
TEST BANK

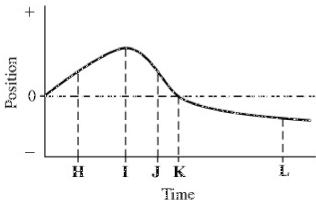
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the	question.
1) If the acceleration of an object is negative, the object must be slowing down.A) TrueB) False	1)
, 23	
2) If the graph of the position as a function of time for an object is a horizontal line, th	at 2)
object cannot be accelerating.	
A) True B) False	
3) If an object is accelerating toward a point, then it must be getting closer and closer	to 3)
that point.	
A) True B) False	
4) When can we be certain that the average velocity of an object is always equal to its	4)
instantaneous velocity?	
A) only when the acceleration is changing at a constant rate	
B) always	
C) only when the velocity is constant	
D) only when the acceleration is constant	
E) never	
5) Suppose that an object is moving with constant nonzero acceleration. Which of the	5)
following is an accurate statement concerning its motion?	,
A) A graph of its velocity as a function of time is a horizontal line.	
B) In equal times it moves equal distances.	
C) A graph of its position as a function of time has a constant slope.	
D) In equal times its velocity changes by equal amounts.	
E) In equal times its speed changes by equal amounts.	
6) Suppose that a car traveling to the west (the $-x$ direction) begins to slow down as it	6)
approaches a traffic light. Which statement concerning its acceleration in the x directions.	
is correct?	
A) Both its acceleration and its velocity are positive.	
B) Its acceleration is negative but its velocity is positive.	
C) Its acceleration is positive but its velocity is negative.	

D) Both its acceleration and its velocity are negative.

7) The motion of a particle is described in the velocity versus time graph shown in the figure. We can say that its speed

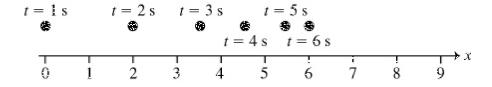
- A) increases.
- C) decreases and then increases.
- B) decreases.
- D) increases and then decreases.
- 8) The motions of a car and a truck along a straight road are represented by the velocity-time graphs in the figure. The two vehicles are initially alongside each other at time t = 0. At time T, what is true about these two vehicles since time t = 0?

- Truck
 Car

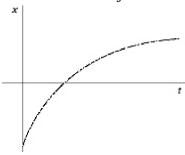

 Truck

 Truck
- A) The car will be traveling faster than the truck.
- B) The truck will have traveled further than the car.
- C) The truck and the car will have traveled the same distance.
- D) The car will have traveled further than the truck.

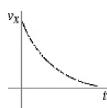
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.


- 9) The graph in the figure shows the position of an object as a function of time. The letters H-L represent particular moments of time. At which moments shown
- 9) _____

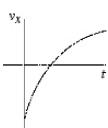
- (H, I, etc.) is the speed of the object
- (a) the greatest?
- (b) the smallest?

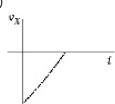

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

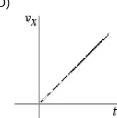
10) The figure shows the position of an object (moving along a straight line) as a function of time. Assume two significant figures in each number. Which of the following statements about this object is true over the interval shown?



- A) The object is accelerating to the left.
- B) The object is accelerating to the right.
- C) The average speed of the object is 1.0 m/s.
- D) The acceleration of the object is in the same direction as its velocity.
- 11) The figure shows the graph of the position *x* as a function of time for an object moving in the straight line (the *x*-axis). Which of the following graphs best describes the velocity along the *x*-axis as a function of time for this object?

