TEST BANK

Test Bank

Jeffrey Elbert University of Northern Iowa

INTRODUCTION TO ORGANIC CHEMISTRY

Third Edition

William Brown Beloit College

Thomas Poon Claremont McKenna, Pitzer, and Scripps Colleges

John Wiley & Sons, Inc.

To order books or for customer service call 1-800-CALL-WILEY (225-5945).

Copyright © 2005 by John Wiley & Sons, Inc.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. *Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030.*

ISBN 0-471-68692-1

Printed in the United States of America

 $1 \ 0 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$

Printed and bound by Malloy Lithographing, Inc.

CONTENTS

CHAPTER	1	1
CHAPTER	2	12
CHAPTER	3	24
CHAPTER	4	36
CHAPTER	5	48
CHAPTER	6	61
CHAPTER	7	75
CHAPTER	8	88
CHAPTER	9	100
CHAPTER	10	116
CHAPTER	11	130
CHAPTER	12	138
CHAPTER	13	148
CHAPTER	14	161
CHAPTER	15	176
CHAPTER	16	191
CHAPTER	17	207
CHAPTER	18	221
CHAPTER	19	235
CHAPTER	20	247
CHAPTER	21	258
CHAPTER	22	271

Multiple Choice

1. Which is the electronic configuration that describes Mg^{2+} ? (Sec. 1.2)

a) $1s^2$, $2s^2$ b) $1s^2$, $2s^2$, $2p^6$ c) $1s^2$, $2s^2$, $2p^6$, $3s^2$ d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$

- 2. Which is the electronic configuration that describes C? (Sec. 1.2)
 - a) $1s^2$, $2s^2$, $2p^5$ b) $1s^2$, $2s^2$, $2p^6$, $3s^2$ c) $1s^2$, $2s^2$, $2p^2$ d) $1s^2$, $2s^2$, $2p^6$
- 3. Which ion is described by the electronic configuration $1s^22s^22p^63s^23p^2$? (Sec. 1.2)
 - a) Mg⁺ b) Al⁺ c) Si⁺ d) P⁺
- 4. Which atom is described by the electron configuration $1s^22s^22p^63s^23p^7$? (Sec. 1.2)
 - a) S b) Se c) Cl d) Br

5. Which atom is described by the Lewis structure : A: ? (Sec. 1.2)

- a) C b) P
- c) Se
- d) I

6. Which atom is described by the Lewis structure \dot{A} ? (Sec. 1.2)

- a) C b) P c) Se d) I
- 7. Which molecules contain both covalent and ionic bonds? (Sec. 1.3)

CH ₃ OH	Na ₂ CO ₃	NH4Cl	NaCl
I	II	III	IV
a) I, II b) II, IV c) I, II, IV d) II, III			

8. Arrange the bonds in increasing order of ionic character (least first). (Sec. 1.3)

C-C Na-O C-N O-H C-O I II II II V V a) III, I, IV, II, V b) V, III, I, II, IV c) I, III, V, IV, II d) I, III, II, IV, V

9. Which Lewis structure is correct? (Sec. 1.3)

a)
$$H \stackrel{H}{-} \stackrel{H}{-}$$

10. Which Lewis structures are correct? (Sec. 1.3)

11. Which molecules are polar? (Sec. 1.5)

NH ₃	CO ₂	H ₂ O	CH ₄	Br ₂
Ι	II	III	IV	V
 a) I, IV b) I, III c) II, III, IV d) III, IV, V 				

12. Which molecules are polar? (Sec. 1.5)

$$H_{2}C=CH_{2} \qquad \begin{array}{c} 0 \\ H_{2}C=CH_{2} \\ H_{2}C H \end{array} \qquad CH_{2}CL_{2} \qquad H_{3}C-CH_{3} \qquad CH_{3}OH \\ I \qquad II \qquad III \qquad III \qquad IV \qquad V \\ a) III, IV, V \\ b) I, IV \\ c) II, III, V \\ d) I, III \qquad \end{array}$$

13. Which functional groups have correct Lewis structures? (Sec. 1.3)

14. Which is the correct Lewis structure for acetic acid (CH₃CO₂H)? (Sec. 1.3)

15. Using the VSEPR model, predict which atoms have bond angles of about 120°. (Sec. 1.4)

16. According to VSEPR model, what is your prediction for the arrangement of electron pairs for CH₃? (Sec. 1.4)

a) linearb) tetrahedralc) bentd) trigonal

17. Using the VSEPR model, predict which species have bond angles of about 109°. (Sec. 1.4)

 $\begin{array}{cccccccc} \mathrm{NH}_3 & \mathrm{CO}_2 & \mathrm{H}_2\mathrm{O} & \mathrm{H}_3\mathrm{O}^+ & \mathrm{O}_3 \\ \mathrm{I} & \mathrm{II} & \mathrm{III} & \mathrm{IIV} & \mathrm{V} \\ & & \mathrm{a)} \ \mathrm{I}, \mathrm{III}, \mathrm{IV} & & \\ & & \mathrm{b)} \ \mathrm{II}, \mathrm{III}, \mathrm{V} & & \\ & & \mathrm{c)} \ \mathrm{I}, \mathrm{IV} & & \\ & & \mathrm{d} \ \mathrm{III}, \mathrm{IV}, \mathrm{V} \end{array}$

