
		(b) 2.98 m/s^2	(d) 7.36 m/s^2	
		Questions 46 through 48 pertain t	to the situation described below:	
		An object starts from rest and acce After 11 seconds, its speed is 70.0	lerates uniformly in a straight line in m/s.	n the positive <i>x</i> direction.
	46.	Determine the acceleration of the o		
		(a) $+3.5 \text{ m/s}^2$	(c) -3.5 m/s^2	(e) $+7.7 \text{ m/s}^2$
		(b) $+6.4 \text{ m/s}^2$	(d) -6.4 m/s^2	
	47.	How far does the object travel duri	ing the first 11 seconds?	
		(a) 35 m	(c) 390 m	(e) 770 m
		(b) 77 m	(d) 590 m	
	48.	What is the average velocity of the	object during the first 11 seconds?	
		(a) $+3.6 \text{ m/s}$	(c) $+35 \text{ m/s}$	(e) -140 m/s
		(b) +6.4 m/s	(d) +72 m/s	
	Sec	ction 2.6 Freely Falling Bodi	es	
0	49.	release is necessarily true if air res	same window. Which statement consistance is neglected? wn, the acceleration of ball C is zero ad at the same time. yelocity at any instant. acceleration at any instant.	ncerning the balls after their
	50.		from the surface of the earth. Con the velocity of the ball; (3) the the ball has reached the maximum h	acceleration of the ball.
		(a) 1 and 2 only	(c) 1 only	(e) 1, 2, and 3
		(b) 1 and 3 only	(d) 2 only	

	51.	 A rock is thrown vertically upward from the surface of the earth. The rock rises to some maximum height and falls back toward the surface of the earth. Which one of the following statements concerning this situation is true if air resistance is neglected? (a) As the ball rises, its acceleration vector points upward. (b) The ball is a freely falling body for the duration of its flight. (c) The acceleration of the ball is zero when the ball is at its highest point. (d) The speed of the ball is negative while the ball falls back toward the earth. (e) The velocity and acceleration of the ball always point in the same direction. 			
0	52.	ground?	-	long does it take the brick to reach the	
		(a) 0.6 s (b) 1.0 s	(c) 1.2 s (d) 1.4 s	(e) 2.0 s	
0	53.		_	ound 125 m below. Approximately how er being dropped? Neglect air resistance. (e) 16.0 s	
0	54.	Water drips from rest from a sist the speed of each water dro (a) 30 m/s (b) 15 m/s		he ground. Neglecting air resistance, what (e) 20 m/s	
0	55.	Elijah throws a tennis ball ver What is the speed of the ball a (a) 0 m/s (b) 14 m/s		urns to the point of release after 3.5 s. (e) 34 m/s	
	56.		height should the rock be dro	und. It falls and hits the ground with a pped so that its speed on hitting the (e) 0.71h	
0	57.	A 5.0-kg rock is dropped from reach a depth of 79 m? Neglet (a) 2.8 s (b) 9.0 s		haft. How long does it take for the rock to (e) 4.0 s	
0	58.	Neglecting air resistance, who initial speed of 35 m/s? (a) 98 m (b) 160 m	at maximum height will be re (c) 41 m (d) 63 m	ached by a stone thrown straight up with an (e) 18 m	


Questions 59 through 61 pertain to the situation described below:

A ball is shot straight up from the surface of the earth with an initial speed of 19.6 m/s. Neglect any effects due to air resistance.

	59.	What is the magnitude of the ball's elapsed?	dis ₁	placement from the starting poin	nt aft	er 1.00 second has
		(a) 9.80 m	(c)	19.6 m	(e)	58.8 m
		(b) 14.7 m		24.5 m	(-)	
0	60.	What maximum height will the bal	l rea	ch?		
		(a) 9.80 m	` '	19.6 m	(e)	58.8 m
		(b) 14.7 m	(d)	24.5 m		
	61.	How much time elapses between the				
		(a) 4.00 s		12.0 s	(e)	16.0 s
		(b) 2.00 s	(d)	8.00 s		
		Questions 62 through 65 pertain t	o the	e statement below:		
		A tennis ball is shot vertically upw of 20.0 m/s at time $t = 0$ s.	ard i	in an <i>evacuated chamber</i> inside	a to	wer with an initial speed
	62.	How high does the ball rise?	<i>(</i>)	40.0	()	00.0
		(a) 10.2 m		40.8 m	(e)	98.0 m
		(b) 20.4 m	(d)	72.4 m		
	63.	Approximately how long does it ta				•
		(a) 0.50 s		4.08 s	(e)	9.80 s
		(b) 2.04 s	(a)	6.08 s		
	64.	Determine the velocity of the ball a			(-)	20.0/. 1
		(a) 9.40 m/s, downward		29.4 m/s, downward	(e)	38.8 m/s, downward
_		(b) 9.40 m/s, upward		38.8 m/s, upward		
Ш	65.	What is the magnitude of the accel $(1)^{2}$			ghes	st point?
		(a) zero m/s ² (b) 9.80 m/s^2		19.6 m/s ² 4.90 m/s ²	(e)	3.13 m/s^2
		(0) 9.80 III/8	(a)	4.7U III/S		
	Sec	ction 2.7 Graphical Analysis	of V	Velocity and Acceleration		
	~~	z zpybib	J'			