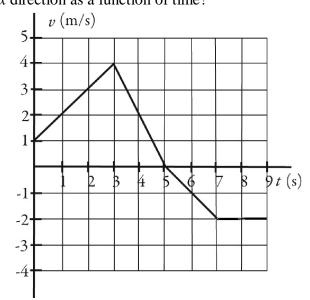


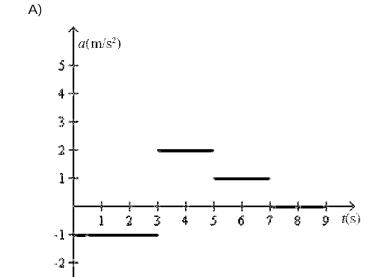



B)

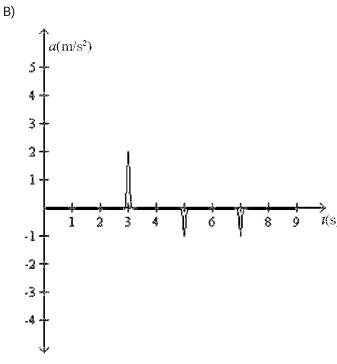
C)

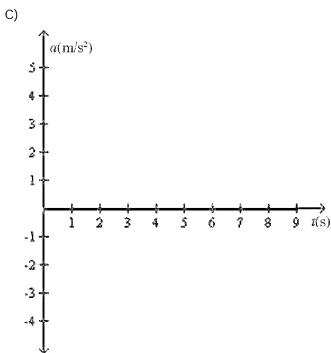
D)

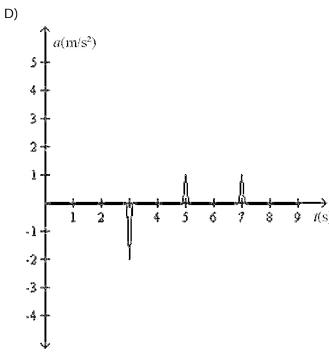

E)

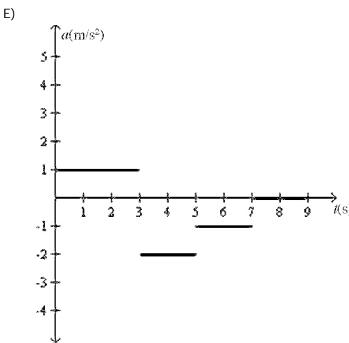


- 12) An object is moving with constant non-zero acceleration along the +x-axis. A graph of the velocity in the x direction as a function of time for this object is
- 12) _____

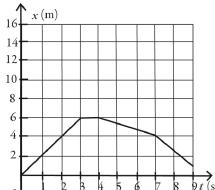

- A) a straight line making an angle with the time axis.
- B) a vertical straight line.
- C) a parabolic curve.
- D) a horizontal straight line.

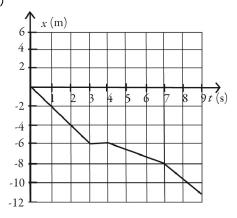

13) An object is moving in a straight line along the *x*-axis. A plot of its velocity in the *x* direction as a function of time is shown in the figure. Which graph represents its acceleration in the *x* direction as a function of time?



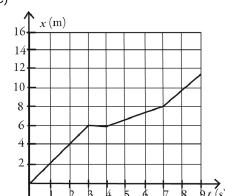


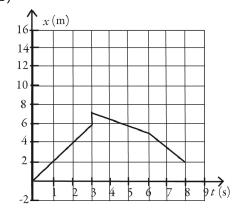
-3

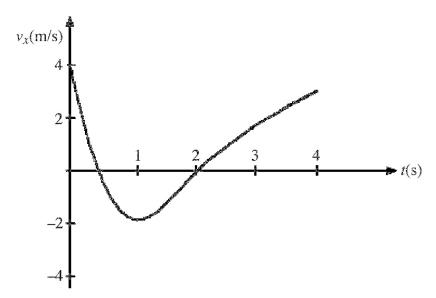




14) An object starts its motion with a constant velocity of 2.0 m/s toward the east. After 3.0 s, the object stops for 1.0 s. The object then moves toward the west a distance of 2.0 m in 3.0 s. The object continues traveling in the same direction, but increases its speed by 1.0 m/s for the next 2.0 s. Which graph below could represent the motion of this object?

