TEST BANK

True/False

Indicate whether the statement is true or false.

1. A computer program is considered to be a solution to a problem, but one that is implemented with a computer.
2. The purpose of analyzing a problem is to determine the goal of solving the problem, and the items that are needed to achieve that goal.
3. When analyzing a problem, you always search first for the input, and then for the output.
4. When planning the algorithm, you must create both a flowchart and pseudocode.
5. A problem can have more than one solution.
6. Though you may have solved a problem similar to the one you are solving now, you should avoid using that problem's algorithm to solve the current problem.
7. You can desk-check an algorithm using its pseudocode but not its flowchart.
8. Most algorithms end with an instruction to print, display, or store the output items.
9. Pseudocode is a standardized language for writing algorithms.
10. It is a good practice to be consistent when referring to the input, output, and processing items in the IPO chart.
11. The final step in the problem-solving process is to implement the program.
12. As a programmer, it is important to distinguish between information that truly is missing in the problem specification, and information that simply is not stated, explicitly, in the problem specification.
13. After the instruction to enter the input items, you usually provide instructions to process those items, typically by performing some calculations on them, to achieve the problem's required results.
14. Let's say you have not solved a similar problem to the one you are working on and you cannot find a portion of an existing algorithm that you can use. You can reasonably conclude that not enough information is present in the problem specification for you to solve it.
15. You can use a desk-check table to help you desk-check an algorithm. The table should contain one column for each input item shown in the IPO chart, but, to avoid confusion, should not contain any columns for the output items.
16. The term "data-checking" means that you use pencil and paper, along with sample data, to walk through each of the steps in the algorithm manually, just as if you were the computer.
17. When the programmer is satisfied that the algorithm is correct, he or she then translates the algorithm into a language that the computer can understand. Programmers refer to this step as tracing the algorithm.
18. Most algorithms begin with an instruction that enters the input items into the computer.
19. During the planning step, programmers write the steps that will transform the input into the output.
20. As with the output, the input typically is stated as nouns and adjectives in the problem specification.
21. Before you begin the desk-check, you first choose a set of sample data for the output values.
22. Pseudocode is a tool programmers use to help them test an algorithm.
23. Algorithms use standardized symbols to show the steps the computer needs to take to accomplish the program's goal.
24. After analyzing the problem, you start planning an algorithm.
25. Asymmetric data is data that the program is not expecting the user to enter.

