


| <b>TRUE/FALSE.</b> Write 'T' if the statement is true and 'F' if the statement is false.<br>1) Public-key encryption is also referred to as conventional encryption, | 1)      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| secret-key, or single-key encryption.                                                                                                                                | -)      |
| 2) The advantage of a block cipher is that you can reuse keys.                                                                                                       | 2)      |
| 3) Ciphertext is the scrambled message produced as output.                                                                                                           | 3)      |
| 4) The security of symmetric encryption depends on the secrecy of the algorithm, not the secrecy of the key.                                                         | 4)      |
| 5) The ciphertext-only attack is the easiest to defend against because the opponent has the least amount of information to work with.                                | 5)      |
| 6) The Feistel structure is a particular example of the more general structure used by all symmetric block ciphers.                                                  | 6)      |
| 7) Smaller block sizes mean greater security but reduced encryption/decryption speed.                                                                                | 7)      |
| 8) The essence of a symmetric block cipher is that a single round offers inadequate security but that multiple rounds offer increasing security.                     | 8)      |
| 9) Triple DES was first standardized for use in financial applications in ANSI standard X9.17 in 1985.                                                               | 9)      |
| 10) The most commonly used symmetric encryption algorithms are stream ciphers.                                                                                       | 10)     |
| 11) The principal drawback of 3DES is that the algorithm is relatively sluggish in software.                                                                         | 11)     |
| 12) AES uses a Feistel structure.                                                                                                                                    | 12)     |
| 13) Random numbers play an important role in the use of encryption for various network security applications.                                                        | 13)     |
| 14) The primary advantage of a stream cipher is that stream ciphers are almost always faster and use far less code than do block ciphers.                            | 14)     |
| 15) One desirable property of a stream cipher is that the ciphertext be longer in length than the plaintext.                                                         | 15)     |
| MULTIPLE CHOICE. Choose the one alternative that best completes the statem                                                                                           | nent or |
| answers the question.<br>16) A symmetric encryption scheme has ingredients.<br>A) five B) three C) four D) six                                                       | 16)     |
| 17) is the original message or data that is fed into the algorithm                                                                                                   | 17)     |
| as input.<br>A) DES B) Ciphertext                                                                                                                                    |         |

| 18) mode r                                 |                                                | -                    | the encryption      | 18) |
|--------------------------------------------|------------------------------------------------|----------------------|---------------------|-----|
| A) CTR                                     | t the decryption alg<br>B) CBC                 | C) ECB               | D) DKS              |     |
| 19) A pro                                  | cesses the input ele<br>nt at a time, as it go |                      | sly, producing      | 19) |
| A) stream ciphe                            |                                                | B) cryptanaly        | reie                |     |
| C) keystream                               | ,1                                             |                      |                     |     |
| C) Reystream                               |                                                | D) block ciph        | lei                 |     |
| 20) If both sender and                     |                                                | ame key the syste    | m is referred to as | 20) |
| A) asymmetric                              |                                                | B) two-key           |                     |     |
| C) symmetric                               |                                                | D) public-key        | 7                   |     |
| c) symmetric                               |                                                | D) public key        |                     |     |
| 21) If the sender and $t$ to as $\epsilon$ |                                                | different key the    | system is referred  | 21) |
| A) asymmetric                              | 51                                             | B) convention        | nal                 |     |
| C) single-key                              |                                                | D) secret-key        |                     |     |
| c) single key                              |                                                | D) secret key        |                     |     |
| 22) A appr                                 | oach involves trvir                            | o every possible     | kev until an        | 22) |
|                                            | tion of the cipherte                           |                      |                     | ZZ) |
| -                                          | tion of the cipherte                           | —                    |                     |     |
| A) brute-force                             | 1                                              | B) block ciph        |                     |     |
| C) computation                             | ial                                            | D) triple DES        |                     |     |
| 23) With the                               | _ mode if there is ar                          | n error in a block   | of the transmitted  | 23) |
| ciphertext only th                         | e corresponding pl                             | aintext block is af  | fected.             |     |
| A) TSR                                     |                                                | C) CBC               |                     |     |
| ,                                          | ,                                              |                      | ,                   |     |
| 24) The most common                        | n key length in moo                            | dern algorithms is   | 6                   | 24) |
|                                            | B) 256 bits                                    |                      |                     | ,   |
| )                                          | ,                                              | -,                   | ,                   |     |
| 25) A takes                                | as input a source th                           | nat is effectively r | andom and is        | 25) |
| ,                                          | s an entropy source                            | 5                    |                     |     |
| A) PRNG                                    | B) PRF                                         | C) TRNG              | D) PSRN             |     |
| A) I KNO                                   | D) I KI                                        | C) IKNG              | D) I SIXIN          |     |
| 26) A symmetric bloc                       | k cipher processes                             | of data              | at a time           | 26) |
| A) three blocks                            |                                                | B) two block         |                     | 20) |
| •                                          |                                                |                      |                     |     |
| C) one block                               |                                                | D) four block        | S                   |     |
| <b>97</b> ) I                              |                                                |                      | 1                   | 27) |
| 27) In mod                                 | -                                              | -                    |                     | 27) |
| A) CBC                                     | B) ECB                                         | C) CFB               | D) CTR              |     |
|                                            |                                                |                      |                     |     |
| 28) The alg                                | -                                              | arious substitutio   | ns and              | 28) |
| transformations o                          | n the plaintext.                               |                      |                     |     |
| A) codebook                                |                                                | B) encryption        | า                   |     |
| C) keystream                               |                                                | D) cipher            |                     |     |
|                                            |                                                |                      |                     |     |
| 29) If the analyst is ab                   | le to get the source                           | e system to insert   | into the system a   | 29) |
| message chosen b                           | y the analyst, a                               | attack is p          | ossible.            |     |
| A) known plair                             |                                                | B) chosen cip        |                     |     |
| , I                                        |                                                | , - r                |                     |     |

