TEST BANK

CHAPTER 2
 TIME VALUE OF MONEY

True/False

Easy:
(2.2) Compounding

Answer: a EASY

1. One potential benefit from starting to invest early for retirement is that the investor can expect greater benefits from the compounding of interest.
a. True
b. False
(2.3) PV versus FV Answer: b EASY
2. If the discount (or interest) rate is positive, the present value of an expected series of payments will always exceed the future value of the same series.
a. True
b. False

(2.3) PV versus FV

Answer: a EASY
3. Disregarding risk, if money has time value, it is impossible for the present value of a given sum to exceed its future value.
a. True
b. False
(2.15) Effective annual rate Answer: b EASY
4. If a bank compounds savings accounts quarterly, the nominal rate will exceed the effective annual rate.
a. True
b. False
(2.17) Amortization Answer: a EASY
5. The payment made each period on an amortized loan is constant, and it consists of some interest and some principal. The closer we are to the end of the loan's life, the greater the percentage of the payment that will be a repayment of principal.
a. True
b. False

Medium:

(2.2) Compounding Answer: b MEDIUM
6. The greater the number of compounding periods within a year, then (1) the greater the future value of a lump sum investment at Time 0 and (2) the greater the present value of a given lump sum to be received at some future date.
a. True
b. False
(2.2) Comparative compounding

Answer: a MEDIUM
7. Suppose an investor plans to invest a given sum of money. She can earn an effective annual rate of 5% on Security A, while Security B will provide an effective annual rate of 12%. Within 11 years' time, the compounded value of Security B will be more than twice the compounded value of Security A. (Ignore risk, and assume that compounding occurs annually.)
a. True
b. False
(2.3) PV of a sum Answer: a MEDIUM
8. The present value of a future sum decreases as either the discount rate or the number of periods per year increases.
a. True
b. False
(2.9) PV of an annuity

Answer: a MEDIUM
9. All other factors held constant, the present value of a given annual annuity decreases as the number of discounting periods per year increases.
a. True
b. False
(2.15) Effective and nominal rates

Answer: a MEDIUM
10. As a result of compounding, the effective annual rate on a bank deposit (or a loan) is always equal to or greater than the nominal rate on the deposit (or loan).
a. True
b. False
(2.15) Periodic and nominal rates Answer: a MEDIUM
11. If we are given a periodic interest rate, say a monthly rate, we can find the nominal annual rate by multiplying the periodic rate by the number of periods per year.
a. True
b. False

(2.17) Amortization

Answer: b MEDIUM
12. When a loan is amortized, a relatively high percentage of the payment goes to reduce the outstanding principal in the early years, and the principal repayment's percentage declines in the loan's later years.
a. True
b. False
(2.17) Amortization Answer: b MEDIUM
13. Midway through the life of an amortized loan, the percentage of the payment that represents interest is equal to the percentage that represents principal repayment. This is true regardless of the original life of the loan.
a. True
b. False

Multiple Choice: Conceptual

Easy:

(2.1) Time lines
 Answer: a EASY

14. Which of the following statements is NOT CORRECT?
a. A time line is meaningful only if all cash flows occur annually.
b. Time lines are useful for visualizing complex problems prior to doing actual calculations.
c. Time lines can be constructed even in situations where some of the cash flows occur annually but others occur quarterly.
d. Time lines can be constructed for annuities where the payments occur at either the beginning or the end of periods.
e. The cash flows shown on a time line can be in the form of annuity payments, but they can also be uneven amounts.
(2.1) Time lines Answer: b EASY
15. Which of the following statements is CORRECT?
a. A time line is not meaningful unless all cash flows occur annually.
b. Time lines are useful for visualizing complex problems prior to doing actual calculations.
c. Time lines cannot be constructed to deal with situations where some of the cash flows occur annually but others occur quarterly.
d. Time lines can only be constructed for annuities where the payments occur at the ends of the periods, i.e., for ordinary annuities.
e. Time lines cannot be constructed where some of the payments constitute an annuity but others are unequal and thus are not part of the annuity.