- 66. Starting from rest, a particle that is confined to move along a straight line is accelerated at a rate of 5.0 m/s². Which statement concerning the *slope* of the *position versus time* graph for this particle is true?
 - (a) The slope has a constant value of 5.0 m/s.
 - (b) The slope has a constant value of 5.0 m/s^2 .
 - (c) The slope is both constant and negative.
 - (d) The slope is not constant and *increases* with increasing time.
 - (e) The slope is not constant and decreases with increasing time.

- 67. The graph shows the height versus time of an object. Estimate the instantaneous velocity, in m/s, of the object at time t = 15 min.
 - (a) 0.90 m/s
 - (b) 0.70 m/s
 - (c) 0.50 m/s
 - (d) 0.30 m/s
 - (e) 0.10 m/s

Questions 68 through 70 pertain to the graph below:

An object is moving along the *x* axis. The graph shows its position from the starting point as a function of time. Various segments of the graph are identified by the letters A, B, C, and D.

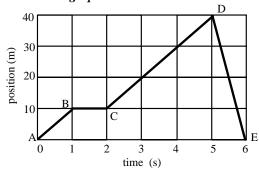
- ☐ 68. During which interval(s) is the object moving in the negative x direction?
 - (a) during interval B only
- (d) during intervals B and D
- (b) during intervals B and C
- (e) during intervals B, C, and D
- (c) during intervals C and D
- 69. What is the *velocity* of the object at t = 7.0 s?
 - (a) +3.0 m/s

(c) -2.0 m/s

(e) zero m/s

(b) -1.0 m/s

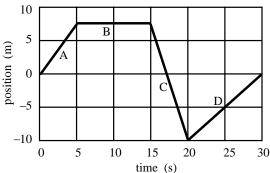
- (d) -3.0 m/s
- 70. What is the *acceleration* of the object at t = 7.0 s?
 - (a) zero m/s²


(c) -3.0 m/s^2

(e) $+4.0 \text{ m/s}^2$

(b) -2.0 m/s^2

- (d) $+9.8 \text{ m/s}^2$
- Questions 71 through 74 pertain to the statement and graph below:


An object is moving along a straight line. The graph shows the object's position from the starting point as a function of time.

	71	In which sogment(s) of the graph of	loes the object's average velocity (me	asurad from $t = 0$ s)
ш	/1.	decrease with time?	does the object's average velocity (the	asured from $t = 0.8$)
		(a) AB only	(c) DE only	(e) BC and DE
		(b) BC only	(d) AB and CD	. ,
_	70	Will a distribution of the control o		
	72.	What was the <i>instantaneous veloci</i> (a) +6 m/s	•	(e) +40 m/s
		(a) $+8 \text{ m/s}$	(d) $+20 \text{ m/s}$	(C) +40 m/s
		(4)	(5)	
	73.	In which segments(s) of the graph	does the object have the highest speed	d?
		(a) AB		(e) AB and CD
		(b) BC	(d) DE	
_				
	74.	At which time(s) does the object re		(e) 5 s
		(a) 1 s and 2 s(b) 2 s and 5 s	(c) 1 s (d) 2 s	(e) 3 s
		(b) 2 s and 3 s	(u) 2 s	
		Our and are 75 dlamour l. 70 are and are	. 414-4	
		Questions 75 through 78 pertain t	o the statement and graph below:	
			20	
		An object is moving along a stra		
		line. The graph shows the objective velocity as a function of time.	ect's $\stackrel{\square}{\succeq}$ 10	
		velocity as a function of time.	ij or ij	
			<u>5</u> 5	
			0	
			0 1 2 3	4 5 6
			time (s)
	75.	During which interval(s) of the gra	ph does the object travel equal distan	ces in equal times?
		(a) 0 s to 2 s	(d) 0 s to 2 s and 3 s to 5 s	
		(b) 2 s to 3 s	(e) 0 s to 2 s, 3 to 5 s, and 5 to 6 s	
		(c) 3 s to 5 s		
	76	During which interval(s) of the are	ph does the speed of the object <i>increa</i>	ase by equal amounts in
_	70.	equal times?	iph does the speed of the object meret	ise by equal amounts in
		(a) 0 s to 2 s	(d) 0 s to 2 s and 3 s to 5 s	
		(b) 2 s to 3 s	(e) 0 s to 2 s, 3 to 5 s, and 5 to 6 s	
		(c) 3 s to 5 s		
	77.	How far does the object move in the		() 25
		(a) 7.5 m		(e) 25 m
		(b) 10 m	(d) 20 m	
_	79	What is the acceleration of the object	ect in the interval from $t = 5$ s to $t = 6$	s?
_	70.	(a) -40 m/s^2		(e) -10 m/s^2
		(a) $+6 \text{ m/s}$ (b) $+40 \text{ m/s}^2$	(d) $+20 \text{ m/s}^2$	(0) 10 11113
			• •	