18. What is the correct structure for the aldehyde which has the formula C_4H_8O ? (Sec. 1.3)

a)
$$CH_3 - CH - CH = CH_2$$

c) $CH_3 - CH_2 - CH_2 - CH_2$
b) $CH_3 - CH_2 - CH_2 - CH_3$
d) $H_2C = CH - CH_2 - O - CH_3$

19. Nitrogen has a negative formal charge in which of the following compounds? (Sec. 1.3)

a) NaNH₂ b) N₂ c) NH₄Cl d) HCN

20. What is the formal charge of oxygen in H_3O^+ ? (Sec. 1.3)

- a) -1 b) 0 c) +1 d) +2
- 21. What is the formal charge of indicated carbon in,

- a) -2 b) -1
- c) 0
- d) +1

22. The carbon has the correct orbital hybridization in which structures? (Sec. 1.7)

$H_2C=O$	$H_2C = CH_2$	CH ₄	HC≡N	0 = C = 0
sp I a) II, IV, V b) II, III, IV c) I, II, III d) I, IV, V	sp ² II	sp ² III	sp IV	sp V

- 23. What are the correct orbital hybridizations for carbon in the following species? (Sec. 1.7)
 - A. \bigcirc CH₃ I. sp B. CH₄ II. sp² C. \oplus CH₃ III. sp³ a) A and I, B and III b) B and I, C and II c) A and III, C and II d) B and III, C and III
- 24. Which of the following are pairs of contributing resonance structures? (Sec. 1.6)

I
$$CH_{3} \xrightarrow{O} CH_{3} \xrightarrow{CH_{2}} \overset{O}{\underset{O}{\bigcirc}} H$$

II $H_{2}C=\dot{O}: \xrightarrow{CH_{2}} \overset{O}{\underset{O}{\bigcirc}} H$
III $H_{2}C=\dot{O}: \xrightarrow{CH_{2}} \overset{O}{\underset{O}{\bigcirc}} H$
III $H_{2}C=CH-\overset{O}{\underset{O}{\bigcirc}} H_{2} \xrightarrow{CH_{2}} -CH=CH_{2}$
IV $\overset{O}{\underset{N}{=}} C=\dot{O}: \xrightarrow{N} \equiv C-\dot{O}:$

a) II, IV b) I, II, III c) III, IV d) II, III, ,IV 25. Carbon has how many valence electrons? (Sec. 1.2)

- a) 2 b) 4
- c) 6
- d) 8

26. Oxygen has how many valence electrons? (Sec. 1.2)

- a) 4
- b) 5 c) 6
- d) 7

27. Nitrogen has how many valence electrons? (Sec. 1.2)

- a) 4
- b) 5
- c) 6
- d) 7

28. Which statement about orbitals is false? (Sec. 1.2)

- a) Orbitals are regions of space where electrons are found.
- b) Orbitals may contain up to two electrons.
- c) Orbitals are filled in order of decreasing energy.
- d) Orbitals of equivalent energy are half filled before adding two electrons to any one of them.

29. Which statement about resonance structures is false? (Sec. 1.6)

a) All contributing resonance structures must have the same number of valence electrons.

b) All contributing structures must obey the rules of covalent bonding.

- c) The position of nuclei may change.
- d) Third period atoms may have up to 12 electrons around them.

30. Which functional groups are named correctly? (Sec. 1.8)

Chapter 1 Covalent Bonding and Shapes of Molecules

31. Which of the following compounds contains a tertiary (3°) alcohol? (Sec. 1.8)

Fill in the Blanks

- 1. The spins of the electrons must be _____ in an orbital. (Sec. 1.2)
- 2. Outer shell electrons are called ______ electrons. (Sec. 1.2)
- 3. _____ is the number of valence electrons for S. (Sec. 1.2)
- 4. _____ is the number of valence electrons for Br. (Sec. 1.2)
- 5. The tendency of an element to react such that it achieves a noble gas configuration is called the ______. (Sec. 1.2)
- 6. The most polar bond in the following molecule is _____. (Sec. 1.3) H OHH

- 7. A ______ bond is characterized by the unequal sharing of electrons. (Sec. 1.3)
- 8. The following molecule contains the _____ and _____ functional groups. (Sec. 1.8)

9. The following molecule contains the _____ and _____ functional groups. (Sec. 1.8) H_2 OH_0

10. Functional groups undergo the same type of ______ in whatever compound they are found. (Sec. 1.8)

11. _____ are the basis for compound nomenclature. (Sec. 1.8)

True-False

- 1. Each shell can hold two electrons. (Sec. 1.2)
- 2. Orbitals make up the majority of the mass of an atom. (Sec. 1.2)
- 3. The group 7A elements react by losing an electron to achieve a noble gas configuration. (Sec. 1.3)
- 4. The group 2A elements react by losing two electrons to achieve a noble gas configuration. (Sec. 1.3)

- 5. Carbon reacts by gaining 4 electrons to achieve a noble gas configuration. (Sec. 1.3)
- 6. An atom that gains electrons is called an anion. (Sec. 1.3)
- 7. Ionic bonds are characterized by the unequal sharing of electrons. (Sec. 1.3)

- 9. CH₃CH₂CH₂CH₂CH₂OH is a polar molecule. (Sec. 1.5)
- 10. CH_3ONa contains only polar covalent bonds. (Sec. 1.3)

Answers

Multiple Choice
2.0
2. C
5. u
4. 0
5. c
6. a
7. d
8. c
9. d
10. c
11. b
12. c
13. d
14. d
15. d
16. b
17. a
18. c
19. a
20. c
21. b
22. a
23. c
24. c
25. b
26. c
27. b
28. c
29. c
30. a
31. b
Fill in the Blank
1. paired
2. valence
3.6
4. 7
5. octet rule
6. C-F
7. polar covalent
8. ketone, alcohol
9. 1° amine, carboxylic acid
10. reactions
11. Functional groups

True-False 1. F 2. F 3. F 4. T 5. F 6. T

Chapter 1 Covalent Bonding and Shapes of Molecules

7. F 8. F 9. T 10. F