(2.3) Effects of factors on PVs

Answer: b EASY
16. You are analyzing the value of a potential investment by calculating the sum of the present values of its expected cash flows. Which of the following would lower the calculated value of the investment?
a. The cash flows are in the form of a deferred annuity, and they total to $\$ 100,000$. You learn that the annuity lasts for only 5 rather than 10 years, hence that each payment is for $\$ 20,000$ rather than for $\$ 10,000$.
b. The discount rate increases.
c. The riskiness of the investment's cash flows decreases.
d. The total amount of cash flows remains the same, but more of the cash flows are received in the earlier years and less are received in the later years.
e. The discount rate decreases.

(2.6) Annuities
 Answer: d EASY

17. Which of the following statements is CORRECT?
a. The cash flows for an ordinary (or deferred) annuity all occur at the beginning of the periods.
b. If a series of unequal cash flows occurs at regular intervals, such as once a year, then the series is by definition an annuity.
c. The cash flows for an annuity due must all occur at the ends of the periods.
d. The cash flows for an annuity must all be equal, and they must occur at regular intervals, such as once a year or once a month.
e. If some cash flows occur at the beginning of the periods while others occur at the ends, then we have what the textbook defines as a variable annuity.

Medium:

(2.14) Solving for I with uneven cash flows Answer: c MEDIUM
18. Which of the following statements is CORRECT?
a. If you have a series of cash flows, all of which are positive, you can solve for I, where the solution value of I causes the $P V$ of the cash flows to equal the cash flow at Time 0 .
b. If you have a series of cash flows, and CF_{0} is negative but all of the other CFs are positive, you can solve for I, but only if the sum of the undiscounted cash flows exceeds the cost.
c. To solve for I, one must identify the value of I that causes the PV of the positive CFs to equal the absolute value of the PV of the negative CFs. This is, essentially, a trial-and-error procedure that is easy with a computer or financial calculator but quite difficult otherwise.
d. If you solve for I and get a negative number, then you must have made a mistake.
e. If $C F_{0}$ is positive and all the other CFs are negative, then you cannot solve for I.
19. Which of the following bank accounts has the highest effective annual return?
a. An account that pays 8% nominal interest with monthly compounding. b. An account that pays 8% nominal interest with annual compounding. c. An account that pays 7% nominal interest with daily (365-day) compounding.
d. An account that pays 7% nominal interest with monthly compounding.
e. An account that pays 8% nominal interest with daily (365-day) compounding.

(2.15) Quarterly compounding
 Answer: c MEDIUM

20. Your bank account pays a 6% nominal rate of interest. The interest is compounded quarterly. Which of the following statements is CORRECT?
a. The periodic rate of interest is 1.5% and the effective rate of interest is 3%.
b. The periodic rate of interest is 6% and the effective rate of interest is greater than 6\%.
c. The periodic rate of interest is 1.5% and the effective rate of interest is greater than 6\%.
d. The periodic rate of interest is 3% and the effective rate of interest is 6\%.
e. The periodic rate of interest is 6% and the effective rate of interest is also 6\%.

(2.17) Amortization

Answer: C MEDIUM
21. A $\$ 50,000$ loan is to be amortized over 7 years, with annual end-of-year payments. Which of these statements is CORRECT?
a. The annual payments would be larger if the interest rate were lower.
b. If the loan were amortized over 10 years rather than 7 years, and if the interest rate were the same in either case, the first payment would include more dollars of interest under the 7-year amortization plan.
c. The proportion of each payment that represents interest as opposed to repayment of principal would be lower if the interest rate were lower.
d. The last payment would have a higher proportion of interest than the first payment.
e. The proportion of interest versus principal repayment would be the same for each of the 7 payments.

(2.17) Amortization

Answer: a MEDIUM
22. Which of the following statements regarding a 15-year (180-month) $\$ 125,000$ fixed-rate mortgage is NOT CORRECT? (Ignore all taxes and transactions costs.)
a. The remaining balance after three years will be $\$ 125,000$ less the total amount of interest paid during the first 36 months.
b. Because it is a fixed-rate mortgage, the monthly loan payments (that include both interest and principal payments) are constant.
c. Interest payments on the mortgage will steadily decline over time.
d. The proportion of the monthly payment that goes towards repayment of principal will be higher 10 years from now than it will be the first year.
e. The outstanding balance gets paid off at a faster rate in the later years of a loan's life.

