
TEST BANK

TRUE/FALSE

1. A data model is usually graphical.

ANS: T PTS: 1 REF: 33

2. The terms data model and database model are often used interchangeably.

ANS: T PTS: 1 REF: 33

3. An implementation-ready data model should contain a description of the data structure that will store the end-user data.

ANS: T PTS: 1 REF: 33

4. Within the database environment, a data model represents data structures with the purpose of supporting a specific problem domain.

ANS: T PTS: 1 REF: 33

5. Data modeling starts with a very complex representation, and as knowledge of the problem is gained, the model is simplified.

ANS: F PTS: 1 REF: 33

6. A manager and a programmer usually have the same view of the same data.

ANS: F PTS: 1 REF: 34

7. Database designers determine the data and information that yield the required understanding of the entire business.

ANS: F PTS: 1 REF: 35

8. Business rules apply to businesses and government groups, but not to other types of organizations such as religious groups or research laboratories.

ANS: F PTS: 1 REF: 35

9. Business rules must be rendered in writing.

ANS: T PTS: 1 REF: 35

10. In an SQL-based relational database, each table is dependent on another.

ANS: F PTS: 1 REF: 41

11. In an SQL-based relational database, rows in different tables are related based on common values in common attributes.

	ANS: T	PTS:	1	REF:	41	
12.	End-user interfaces require the end user to manually generate SQL code.					
	ANS: F	PTS:	1	REF:	41	
13.	Each row in the relation	ional ta	ble is known as	an ent	ity instance or entity occurrence in the ER model.	
	ANS: T	PTS:	1	REF:	42	
14.	In Chen notation, ent	ities an	d relationships	must b	e oriented horizontally.	
	ANS: F	PTS:	1	REF:	42-43	
15.	M:N relationships are	e not ap	propriate in a r	elationa	al model.	
	ANS: T	PTS:	1	REF:	43	
16.	Today, most relationa	al datab	base products ca	an be cl	assified as object/relational.	
	ANS: T	PTS:	1	REF:	45	
17.	The network model has structural level dependence.					
	ANS: T	PTS:	1	REF:	50	
18.	The entity relationshi	ip mode	el is limited to c	concept	ual modeling, with no implementation component.	
	ANS: T	PTS:	1	REF:	50	
19.	The hierarchical mod	lel is so	ftware-indepen	dent.		
	ANS: F	PTS:	1	REF:	53	
20.	The relational model	is hard	ware-dependen	t and so	oftware-independent.	
	ANS: F	PTS:	1	REF:	53	
MUL	MULTIPLE CHOICE					
1.	· /	nction is	s to help you ur		nd the complexities of the real-world environment.	
	a. constraintb. entity				model database	
	ANS: C	PTS:	1	REF:	33	
2.	A(n) represents a. attribute	a partio	cular type of ob	с.	the real world. relationship constraint	
	b. entity ANS: B	PTS:	1	u. REF:		
3.	A(n) is anything			to be c	ollected and stored.	
	a. attribute			c.	relationship	

	b. entity			d.	constraint
	ANS: B	PTS:	1	REF:	34
4.	A(n) is the equ	ivalent	of a f	ïeld in a file syste	m.
	a. attribute b. entity			c.	relationship constraint
	ANS: A	PTS:	1	REF:	34
5.	A(n) is bidirect a. attribute	ional.			relationship constraint
	b. entity ANS: C	DTC.	1		
					55
6.	A(n) is a restrict a. attribute b. entity	ction pla	aced o	с.	relationship constraint
	ANS: D	PTS:	1	REF:	35
7.	are important b a. Attributes b. Entities	ecause	they	с.	a integrity. Relationships Constraints
	ANS: D	PTS:	1	REF:	35
8.	are normally ex a. Attributes b. Entities	pressec	l in th	с.	Relationships Constraints
	ANS: D	PTS:	1	REF:	35
9.	Students and classes a. one-to-one b. one-to-many	have a			many-to-one many-to-many
	ANS: D	PTS:	1	REF:	35
10.	 Business rules are derived from a. a detailed description of an organization's operations b. standards and practices developed over the years c. managers' recommendations d. governmental oversight organization standards 				
	ANS: A	PTS:	1	REF:	35
11.	b. They allow the dc. They can serve ad. They provide a f	lesigner lesigner ls a com ramewo	to se to de muni ork fo	t company policie evelop business prication tool betwe or the company's s	en the users and designers. self actualization.
	ANS: C	PTS:	1	REF:	36