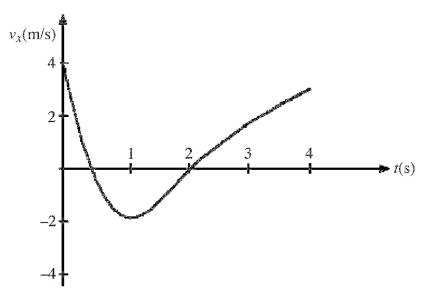

A)


R



C)

D)



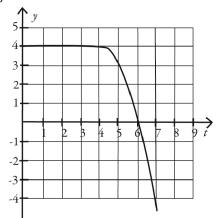
- A) in the -x direction
- B) in the +x direction
- C) The acceleration is zero.

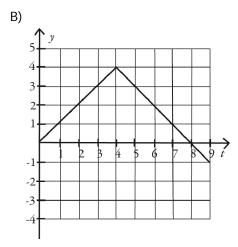
16) The figure represents the velocity of a particle as it travels along the *x*-axis. At what value (or values) of *t* is the instantaneous acceleration equal to zero?

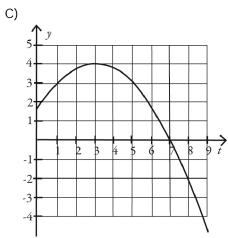
16) _____

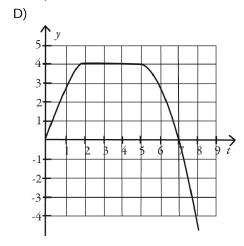
- A) t = 0.5 s and t = 2 s
- B) t = 0

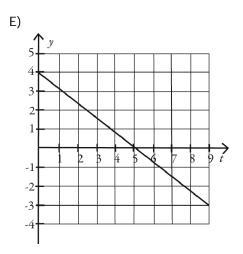
C) t = 1 s


- 17) A ball is thrown directly upward and experiences no air resistance. Which one of the following statements about its motion is correct?
- 17) _____
- A) The acceleration of the ball is downward while it is traveling up and downward while it is traveling down but is zero at the highest point when the ball stops.
- B) The acceleration of the ball is upward while it is traveling up and downward while it is traveling down.
- C) The acceleration of the ball is downward while it is traveling up and upward while it is traveling down.
- D) The acceleration is downward during the entire time the ball is in the air.
- 18) Two objects are thrown from the top of a tall building and experience no appreciable air resistance. One is thrown up, and the other is thrown down, both with the same initial speed. What are their speeds when they hit the street?
- 18) _____


- A) The one thrown up is traveling faster.
- B) They are traveling at the same speed.
- C) The one thrown down is traveling faster.
- 19) Two objects are dropped from a bridge, an interval of 1.0 s apart, and experience no appreciable air resistance. As time progresses, the DIFFERENCE in their speeds
- 19) _____

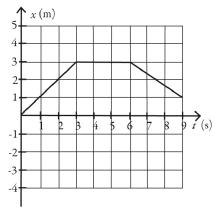

- A) increases.
- B) remains constant.
- C) decreases.
- D) decreases at first, but then stays constant.
- E) increases at first, but then stays constant.
- 20) Which one of the following graphs could possibly represent the vertical position as a function of time for an object in free fall?




A)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

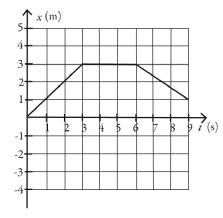
- 21) A cat runs along a straight line (the *x*-axis) from point *A* to point *B* to point *C*, as shown in the figure. The distance between points *A* and *C* is 5.00 m, the distance between points *B* and *C* is 10.0 m, and the positive direction of the *x*-axis points to the right. The time to run from *A* to *B* is 20.0 s, and the time from *B* to *C* is 8.00 s. As the cat runs along the *x*-axis between points *A* and *C*
 - (a) what is the magnitude of its average velocity?
 - (b) what is its average speed?



22) The figure shows the position of an object as a function of time. During the time interval from time t = 0.0 s and time t = 9.0 s

21)

- (a) what is the length of the path the object followed?
- (b) what is the displacement of the object?