(2.17) Amortization Answer: b MEDIUM

23. Which of the following statements regarding a 30 -year monthly payment amortized mortgage with a nominal interest rate of 10% is CORRECT?
a. The monthly payments will decline over time.
b. A smaller proportion of the last monthly payment will be interest, and a larger proportion will be principal, than for the first monthly payment.
c. The total dollar amount of principal being paid off each month gets smaller as the loan approaches maturity.
d. The amount representing interest in the first payment would be higher if the nominal interest rate were 7% rather than 10%.
e. Exactly 10% of the first monthly payment represents interest.
(Comp: 2.2,2.7,2.8) Time value concepts
Answer: a MEDIUM
24. Which of the following investments will have the highest future value at the end of 10 years? Assume that the effective annual rate for all investments is the same.
a. Investment A pays $\$ 250$ at the beginning of every year for the next 10 years (a total of 10 payments).
b. Investment B pays $\$ 125$ at the end of every 6-month period for the next 10 years (a total of 20 payments).
c. Investment C pays $\$ 125$ at the beginning of every 6 -month period for the next 10 years (a total of 20 payments).
d. Investment D pays $\$ 2,500$ at the end of 10 years (a total of one payment).
e. Investment E pays $\$ 250$ at the end of every year for the next 10 years (a total of 10 payments).

(Comp: 2.3,2.9,2.15) Various concepts

Answer: d MEDIUM
25. A Treasury bond promises to pay a lump sum of $\$ 1,000$ exactly 3 years from today. The nominal interest rate is 6\%, semiannual compounding. Which of the following statements is CORRECT?
a. The periodic interest rate is greater than 3%.
b. The periodic rate is less than 3%.
c. The present value would be greater if the lump sum were discounted back for more periods.
d. The present value of the $\$ 1,000$ would be smaller if interest were compounded monthly rather than semiannually.
e. The PV of the $\$ 1,000$ lump sum has a higher present value than the PV of a 3-year, $\$ 333.33$ ordinary annuity.
(Comp: 2.2,2.9,2.15,2.17) Various concepts Answer: c MEDIUM
26. Which of the following statements is CORRECT, assuming positive interest rates and other things held constant?
a. A 5-year, $\$ 250$ annuity due will have a lower present value than a similar ordinary annuity.
b. A 30 -year, $\$ 150,000$ amortized mortgage will have larger monthly payments than an otherwise similar 20 -year mortgage.
c. A typical investment's nominal interest rate will always be equal to or less than its effective annual rate.
d. If an investment pays 10% interest, compounded annually, its effective annual rate will be less than 10%.
e. Banks A and B offer the same nominal annual rate of interest, but A pays interest quarterly and B pays semiannually. Deposits in Bank B will have the higher future value if you leave the funds on deposit.
(Comp: 2.9,2.15,2.17) Various concepts
Answer: e MEDIUM
27. Which of the following statements is NOT CORRECT?
a. The present value of a 3-year, $\$ 150$ annuity due will exceed the present value of a 3-year, $\$ 150$ ordinary annuity.
b. If a loan has a nominal annual rate of 8%, then the effective rate can never be less than 8%.
c. If a loan or investment has annual payments, then the effective, periodic, and nominal rates of interest will all be the same.
d. The proportion of the payment that goes toward interest on a fully amortized loan declines over time.
e. An investment that has a nominal rate of 6% with semiannual payments will have an effective rate that is less than 6%.
(Comp: 2.7,2.8,2.9) Annuities
Answer: d MEDIUM
28. You are considering two equally risky annuities, each of which pays $\$ 5,000$ per year for 10 years. Investment ORD is an ordinary (or deferred) annuity, while Investment DUE is an annuity due. Which of the following statements is CORRECT?
a. The present value of ORD must exceed the present value of DUE, but the future value of ORD may be less than the future value of DUE.
b. The present value of DUE exceeds the present value of ORD, while the future value of DUE is less than the future value of ORD.
c. The present value of ORD exceeds the present value of DUE, and the future value of ORD also exceeds the future value of DUE.
d. The present value of DUE exceeds the present value of ORD, and the future value of DUE also exceeds the future value of ORD.
e. If the going rate of interest decreases, say from 10% to 0%, the difference between the present value of ORD and the present value of DUE would remain constant.