12. A noun in a business rule translates to a(n) _____ in the data model.

	a. entity b. attribute				relationship constraint
	ANS: A	PTS:	1	REF:	36
13.	A verb associating to a. entity b. attribute	wo nour	as in a business	c.	nslates to a(n) in the data model. relationship constraint
	ANS: C	PTS:	1	REF:	36
14.	The hierarchical data a. 1960s b. 1970s	a model	was developed	c.	 1980s 1990s
	ANS: A	PTS:	1	REF:	38
15.	The object-oriented a. 1960s b. 1970s	data mo	del was develo	c.	he 1980s 1990s
	ANS: C	PTS:	1	REF:	38
16.	VMS/VSAM is an e a. hierarchical moo b. file system data	lel	of a(n)		relational data model XML data model
	ANS: B	PTS:	1	REF:	38
17.	Oracle 11g is an exa a. hierarchical moo b. file system data	lel model			relational data model XML/Hybrid data model
	ANS: D	PTS:	1	REF:	38
18.	MySQL is an examp a. hierarchical moo b. file system data ANS: C	lel		c. d. REF:	XML data model
10					
19.	a. hierarchical b. network	he basic	logical structu	-	presented as an upside-down tree. relational entity relationship
	ANS: A	PTS:	1	REF:	38
20.	In the model, e a. hierarchical b. network ANS: A	each paro PTS:		с.	ldren, but each child has only one parent. relational entity relationship 38
21.	The relational data m a. 1960s b. 1970s	nodel w	as developed ir	n the c. d.	 1980s 1990s

	ANS: B	PTS: 1	REF:	38
22.	where each record ca a. hierarchical	ne user perceives the d n have more than one	parent. c.	as a collection of records in 1:M relationships, object-oriented
	b. network			entity relationship
	ANS: B	PTS: 1	REF:	38
23.	a. extensible marku		c.	ne schema components. unified modeling language (UML) query language
	ANS: B	PTS: 1	REF:	39
24.	The model was than describing them	-	esigners	to use a graphical tool to examine structures rather
	a. hierarchical			object-oriented
	b. network			entity relationship
	ANS: D	PTS: 1	REF:	41
25.		the term connectivity		l the relationship types.
	a. relationalb. network			object-oriented entity relationship
	ANS: D	PTS: 1	REF:	• •
26.	The data model	is said to be a semant	ic data 1	model.
	a. relational		c.	object-oriented
	b. network			entity relationship
	ANS: C	PTS: 1	REF:	44
27.		uses the concept of in		
	a. relationalb. network			object-oriented entity relationship
	ANS: C	PTS: 1	REF:	
28.	One of the limitation	s of the model is	that the	ere is a lack of standards.
	a. hierarchical		c.	relational
	b. network		d.	entity relationship
	ANS: A	PTS: 1	REF:	51
29.	The model is th	e end users' view of th	ne data	environment.
	a. abstractb. external			conceptual internal
	ANS: B	PTS: 1	REF:	
30.	A(n) model rep a. external	resents a global view of		atabase as viewed by the entire organization. internal
	b. conceptual		d.	physical
	ANS: B	PTS: 1	REF:	54

COMPLETION

1. A(n) ______ is a relatively simple representation of more complex real-world data structures.

ANS: data model

PTS: 1 REF: 33

- 2. A(n) ______ is a brief, precise, and unambiguous description of a policy, procedure, or principle within a specific organization.
 - ANS: business rule

PTS: 1 REF: 35

- 3. A(n) ______ in a hierarchical model is the equivalent of a record in a file system.
 - ANS: segment

PTS: 1 REF: 38

4. The ______ is the conceptual organization of the entire database as viewed by the database administrator.

ANS: schema

PTS: 1 REF: 39

5. The ______ defines the portion of the database "seen" by the application programs that produce information from the data.

ANS: subschema

PTS: 1 REF: 39

6. Each row in a relation is called a(n) ______.

ANS: tuple

PTS: 1 REF: 39

7. Each column in a relation represents a(n) ______.

ANS: attribute

PTS: 1 REF: 39

8. A(n) ______ is a representation of the relational database's entities, the attributes within those entities and the relationships between those entities.