- 23) As part of an exercise program, a woman walks south at a speed of 2.00 m/s for 60.0 minutes. She then turns around and walks north a distance 3000 m in 25.0 minutes
- 23) _____

- (a) What is the woman's average velocity during her entire motion?
 - A) 0.824 m/s south
 - B) 1.93 m/s south
 - C) 2.00 m/s south
 - D) 1.79 m/s south
 - E) 800 m/s south
- (b) What is the woman's average speed during her entire motion?
 - A) 0.824 m/s
 - B) 1.93 m/s
 - C) 2.00 m/s
 - D) 1.79 m/s
 - E) 800 m/s
- 24) The figure shows the position of an object as a function of time, with all numbers accurate to two significant figures. Between time t = 0.0 s and time

- t = 9.0 s
- (a) what is the average speed of the object?
- (b) what is the average velocity of the object?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 25) If the fastest you can safely drive is 65 mi/h, what is the longest time you can stop for 25) _____ dinner if you must travel 541 mi in 9.6 h total?
 - A) 1.0 h

B) 1.3 h

C) 1.4 h

D) You can't stop at all.

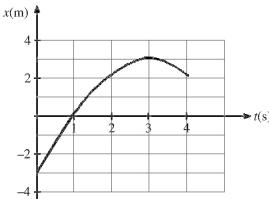
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

26) Arthur and Betty start walking toward each other when they are 100 m apart. Arthur has a speed of 3.0 m/s and Betty has a speed of 2.0 m/s. Their dog, Spot, starts by Arthur's side at the same time and runs back and forth between them at 5.0 m/s. By the time Arthur and Betty meet, what distance has Spot run?

26)		
•		

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

27) A racing car accelerates uniformly from rest along a straight track. This track has markers spaced at equal distances along it from the start, as shown in the figure. The car reaches a speed of 140 km/h as it passes marker 2. Where on the track was the car when it was traveling at 70 km/h?



- A) Between marker 1 and marker 2
- B) Before marker 1
- C) At marker 1

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

28) The figure represents the position of a particle as it travels along the *x*-axis. Between t = 2 s and t = 4 s, what is (a) the average speed of the particle and (b) the average velocity of the particle?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 29) The position of an object as a function of time is given by $x = bt^2 ct$, where b = 2.0 m/s and c = 6.7 m/s, and x and t are in SI units. What is the instantaneous velocity of the object when t = 2.2?
- 29) _____

- A) 2.1 m/s
- B) 2.7 m/s
- C) 1.7 m/s
- D) 2.3 m/s

30)) The position of a	n object is given by	x = at3 - bt2	'⊥ ct where a	- 1 1 m/s3		30)
30	_	1.7 m/s, and x and t				10	30)
		e object when $t = 0$.		its. What is the	mstantaneou	1.5	
	A) 13 m/s^2	B) 4.6 m/s^2		$c) -13 \text{ m/s}^2$	D) 2.9	9 m/s^2	
31) The velocity of a	n object as a functio	n of time is g	given by $v(t) = 2$	2.00 m/s + (3	.00 m/s) t -	31)
	$(1.0 \text{ m/s}^2) t^2$. De	etermine the instanta	neous accele	eration of the o	bject at time	t = 5.00 s.	
	A) -7.00 m/s^2						
	B) -2.00 m/s^2						
	C) -8.00 m/s^2						
	D) 0.00 m/s^2						
	E) 2.00 m/s ²						
SHORT	ANSWER. Write the	e word or phrase that	best complet	es each stateme	nt or answers	the question.	
32	2) The position of a	n object as a functio	n of time is g	given by		32)	
	$x(t) = at^3 - bt^2 +$	-ct - d, where $a = 3$	$1.6 \text{ m/s}^3, b =$	$4.0 \text{ m/s}^2, c = 6$	60 m/s and		
	d = 7.0 m.						
	(a) Find the instar	ntaneous acceleratio	on at $t = 2.4 \text{ s}$.				
	(b) Find the avera	age acceleration ove	r the first 2.4	seconds.			
MULTIP	PLE CHOICE. Choos	se the one alternative	that best com	npletes the state	ment or answ	ers the questic	on.
33	3) The velocity of a	n object is given by	the expressio	on $v(t) = 3.00 \text{ m}$	n/s + (4.00 m)	$(s^3)t^2$.	33)
		nds. Determine the	-				,
		0 m at time $t = 0.00$	_	3			
	A) $1.00 \text{ m} + (3.00 \text{ m})$	(00 m/s)t + (1.33 m/s)t	$(s^3)t^3$				
	B) $(4.00 \text{ m/s})t$	+ 1.00 m					
	C) $(3.00 \text{ m/s})t$	$+(1.33 \text{ m/s}3)t^3$					
	D) $(4.00 \text{ m/s})t$						
	E) 1.33 m						
34	The acceleration	of an object as a fur	ection of time	e is given by <i>a</i> (<i>t</i>	t = (3.00 m/s)	(3)t, where	34)
		the object is at rest					
	object at time $t =$	6.00 s?					
	A) 54.0	B) 0.00	C) 18.0	D) 108	3 m/s	E) 15.0	
	m/s	m/s	m/s			m/s	
35	The acceleration	of an object as a fur	action of time	e is given by <i>a</i> (<i>t</i>	t) = (3.00 m/s)	$(s^3)t$, where	35)
		f the object has a ve	=			the	
	=	he object between ti					
	A) 27.0 m	B) 33.0 m	(C) 36.0 m	D) 30	0.0 m	