| C) ciphertext only |  |
|--------------------|--|
|--------------------|--|

D) chosen plaintext

| 30)       | The<br>algorithm.              | _ key size is used with                                                                                | the Data Encryptic                       | on Standard   | 30)               |
|-----------|--------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|-------------------|
|           | 0                              | B) 128 bit                                                                                             | C) 168 bit                               | D) 32 b       | it                |
| SHORT A   | NSWFR W                        | rite the word or phras                                                                                 | e that best comple                       | tes each stat | ement or answers  |
| the quest |                                | ince the word of pinds                                                                                 | e mai best comple                        | tes caen stat | tement of unswers |
| -         | The                            | _ algorithm takes the c<br>l produces the origina                                                      | -                                        | ame           | 31)               |
| 32)       |                                | cipher processes the pl<br>oduces a block of ciph<br>k.                                                | •                                        |               | 32)               |
| 33)       |                                | of symmetric encryptic<br>aintaining the secrecy                                                       |                                          | curity        | 33)               |
| 34)       | commonly us                    | categories of cryptogra<br>ed to create PRNGs:<br>message authenticatio                                | Asymmetric cipher                        | rs, Hash      | 34)               |
| 35)       | The process c<br>known as      | f attempting to discov                                                                                 | er the plaintext or k                    | key is        | 35)               |
| 36)       | cipher exceed                  | n scheme is<br>s the value of the encr<br>ired to break the ciphe<br>ation.                            | ypted information a                      | and/or        | 36)               |
| 37)       |                                | st important symmetri<br>he Advanced Encrypt                                                           | •                                        | -             | 37)               |
| 38)       | the computer patterns, disk    | source is drawn from<br>and could include thin<br>electrical activity, more<br>values of the system of | ngs such as keystro<br>use movements, an | ke timing     | 38)               |
| 39)       |                                | s as input a fixed value<br>quence of output bits                                                      |                                          |               | 39)               |
| 40)       | Layer/Transp<br>defined for co | a stream cipher used i<br>ort Layer Security star<br>ommunication betweer<br>ed in WEP and WPA p       | dards that have be<br>Web browsers and   | en            | 40)               |
| 41)       | the XOR of th                  | mode the input to<br>e current plaintext blo<br>ock; the same key is use                               | ck and the preceed                       |               | 41)               |

| 42) Also referred to as conventional encryption, secret-key, or single-key encryption, encryption was the only type of encryption in use prior to the development of public-key encryption in the late 1970's.             | 42) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 43) Two requirements for secure use of symmetric encryption are:<br>sender and receiver must have obtained copies of the secret key<br>in a secure fashion and a strong is needed.                                         | 43) |
| 44) All encryption algorithms are based on two general principles:<br>, in which each element in the plaintext is mapped<br>into another element, and transposition, in which elements in<br>the plaintext are rearranged. | 44) |
| 45) Many symmetric block encryption algorithms including DES have a structure first described by of IBM in 1973.                                                                                                           | 45) |

1) FALSE 2) TRUE 3) TRUE 4) FALSE 5) TRUE 6) TRUE 7) FALSE 8) TRUE 9) TRUE 10) FALSE 11) TRUE 12) FALSE 13) TRUE 14) TRUE 15) FALSE 16) A 17) C 18) A 19) A 20) C 21) A 22) A 23) D 24) A 25) C 26) C 27) D 28) B 29) D 30) A 31) decryption 32) block 33) key 34) Symmetric block ciphers 35) cryptanalysis 36) computationally secure 37) Data Encryption Standard (DES) 38) entropy 39) seed 40) RC4 41) cipher block chaining (CBC) 42) symmetric 43) encryption algorithm 44) substitution

45) Horst Feistel