Multiple Choice

Identify the choice that best completes the statement or answers the question.
26. The first step in solving a familiar problem is to \qquad the problem.
a. minimize
c. deconstruct
b. analyze
d. transform
27. Which of the following is the correct order of the problem solving process, from the first to the last?
a. review, plan, implement, modify, evaluate
b. review, plan, evaluate, implement, modify
c. plan, review, implement, evaluate, modify
d. plan, implement, evaluate, review, modify
28. A coded algorithm is called a \qquad .
a. calculator
c. solution
b. program
d. processor
29. Programmers refer to the goal as the \qquad , and the items needed to achieve the goal as the \qquad .
a. input, output
c. growth, seed
b. output, input
d. seed, growth
30. An algorithm is \qquad .
a. a group of unrelated problems joined together to form a cluster
b. a complete analysis of the problem and the possible solutions
c. the necessary input for solving a problem
d. a set of step-by-step instructions that transforms the problem's input into its output
31. A ___ item represents an intermediate value that the algorithm uses when transforming the input into the output.
a. temp
c. processing
b. variable
d. passover
32. In programming terms, a numbered list of steps is called \qquad _.
a. pseudocode
c. desk-checking
b. code
d. precode
33. A(n) __ uses symbols to show the steps the computer needs to take to accomplish the program's goal.
a. algorithm
c. diagram
b. hierarchy chart
d. flowchart
34. The different symbols in a flowchart are connected with lines called \qquad .
a. connectors
c. flowlines
b. markers
d. pointers
35. The oval symbol in a flowchart is called the \qquad symbol.
a. start/stop
c. intermediary
b. input/output
d. terminal
36. The rectangles in a flowchart are called \qquad symbols.
a. intermediary
c. process
b. terminal
d. space
37. You analyze the problem to determine the goal of solving the problem, that is, the \qquad .
a. input
c. answer
b. algorithm
d. output
38. The input and output typically are stated as \qquad in the problem specification.
a. nouns, adjectives
c. adverbs, nouns
b. verbs, adjectives
d. adverbs, verbs
39. Programmers use a(n) \qquad chart to organize and summarize the results of a problem analysis.
a. IPO
c. I/O
b. hierarchy
d. PPO
40. The \qquad step is the most difficult of the problem-solving steps, primarily because most problem specifications contain either too much information or too little information.
a. analysis
c. review
b. plan
d. implement
41. Giving directions to someone, and writing down each direction on paper in your own words is an example of \qquad
a. a flowchart
c. an IPO chart
b. pseudocode
d. an input
42. The input/output symbol in a flowchart is represented by a \qquad .
a. circle
c. triangle
b. square
d. parallelogram
43. data is data that the programmer is expecting the user to enter.
a. Invalid
c. Symmetric
b. Valid
d. Asymmetric
44. During the \qquad step, programmers write the steps that will transform the input into the output.
a. modifying
c. review
b. planning
d. evaluate
45.
a. Compiling
c. Coding
b. Loading
d. Debugging
46. Before you begin the desk-check, you first choose a set of sample data for the \qquad values.
a. input
c. terminal
b. processing
d. output
47. You can draw an IPO chart by hand or by using the \qquad feature in a Word processor.
a. IPO
c. table
b. chart
d. draw
48. In response to the question "What is your hourly rate", a user of a program enters $\$ 10,000$. A good program should treat this as \qquad _.
a. valid data
c. unreasonable data
b. invalid data
d. unethical data
49. The question "What information will the computer need to know to print, display, or store the output items?" will help you determine the \qquad .
a. input
c. processing
b. output
d. algorithm
50. Desk-checking, also called \qquad , means that you use pencil and paper, along with sample data, to walk through each of the steps in an algorithm manually, just as if you were the computer.
a. pencil pushing
c. table-top checking
b. hand-verification
d. hand-tracing

ch02

Answer Section

TRUE/FALSE

1. ANS: T
2. ANS: T
3. ANS: F
4. ANS: F
5. ANS: T
6. ANS: F
7. ANS: F
8. ANS: T
9. ANS: F
10. ANS: T
11. ANS: F
12. ANS: T
13. ANS: T
14. ANS: F
15. ANS: F
16. ANS: F
17. ANS: F
18. ANS: T
19. ANS: T
20. ANS: T
21. ANS: F
22. ANS: F
23. ANS: F
24. ANS: T
25. ANS: F

MULTIPLE CHOICE

26. ANS: B
27. ANS: C
28. ANS: B
29. ANS: B
30. ANS: D
31. ANS: C
32. ANS: A
33. ANS: D
34. ANS: C
35. ANS: A
36. ANS: C
37. ANS: D
38. ANS: A

PTS: 1
REF: 39
PTS: 1

PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1

REF: 40
REF: 40
REF: 46
REF: 46
REF: 46
REF: 49
REF: 44
REF: 45
REF: 45
REF: 40
REF: 42
REF: 43
REF: 48
REF: 49
REF: 40
REF: 40
REF: 43
REF: 54
REF: 41
REF: 49
REF: 45
REF: 45
REF: 43
REF: 51

REF: 38
REF: 39
REF: 40
REF: 40
REF: 43
REF: 44
REF: 45
REF: 45
REF: 46
REF: 46
REF: 46
REF: 40
REF: 41
39. ANS: A
40. ANS: A
41. ANS: B
42. ANS: D
43. ANS: B
44. ANS: B
45. ANS: C
46. ANS: A
47. ANS: C
48. ANS: B
49. ANS: A
50. ANS: D

PTS: 1
REF: 41
PTS: 1
REF: 42
REF: 45
REF: 46
REF: 51
REF: 54
REF: 54
REF: 49
REF: 41
REF: 51
REF: 41
REF: 40