36) A car accelerates from 10.0 m/s to 30.0 m/s at a rate of 3.00 m/s ² . How far does the car					36)
travel while accele	erating?				
A) 399 m	B) 133 m	c) 2	26 m	D) 80.0 m	
37) A dragster starts			s with constant ac	celeration. What	37)
is its velocity whe					
A) 188 mi/h	B) 296 mi	/h C) 2	69 mi/h	D) 135 mi/h	
38) A airplane that is	• •		-		38)
speed of 2.40×1	0^2 m/s while it flight	es a distance of 1.	20 km. What mus	st be the	
acceleration of the	e plane?				
A) 4.44 m/s^2					
B) 1.34 m/s^2					
C) 2.45 m/s^2					
D) 5.78 m/s^2					
E) 7.33 m/s^2					
39) A runner maintair	ns constant acceler	ration after startin	g from rest as she	runs a distance	39)
of 60.0 m. The ru	unner's speed at th	e end of the 60.0	m is 9.00 m/s. Ho	ow much time did	
it take the runner	to complete the 6	0.0 m distance?			
A) 13.3 s	B) 15.0 s	C) 6.67 s	D) 9.80 s	E) 10.2 s	
40) An object starts fi	rom rest at time $t =$	= 0.00 s and move	es in the $+x$ directi	on with constant	40)
acceleration. The	object travels 12.	0 m from time t =	= 1.00 s to time t =	= 2.00 s. What is	
the acceleration o	f the object?				
A) 4.00 m/s^2					
B) 24.0 m/s^2					
C) -12.0 m/s^2					
D) -4.00 m/s ²					
E) 8.00 m/s ²					
41) A car starts from	rest and accelerate	es with a constant	acceleration of 1	00 m/s2 for 3 00	41)
s. The car continu					¬1/
its starting point?		onstant velocity.	110 w lai has the e	ur traveled from	
A) 4.50 m	B) 9.00 m	c) 24.0 m	D) 15.0 m	E) 19.5 m	
,	,,,,,,,,	·, _ · · · ·	, 2010	, 5, 10 555	
42) A ball rolls across	s a floor with an ac	cceleration of 0.10	00 m/s ² in a direct	ion opposite to	42)
its velocity. The					
floor. What was	the initial speed of	f the ball?			
A) 4.15	B) 5.85	C) 5.21	D) 3.85	E) 4.60	
m/s	m/s	m/s	m/s	m/s	