ANS: relational diagram

PTS: 1 REF: 40

9.	In, relationships are represented by a diamond connected to the related entities through a relationship line.				
	ANS: Chen notation				
	PTS: 1 REF: 42				
10.	In, a three-pronged symbol represents the "many" side of the relationship.				
	ANS: Crow's Foot notation				
	PTS: 1 REF: 42				
11.	A(n) is a collection of similar objects with a shared structure and behavior.				
	ANS: class				
	PTS: 1 REF: 44				
12.	In object-oriented terms, a(n) defines an object's behavior.				
	ANS: method				
	PTS: 1 REF: 44				
13.	is a language based on OO concepts that describes a set of diagrams and symbols used to graphically model a system.				
	ANS: UML (Unified Modeling Language) Unified Modeling Language (UML) Unified Modeling Language UML				
	PTS: 1 REF: 45				
14.	The term is used to refer to the task of creating a conceptual data model that could be implemented in any DBMS.				
	ANS: logical design				
	PTS: 1 REF: 55				
15.	When you can change the internal model without affecting the conceptual model, you have independence.				
	ANS: logical				
	PTS: 1 REF: 55				

ESSAY

1. What components should an implementation-ready data model contain?

ANS:

An implementation-ready data model should contain at least the following components: A description of the data structure that will store the end-user data. A set of enforceable rules to guarantee the integrity of the data. A data manipulation methodology to support the real-world data transformations.

PTS: 1 REF: 33

2. What do business rules require to be effective?

ANS:

To be effective, business rules must be easy to understand and widely disseminated to ensure that every person in the organization shares a common interpretation of the rules. Business rules describe, in simple language, the main and distinguishing characteristics of the data as viewed by the company.

PTS: 1 REF: 36

3. What are the sources of business rules, and what is the database designer's role with regard to business rules?

ANS:

The main sources of business rules are company managers, policy makers, department managers, and written documentation such as a company's procedures, standards, and operations manuals. A faster and more direct source of business rules is direct interviews with end users. Unfortunately, because perceptions differ, end users are sometimes a less reliable source when it comes to specifying business rules. For example, a maintenance department mechanic might believe that any mechanic can initiate a maintenance procedure, when actually only mechanics with inspection authorization can perform such a task. Such a distinction might seem trivial, but it can have major legal consequences. Although end users are crucial contributors to the development of business rules, it pays to verify end-user perceptions of what the job components are. While such a discovery may point to "management problems," that general diagnosis does not help the database designer. The database designer's job is to reconcile such differences and verify the results of the reconciliation to ensure that the business rules are appropriate and accurate.

PTS: 1 REF: 36

4. Describe the three parts involved in any SQL-based relational database application.

ANS:

From an end-user perspective, any SQL-based relational database application involves three parts: a user interface, a set of tables stored in the database, and the SQL "engine." Each of these parts is explained below.

The end-user interface. Basically, the interface allows the end user to interact with the data (by automatically generating SQL code). Each interface is a product of the software vendor's idea of meaningful interaction with the data. You can also design your own customized interface with the help of application generators that are now standard fare in the database software arena.

A collection of tables stored in the database. In a relational database, all data are perceived to be stored in tables. The tables simply "present" the data to the end user in a way that is easy to understand. Each table is independent. Rows in different tables are related by common values in common attributes. SQL engine. Largely hidden from the end user, the SQL engine executes all queries, or data requests. Keep in mind that the SQL engine is part of the DBMS software. The end user uses SQL to create table structures and to perform data access and table maintenance. The SQL engine processes all user requests—largely behind the scenes and without the end user's knowledge. Hence, SQL is said to be a declarative language that tells what must be done but not how.

PTS: 1 REF: 41

5. Describe a conceptual model and its advantages. What is the most widely used conceptual model?

ANS:

The conceptual model represents a global view of the entire database by the entire organization. That is, the conceptual model integrates all external views (entities, relationships, constraints, and processes) into a single global view of the data in the enterprise. Also known as a conceptual schema, it is the basis for the identification and high-level description of the main data objects (avoiding any database model-specific details).

The most widely used conceptual model is the ER model. Remember that the ER model is illustrated with the help of the ERD, which is effectively the basic database blueprint. The ERD is used to graphically represent the conceptual schema.

The conceptual model yields some important advantages. First, it provides a bird's-eye (macro level) view of the data environment that is relatively easy to understand.

Second, the conceptual model is independent of both software and hardware. Software independence means that the model does not depend on the DBMS software used to implement the model. Hardware independence means that the model does not depend on the hardware used in the implementation of the model. Therefore, changes in either the hardware or the DBMS software will have no effect on the database design at the conceptual level. Generally, the term logical design refers to the task of creating a conceptual data model that could be implemented in any DBMS.

PTS: 1 REF: 54-55