Hard:

(2.15) Effective annual rates Answer: e HARD
29. You plan to invest some money in a bank account. Which of the following banks provides you with the highest effective rate of interest?
a. Bank 1; 6.1\% with annual compounding.
b. Bank 2; 6.0\% with monthly compounding.
c. Bank 3; 6.0\% with annual compounding.
d. Bank 4; 6.0\% with quarterly compounding.
e. Bank 5; 6.0\% with daily (365-day) compounding.

Multiple Choice: Problems

Easy:

(2.2) FV of a lump sum Answer: d EASY
30. What would the future value of $\$ 125$ be after 8 years at 8.5% compound interest?
a. $\$ 205.83$
b. $\$ 216.67$
c. $\$ 228.07$
d. $\$ 240.08$
e. $\$ 252.08$
(2.2) FV of a lump sum

Answer: a
EASY
31. Suppose you have $\$ 1,500$ and plan to purchase a 5 -year certificate of deposit (CD) that pays 3.5\% interest, compounded annually. How much will you have when the CD matures?
a. $\$ 1,781.53$
b. $\$ 1,870.61$
c. $\$ 1,964.14$
d. $\$ 2,062.34$
e. $\$ 2,165.46$
(2.2) FV of a lump sum Answer: c EASY
32. Last year Toto Corporation's sales were $\$ 225$ million. If sales grow at 6\% per year, how large (in millions) will they be 5 years later?
a. $\$ 271.74$
b. $\$ 286.05$
c. $\$ 301.10$
d. $\$ 316.16$
e. $\$ 331.96$
(2.2) FV of a lump sum Answer: b EASY
33. How much would $\$ 1$, growing at 3.5% per year, be worth after 75 years?
a. $\$ 12.54$
b. $\$ 13.20$
c. $\$ 13.86$
d. $\$ 14.55$
e. $\$ 15.28$
(2.2) FV of a lump sum Answer: b EASY
34. You deposit $\$ 1,000$ today in a savings account that pays 3.5% interest, compounded annually. How much will your account be worth at the end of 25 years?
a. $\$ 2,245.08$
b. $\$ 2,363.24$
c. $\$ 2,481.41$
d. $\$ 2,605.48$
e. $\$ 2,735.75$
(2.3) PV of a lump sum

Answer: a EASY
35. Suppose a U.S. government bond promises to pay $\$ 1,000$ five years from now. If the going interest rate on 5-year government bonds is 5.5\%, how much is the bond worth today?
a. $\$ 765.13$
b. $\$ 803.39$
c. $\$ 843.56$
d. $\$ 885.74$
e. $\$ 930.03$
(2.3) PV of a lump sum Answer: e EASY
36. How much would $\$ 5,000$ due in 50 years be worth today if the discount rate were 7.5\%?
a. $\$ 109.51$
b. $\$ 115.27$
c. $\$ 121.34$
d. $\$ 127.72$
e. $\$ 134.45$
(2.3) PV of a lump sum Answer: b EASY
37. Suppose a U.S. treasury bond will pay $\$ 2,500$ five years from now. If the going interest rate on 5-year treasury bonds is 4.25% how much is the bond worth today?
a. $\$ 1,928.78$
b. $\$ 2,030.30$
c. $\$ 2,131.81$
d. $\$ 2,238.40$
e. $\$ 2,350.32$
(2.4) Interest rate on a lump sum Answer: d EASY
38. Suppose the U.S. Treasury offers to sell you a bond for $\$ 747.25$. No payments will be made until the bond matures 5 years from now, at which time it will be redeemed for $\$ 1,000$. What interest rate would you earn if you bought this bond at the offer price?
a. 4.37%
b. 4.86%
c. 5.40%
d. 6.00%
e. 6.60%
(2.4) Growth rate

Answer: b EASY
39. Ten years ago, Levin Inc. earned $\$ 0.50$ per share. Its earnings this year were $\$ 2.20$. What was the growth rate in Levin's earnings per share (EPS) over the 10-year period?
a. 15.17%
b. 15.97%
c. 16.77%
d. 17.61%
e. 18.49%

```
(2.5) Number of periods
Answer: e EASY
```