43)	the driver sudde to apply the bral after the brakes	rom a stop sign and nly realizes that she kes, what must be the are applied so that	must stop the cane magnitude of	ar. If it takes 0.20 the constant acce	0 s for the driver leration of the car	43)
	A) 4.17 m/s^2					
	B) 2.08 m/s^2					
	C) 2.89 m/s^2					
	D) 3.89 m/s^2					
	E) 3.42 m/s^2					
	If the police car constant acceler travels a distanc A) 1.45 m/s ² B) 3.00 m/s ² C) 6.00 m/s ² D) 7.41 m/s ² E) 3.70 m/s ²		fore starting, whear to catch the s	nat must be the mappeeding car after	agnitude of the	44)
		-	-		•	
45)	seconds, the ball bottom of the in	e magnitude of the	and 1.0 s after th	is, the ball reaches	s the	
MULTIPI	LE CHOICE. Choo	ose the one alternativ	e that best comp	etes the statement	or answers the quest	ion.
46)	before the packa	opped from a heliconge strikes the groundstate as the groundstate of the strikes and a helicong as the strikes are the strikes the strikes ar	nd, how high about is negligible?			46)
47)	ground. The bal 36.2 m/s if air reclosest to	ed upward at time <i>t</i> l rises, then falls and esistance is negligible	I strikes the groue. The time whe	and. The initial venthe the ball strikes t	locity of the ball is he ground is	47)
	A) $9.0 s$	B) 8.7 s	c) 10 s	D) 9.7 s	E) 9.4 s	

	48) At the same mor	-	•			48)	_
			an initial velocity of		-		
		istance. How much	h EARLIER does t		ke the ground?		
	A) 0.86 s C) 0.67 s		•	95 s	the same time		
	C) 0.67 S		D) I	hey land at exactly	the same time.		
	49) Two identical ob	pjects A and B fall	from rest from diffe	erent heights to the	ground and	49)	
	feel no apprecial	ole air resistance.	If object B takes T	WICE as long as ob	eject A to reach		
	the ground, what	t is the ratio of the	heights from which	h A and B fell?			
	A) $h_{ m A}/h_{ m B}=1/2$	8	B) <i>h</i>	$\Delta/h_{ m B} = 1/\sqrt{2}$			
	C) $h_{A}/h_{B} = 1/4$	4	D) <i>h</i>	$\Delta/h_{\rm B}=1/2$			
SHO	ORT ANSWER. Write th	ne word or phrase th	hat best completes ea	ach statement or ans	wers the question.		
	50) A foul ball is hit	straight up into th	e air with a speed o	of 30.0 m/s.	50)		
		• •	the ball to rise to it		· —		
		-	reached by the ball	_			
		•	e ball pass a point 2		oint of		
	contact between		1 1	1			
	(d) Explain why	there are two ansv	wers to part (c).				
\ <i>1</i> 11 1	ILTIPLE CHOICE. Choo	ssa tha ana altarnati	ive that best complet	as the statement or	answers the allesti	on	
VIO							
	51) A rock is droppe	-			_	51)	_
			hrown vertically fro				
		•	he cliff from the tin		ith what		
			vn, assuming no air	resistance?			
	A) 4.76 m/s up B) 12.3 m/s up						
	C) 12.3 m/s dc						
	D) 5.51 m/s do						
	E) 4.76 m/s do						
	=/ 1.70 Hz 5 G	, wil ward					
	52) To determine the	e height of a flagpo	ole, Abby throws a	ball straight up and	times it. She	52)	
			f the pole after 0.50	• •			
			e of 4.1 s. How hig		_		
		•	ı can ignore air resi	-	•		
	A) 10 m	B) 26 m	C) 13 m	D) 16 m	E) 18 m		
	53) A test rocket is f	ired straight un fr	om rest with a net s	cceleration of 20.0	m/s2 After	53)	
			out the rocket conti				_
			aximum elevation d	-			
	A) 487 m	B) 408 m	c) 160 m	D) 327 m	E) 320 m		