Questions 79 through 81 pertain to the situation described below:

An object is moving along a straight line in the positive *x* direction. The graph shows its position from the starting point as a function of time. Various segments of the graph are identified by the letters A, B, C, and D.

- 79. Which segment(s) of the graph represent(s) a *constant velocity* of +1.0 m/s?
 - (a) A

(c) C

(e) A and C

(b) B

- (d) D
- 80. What was the *instantaneous velocity* of the object at the end of the eighth second?
 - (a) +7.5 m/s

(c) -0.94 m/s

(e) zero m/s

(b) +0.94 m/s

- (d) +1.1 m/s
- \square 81. During which interval(s) did the object move in the negative *x* direction?
 - (a) only during interval B
- (d) during both intervals C and D
- (b) only during interval C
- (e) The object never moved in the negative *x* direction.
- (c) only during interval D

Additional Problems

- 82. The rate at which the acceleration of an object changes with time is called the *jerk*. What is the dimension of the jerk?
 - (a) $\frac{[L]}{[T]}$

(c) $\frac{[L]^2}{[T]^2}$

(e) $\frac{[L]^2}{[T]^3}$

(b) $\frac{[L]}{[T]^2}$

- (d) $\frac{[L]}{[T]^3}$
- 83. In a race, José runs 1.00 mile in 4.02 min, mounts a bicycle, and rides back to his starting point, which is also the finish line, in 3.02 min. What is the magnitude of José's average velocity for the race?
 - (a) zero mi/h

(c) 14.9 mi/h

(e) 19.9 mi/h

(b) 12.1 mi/h

(d) 17.0 mi/h

Questions 84 and 85 pertain to the situation described below:

A motorist travels due north at 30 mi/h for 2 hours. She then reverses her direction and travels due south at 60 mi/h for 1 hour.

- 84. What is the average speed of the motorist?
 - (a) zero mi/h

(c) 40 mi/h

(e) 60 mi/h

(b) 30 mi/h

(d) 50 mi/h

	85.	What is the average velocity of	of the motorist?	
		(a) zero mi/h (b) 40 mi/h, north	(c) 40 mi/h, south (d) 45 mi/h, north	(e) 45 mi/h, south
		Questions 86 through 88 pert	tain to the statement below:	
		Starting from rest, a particle co	onfined to move along a straight l	line is accelerated at a rate of 4 m/s ² .
	86.	(a) The particle travels 4 met(b) The particle travels 4 met(c) The speed of the particle(d) The acceleration of the particle	escribes the motion of the particle ers during each second. ers during the first second only. increases by 4 m/s during each searticle increases by 4 m/s ² during particle will be proportional to the	cond. each second.
_	87.	After 10 seconds, how far will	I the particle have traveled?	
		(a) 20 m (b) 40 m	(c) 100 m (d) 200 m	(e) 400 m
0	88.	What is the speed of the partic (a) 4 m/s (b) 8 m/s	cle after it has traveled 8 m? (c) 30 m/s (d) 60 m/s	(e) 100 m/s
		Questions 89 through 92 pert	ain to the situation described be	low:
		A rock, dropped from rest near after falling 8.0 meters.	r the surface of an atmosphere-fro	ee planet, attains a speed of 20.0 m/s
0	89.	What is the magnitude of the a (a) 0.40 m/s^2 (b) 1.3 m/s^2	acceleration due to gravity on the (c) 2.5 m/s ² (d) 25 m/s ²	surface of this planet? (e) 160 m/s ²
	90.	How long did it take the object	et to fall the 8.0 meters mentioned	?
		(a) 0.40 s (b) 0.80 s	(c) 1.3 s (d) 2.5 s	(e) 16 s
0	91.	How long would it take the obtain (a) 0.8 s (b) 1.1 s	oject, falling from rest, to fall 16 r (c) 2.5 s (d) 3.5 s	n on this planet? (e) 22 s
0	92.		ject after falling from rest through	=
		(a) 28 m/s (b) 32 m/s	(c) 56 m/s (d) 64 m/s	(e) 320 m/s