40. How many years would it take $\$ 50$ to triple if it were invested in a bank that pays 3.8% per year?
a. 23.99
b. 25.26
c. 26.58
d. 27.98
e. 29.46
(2.5) Number of periods Answer: d EASY
41. Last year Mason Corp's earnings per share were $\$ 2.50$, and its growth rate during the prior 5 years was 9.0% per year. If that growth rate were maintained, how many years would it take for Mason's EPS to double?
a. 5.86
b. 6.52
c. $\quad 7.24$
d. 8.04
e. 8.85
(2.5) Number of periods Answer: e EASY
42. You plan to invest in securities that pay 9.0%, compounded annually. If you invest $\$ 5,000$ today, how many years will it take for your investment account to grow to \$9,140.20?
a. 4.59
b. 5.10
c. $\quad 5.67$
d. 6.30
e. 7.00
(2.7) FV of an ordinary annuity

Answer: c EASY
43. You want to buy a new sports car 3 years from now, and you plan to save $\$ 4,200$ per year, beginning one year from today. You will deposit your savings in an account that pays 5.2% interest. How much will you have just after you make the 3 rd deposit, 3 years from now?

```
a. $11,973.07
b. $12,603.23
c. $13,266.56
d. $13,929.88
e. $14,626.38
```

44. You want to go to Europe 5 years from now, and you can save $\$ 3,100$ per year, beginning one year from today. You plan to deposit the funds in a mutual fund which you expect to return 8.5% per year. Under these conditions, how much will you have just after you make the 5 th deposit, 5 years from now?
```
a. $18,368.66
b. $19,287.09
c. $20,251.44
d. $21,264.02
e. $22,327.22
```

(2.8) FV of an annuity due

Answer: a EASY
45. You want to buy a new sports car 3 years from now, and you plan to save $\$ 4,200$ per year, beginning immediately. You will make 3 deposits in an account that pays 5.2\% interest. Under these assumptions, how much will you have 3 years from today?
a. $\$ 13,956.42$
b. $\$ 14,654.24$
c. $\$ 15,386.95$
d. $\$ 16,156.30$
e. $\$ 16,964.11$

(2.8) FV of an annuity due Answer: c

EASY
46. You want to go to Europe 5 years from now, and you can save $\$ 3,100$ per year, beginning immediately. You plan to deposit the funds in a mutual fund which you expect to return 8.5\% per year. Under these conditions, how much will you have just after you make the 5th deposit, 5 years from now?
a. $\$ 17,986.82$
b. $\$ 18,933.49$
c. $\$ 19,929.99$
d. $\$ 20,926.49$
e. $\$ 21,972.82$

(2.9) PV of an ordinary annuity

Answer: e EASY
47. What is the PV of an ordinary annuity with 10 payments of $\$ 2,700$ if the appropriate interest rate is 6.5% ?

$$
\begin{array}{ll}
\text { a. } & \$ 15,809.44 \\
\text { b. } & \$ 16,641.51 \\
\text { c. } & \$ 17,517.38 \\
\text { d. } & \$ 18,439.35 \\
\text { e. } & \$ 19,409.84
\end{array}
$$

(2.9) PV of an ordinary annuity Answer: e EASY
48. You have a chance to buy an annuity that pays $\$ 1,200$ at the end of each year for 3 years. You could earn 5.5% on your money in other investments with equal risk. What is the most you should pay for the annuity?
a. $\$ 2,636.98$
b. $\$ 2,775.77$
c. $\$ 2,921.86$
d. $\$ 3,075.64$
e. $\$ 3,237.52$
(2.9) PV of an ordinary annuity Answer: b EASY
49. Your aunt is about to retire, and she wants to buy an annuity that will supplement her income by $\$ 65,000$ per year for 25 years, beginning a year from today. The going rate on such annuities is 6.25%. How much would it cost her to buy such an annuity today?
a. $\$ 770,963.15$
b. $\$ 811,540.16$
c. $\$ 852,117.17$
d. $\$ 894,723.02$
e. $\$ 939,459.18$
(2.9) PV of an annuity due