	54) A toy rocket is l	aunched vertically i	from ground level	(y = 0.00 m), at tin	ne $t = 0.00$ s.	54)
	The rocket engin	ne provides constar	nt upward accelera	tion during the bur	n phase. At the	
	instant of engine	burnout, the rocke	et has risen to 72 n	n and acquired a ve	locity of	
	30 m/s. The roc	ket continues to ris	se in unpowered fli	ight, reaches maxin	num height, and	
			-	The speed of the re	-	
		ound is closest to	iole un resistance.	The speed of the f	оскет ароп	
	A) 48 m/s	B) 44 m/s	C) 39 m/s	D) 59 m/s	E) 54 m/s	
	7 7 40 11/3	b) ++ m/3	O) 37 III/3	D) 37 III/3	=/ J+ III/3	
	55) A ball is projecte	ed unward at time t	s = 0.00 s from a r	oint on a roof 70 n	n above the	55)
		-	-	ball rises, then falls		JJ)
	•			nsider all quantities		
	_	•		-	-	
	-	tion. The velocity	of the ball when it	is 39 m above the	ground is	
	closest to	D) 45 /	0) 20 /	D) 20 /	E) 15 /	
	A) -23 m/s.	B) -45 m/s .	$^{\circ}$ C) -30 m/s.	D) -38 m/s .	E) -15 m/s .	
	-00 4 4		0.070.1			
	56) On the earth, wh		_	• •		56)
		•		ler the same circum		
				ws the stone with t		
	•		sistance. The acce	eleration due to grav	vity on planet X	
	(in terms of g) is		-	-	-> 44	
	A) $g/2$.	B) $g\sqrt{2}$.	C) 2g.	D) $g/\sqrt{2}$.	E) $g/4$.	
	57) Two identical st	• •			•	57)
		•		com height $2h$. If sto	one A takes	
		he ground, stone B		<u></u>	. 5	
	A) 4 <i>t</i> .	B) 2 <i>t</i> .	C) $t/2$.	D) $t\sqrt{2}$.	E) $t/\sqrt{2}$.	
SHOR	RT ANSWER. Write the	ne word or phrase th	at best completes e	ach statement or ans	wers the question.	
	58) A rock is thrown	n directly upward fr	om the edge of th	e roof of a building	that is 58)	
	•	• 1	U	vay down, and is ob		
			-	Neglect any effects		
	•	what speed was th	•	S ,		
		1				
	59) A rocket takes of	off vertically from the	ne launchpad with	no initial velocity b	out a 59)	
		•	•	after blastoff, the e		
	_			nen on is the pull of	_	
	± •	•		above the launchpa	•	
	, ,	•		e it crashes onto th		
	launchpad?					
	-	ter engine failure de	oes it take for the	rocket to crash onto	o the	
	launchnad?	- G			-	

Answer Key

Testname: UNTITLED2

```
1) B
 2) A
 3) B
 4) C
 5) D
 6) C
 7) C
 8) B
 9) (a) J (b) I
10) A
11) A
12) C
13) D
14) A
15) A
16) C
17) D
18) B
19) B
20) C
21) (a) 0.179 m/s (b) 0.893 m/s
22) (a) 5.0 m (b) 1.0 m
23) (a) A (b) C
24) (a) 0.56 m/s (b) 0.11 m/s
25) B
26) 100 m
27) B
28) (a) 1.0 m/s (b) 0.00 m/s
29) A
30) A
31) A
32) (a) 44 \text{ m/s}^2
   (b) 18 \text{ m/s}^2
33) A
34) A
35) A
36) B
37) C
38) E
39) C
40) E
41) E
42) A
43) A
44) D
45) a) 2.4 \text{ m/s}^2
                   b) 110 m
```

46) C

Answer Key

59) (a) 328 m

(b) 80.2 m/s

(c) 11.7 s

Testname: UNTITLED2

```
47) E
48) B
49) C
50) (a) 3.06 s (b) 45.9 m (c) 0.995 s and 5.13
        (d) One value is for the ball traveling upward; one value is for the ball traveling downward.
51) C
52) A
53) A
54) A
55) D
56) A
57) D
58) 3.05 m/s
```