Questions 93 through 97 pertain to the situation described below:

A tennis ball is shot vertically upward from the surface of an atmosphere-free planet with an initial speed of 20.0 m/s. One second later, the ball has an instantaneous velocity in the upward direction of 15.0 m/s.

- 93. What is the magnitude of the acceleration due to gravity on the surface of this planet?
 - (a) 5.0 m/s^2

(c) 12 m/s^2

(e) 24 m/s^2

(b) 9.8 m/s^2

- (d) 15 m/s^2
- 94. How long does it take the ball to reach its maximum height?
 - (a) 2.0 s

(c) 4.0 s

(e) 8.0 s

(b) 2.3 s

- (d) 4.6 s
- 95. How high does the ball rise?
 - (a) 70.0 m

(c) 50.0 m

(e) 40.0 m

(b) 10.0 m

- (d) 20.0 m
- 96. Determine the velocity of the ball when it returns to its original position.

Note: assume the upward direction is positive.

(a) +20 m/s

(c) +40 m/s

(e) zero m/s

(b) -20 m/s

- (c) -40 m/s
- 97. How long is the ball in the air when it returns to its original position?
 - (a) 4.0 s

(c) 8.0 s

(e) 16 s

(b) 4.6 s

(d) 9.2 s

Questions 98 and 99 pertain to the situation described below:

A small object is released from rest and falls 1.00×10^2 feet near the surface of the earth. Neglect air resistance.

- **98.** How long will it take to fall through the 1.00×10^2 feet mentioned?
 - (a) 2.49 s

(c) 4.50 s

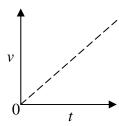
(e) 10.0 s

(b) 3.12 s

- (d) 6.25 s
- 99. Approximately how fast will the object be moving after falling through the 1.00×10^2 feet mentioned?
 - (a) 9.8 ft/s

(c) 80 ft/s

(e) 320 ft/s


(b) 40 ft/s

(d) 160 ft/s

Questions 100 through 103 pertain to the situation described below:

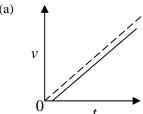
The figure shows the speed as a function of time for an object in free fall near the surface of the earth.

The object was dropped from rest in a long evacuated cylinder.

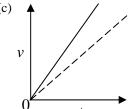
- 100. Which one of the following statements best explains why the graph goes through the origin?
 - (a) The object was in a vacuum.
- (d) All v vs. t curves pass through the origin.
- (b) The object was dropped from rest.
- (e) The acceleration of the object was constant.
- (c) The velocity of the object was constant.

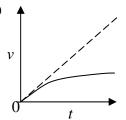
- 101. What is the numerical value of the slope of the line?
 - (a) 1.0 m/s^2

(d) 9.8 m/s^2

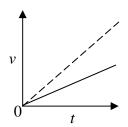

(b) 2.0 m/s^2 (c) 7.7 m/s^2

- (e) This cannot be determined from the information given since the speed and time values are unknown.
- 102. What is the speed of the object 3.0 seconds after it is dropped?
 - (a) 3.0 m/s
 - (b) 7.7 m/s
 - (c) 9.8 m/s
 - (d) 29 m/s
 - (e) This cannot be determined since there is no specified value of height.
- 103. If the same object were released in air, the magnitude of its acceleration would begin at the free-fall value, but it would decrease continuously to zero as the object continued to fall.

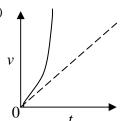

For which one of the choices given does the solid line best represent the speed of the object as a function of time when it is dropped from rest in air?


Note: The dashed line shows the free-fall under vacuum graph for comparison.

(a)



(c)



(b)

(d)