Answer: a EASY
50. What is the PV of an annuity due with 10 payments of $\$ 2,700$ at an interest rate of 6.5% ?
a. $\$ 20,671.48$
b. $\$ 21,705.06$
c. $\$ 22,790.31$
d. $\$ 23,929.82$
e. \$25,126.31
(2.9) PV of an annuity due Answer: c EASY
51. You have a chance to buy an annuity that pays $\$ 550$ at the beginning of each year for 3 years. You could earn 5.5% on your money in other investments with equal risk. What is the most you should pay for the annuity?
a. $\$ 1,412.84$
b. $\$ 1,487.20$
c. $\$ 1,565.48$
d. $\$ 1,643.75$
e. $\$ 1,725.94$
52. Your aunt is about to retire, and she wants to buy an annuity that will provide her with $\$ 65,000$ of income a year for 25 years, with the first payment coming immediately. The going rate on such annuities is 6.25\%. How much would it cost her to buy the annuity today?
a. $\$ 739,281.38$
b. $\$ 778,190.93$
c. $\$ 819,148.35$
d. $\$ 862,261.42$
e. $\$ 905,374.49$
(2.9) PV of an annuity due

Answer: b EASY
53. You own an oil well that will pay you $\$ 30,000$ per year for 10 years, with the first payment being made today. If you think a fair return on the well is 8.5%, how much should you ask for if you decide to sell it?
a. $\$ 202,893$
b. $\$ 213,572$
c. $\$ 224,250$
d. $\$ 235,463$
e. $\$ 247,236$
(2.9) PV of an ordinary annuity plus an ending payment Answer: e EASY
54. What's the present value of a 4-year ordinary annuity of $\$ 2,250$ per year plus an additional $\$ 3,000$ at the end of Year 4 if the interest rate is 5% ?
a. $\$ 8,508.74$
b. $\$ 8,956.56$
c. $\$ 9,427.96$
d. $\$ 9,924.17$
e. \$10,446.50
(2.10) Payments on an ordinary annuity Answer: a EASY
55. Suppose you inherited $\$ 275,000$ and invested it at 8.25% per year. How much could you withdraw at the end of each of the next 20 years?
a. $\$ 28,532.45$
b. $\$ 29,959.08$
c. $\$ 31,457.03$
d. $\$ 33,029.88$
e. $\$ 34,681.37$
(2.10) Payments on an ordinary annuity

Answer: d
EASY
56. Your uncle has $\$ 375,000$ and wants to retire. He expects to live for another 25 years, and to be able to earn 7.5% on his invested funds. How much could he withdraw at the end of each of the next 25 years and end up with zero in the account?
a. $\$ 28,843.38$
b. $\$ 30,361.46$
c. $\$ 31,959.43$
d. $\$ 33,641.50$
e. $\$ 35,323.58$
(2.10) Payments on an annuity due

Answer: C EASY
57. Your uncle has $\$ 375,000$ and wants to retire. He expects to live for another 25 years, and he also expects to earn 7.5% on his invested funds. How much could he withdraw at the beginning of each of the next 25 years and end up with zero in the account?
a. $\$ 28,243.21$
b. $\$ 29,729.70$
c. $\$ 31,294.42$
d. $\$ 32,859.14$
e. $\$ 34,502.10$
(2.10) Payments on an annuity due

Answer: d EASY
58. Suppose you inherited $\$ 275,000$ and invested it at 8.25% per year. How much could you withdraw at the beginning of each of the next 20 years?
a. $\$ 22,598.63$
b. $\$ 23,788.03$
c. $\$ 25,040.03$
d. $\$ 26,357.92$
e. $\$ 27,675.82$
(2.10) Years to deplete an ordinary annuity Answer: a EASY
59. Your uncle has $\$ 375,000$ invested at 7.5% and he now wants to retire. He wants to withdraw $\$ 35,000$ at the end of each year, beginning at the end of this year. How many years will it take to exhaust his funds, i.e., run the account down to zero?
a. 22.50
b. 23.63
c. 24.81
d. 26.05
e. 27.35

(2.10) Years to deplete an annuity due

Answer: e EASY
60. Your uncle has $\$ 500,000$ invested at 7.5% and he now wants to retire. He wants to withdraw $\$ 40,000$ at the beginning of each year, beginning immediately. How many years will it take to exhaust his funds, i.e., run the account down to zero?
a. 23.16
b. 24.38
c. 25.66
d. 27.01
e. 28.44
(2.10) Interest rate implicit in an annuity

Answer: b EASY
61. You just won the state lottery, and you have a choice between receiving $\$ 3,500,000$ today or a $10-y e a r$ annuity of $\$ 500,000$, with the first payment coming one year from today. What rate of return is built into the annuity?
a. 6.72%
b. 7.07%
c. 7.43%
d. 7.80%
e. 8.19\%
(2.10) Interest rate implicit in an annuity

Answer: C EASY
62. Your girlfriend just won the Florida lottery. She has the choice of $\$ 15,000,000$ today or a 20 -year annuity of $\$ 1,050,000$, with the first payment coming one year from today. What rate of return is built into the annuity?
a. 2.79\%
b. 3.10%
c. 3.44%
d. 3.79%
e. 4.17%

(2.10) Interest rate implicit in an annuity due Answer: e EASY

63. Assume that you own an annuity that will pay you $\$ 15,000$ per year for 12 years, with the first payment being made today. Your uncle offers to give you $\$ 120,000$ for the annuity. If you sell it, what rate of return would your uncle earn on his investment?
a. 6.85\%
b. 7.21\%
c. 7.59%
d. 7.99%
e. 8.41%
(2.11) PV of a perpetuity Answer: b EASY
64. What's the present value of a perpetuity that pays $\$ 250$ per year if the appropriate interest rate is 5\%?
a. $\$ 4,750.00$
b. $\$ 5,000.00$
c. $\$ 5,250.00$
d. $\$ 5,512.50$
e. $\$ 5,788.13$
(2.11) Rate of return on a perpetuity Answer: d EASY
65. What's the rate of return you would earn if you paid $\$ 950$ for a perpetuity that pays $\$ 85$ per year?
a. 6.52%
b. 7.25%
c. 8.05%
d. 8.95%
e. 9.84%
(2.12) PV of an uneven cash flow stream

Answer: e EASY
66. At a rate of 6.25%, what is the present value of the following cash flow stream? $\$ 0$ at Time 0; $\$ 75$ at the end of Year 1; $\$ 225$ at the end of Year 2; $\$ 0$ at the end of Year 3; and $\$ 300$ at the end of Year 4?
a. $\$ 411.57$
b. $\$ 433.23$
c. $\$ 456.03$
d. $\$ 480.03$
e. $\$ 505.30$
(2.12) PV of an uneven cash flow stream Answer: C EASY
67. What is the present value of the following cash flow stream at an interest rate of 12.0% per year? $\$ 0$ at Time $0 ; \$ 1,500$ at the end of Year 1; $\$ 3,000$ at the end of Year 2; $\$ 4,500$ at the end of Year 3; and $\$ 6,000$ at the end of Year 4.
a. \$9,699.16
b. $\$ 10,209.64$
c. $\$ 10,746.99$
d. $\$ 11,284.34$
e. $\$ 11,848.55$

Easy/Medium:

```
    (2.12) PV of an uneven cash flow stream Answer: d EASY/MEDIUM
68. An investment promises the following cash flow stream: $750 at Time 0;
    $2,450 at the end of Year 1 (or at t = 1); $3,175 at the end of Year 2;
    and $4,400 at the end of Year 3. At a discount rate of 8.0%, what is
    the present value of the cash flow stream?
    a. $7,916.51
    b. $8,333.17
    c. $8,771.76
    d. $9,233.43
    e. $9,695.10
```

(2.12) PV of an uneven cash flow stream Answer: a EASY/MEDIUM
69. What is the present value of the following cash flow stream if the
interest rate is 6.0% per year? 0 at Time $0 ; \$ 1,000$ at the end of Year
$1 ;$ and $\$ 2,000$ at the end of Years 2, 3, and 4.
a. $\$ 5,986.81$
b. $\$ 6,286.16$
c. $\$ 6,600.46$
d. $\$ 6,930.49$
e. $\$ 7,277.01$
(2.15) FV of a lump sum, semiannual compounding Answer: c EASY/MEDIUM
70. What's the future value of $\$ 1,500$ after 5 years if the appropriate interest rate is 6\%, compounded semiannually?
a. $\$ 1,819.33$
b. $\$ 1,915.08$
c. $\$ 2,015.87$
d. $\$ 2,116.67$
e. $\$ 2,222.50$
(2.15) PV of a lump sum, semiannual compounding Answer: d EASY/MEDIUM
71. What's the present value of $\$ 1,500$ discounted back 5 years if the appropriate interest rate is 6\%, compounded semiannually?

```
a. $956.95
```

b. $\$ 1,007.32$
c. $\$ 1,060.33$
d. $\$ 1,116.14$
e. $\$ 1,171.95$

Medium:

(2.10) Years to deplete an ordinary annuity Answer: b MEDIUM
72. Your uncle has $\$ 300,000$ invested at 7.5% and he now wants to retire. He wants to withdraw $\$ 35,000$ at the end of each year, beginning at the end of this year. He also wants to have $\$ 25,000$ left to give you when he ceases to withdraw funds from the account. For how many years can he make the $\$ 35,000$ withdrawals and still have $\$ 25,000$ left in the end?
a. 14.21
b. 14.96
c. 15.71
d. 16.49
e. 17.32
(2.10) Years to deplete an annuity due

Answer: c MEDIUM
73. Your uncle has $\$ 300,000$ invested at 7.5%, and he now wants to retire. He wants to withdraw $\$ 35,000$ at the beginning of each year, beginning immediately. He also wants to have $\$ 25,000$ left to give you when he ceases to withdraw funds from the account. For how many years can he make the $\$ 35,000$ withdrawals and still have $\$ 25,000$ left in the end?

$$
\begin{array}{ll}
\text { a. } & 11.98 \\
\text { b. } & 12.61 \\
\text { c. } & 13.27 \\
\text { d. } & 13.94 \\
\text { e. } & 14.63
\end{array}
$$

(2.10) Interest rate implicit in an annuity due Answer: a MEDIUM

74. You agree to make 24 deposits of $\$ 500$ at the beginning of each month into a bank account. At the end of the $24^{\text {th }}$ month, you will have $\$ 13,000$ in your account. If the bank compounds interest monthly, what nominal annual interest rate will you be earning?
a. 7.62%
b. 8.00%
c. 8.40%
d. 8.82%
e. 9.26%
(2.11) Payments on a perpetuity

Answer: b MEDIUM
75. What annual payment would you have to receive in order to earn a 7.5% rate of return on a perpetuity that has a cost of $\$ 1,250$?
a. $\$ 89.06$
b. $\$ 93.75$
c. $\$ 98.44$
d. $\$ 103.36$
e. $\$ 108.53$
(2.13) FV of an uneven cash flow stream Answer: e MEDIUM
76. At a rate of 6.5% what is the future value of the following cash flow stream? $\$ 0$ at Time $0 ; \$ 75$ at the end of Year $1 ; \$ 225$ at the end of Year 2; \$0 at the end of Year 3; and $\$ 300$ at the end of Year 4?
a. $\$ 526.01$
b. $\$ 553.69$
c. $\$ 582.83$
d. $\$ 613.51$
e. $\$ 645.80$
(2.14) Interest rate built into uneven CF stream Answer: c MEDIUM
77. An investment costs $\$ 1,000(C F$ at $t=0)$ and is expected to produce cash flows of $\$ 75$ at the end of each of the next 5 years, then an additional lump sum payment of $\$ 1,000$ at the end of the 5 th year. What is the expected rate of return on this investment?
a. 6.77\%
b. 7.13%
c. 7.50%
d. 7.88%
e. 8.27%
(2.14) Interest rate built into uneven CF stream Answer: e MEDIUM
78. An investment costs $\$ 725$ and is expected to produce cash flows of $\$ 75$ at the end of Year 1, $\$ 100$ at the end of Year 2, $\$ 85$ at the end of Year 3, and $\$ 625$ at the end of Year 4. What rate of return would you earn if you bought this investment?
a. 4.93%
b. 5.19\%
c. 5.46%
d. 5.75\%
e. 6.05\%
(2.15) FV of a lump sum, monthly compounding Answer: b MEDIUM
79. What's the future value of $\$ 1,500$ after 5 years if the appropriate interest rate is 6\%, compounded monthly?
a. $\$ 1,922.11$
b. $\$ 2,023.28$
c. $\$ 2,124.44$
d. $\$ 2,230.66$
e. $\$ 2,342.19$
(2.15) PV of a lump sum, monthly compounding Answer: d MEDIUM
80. What's the present value of $\$ 1,525$ discounted back 5 years if the appropriate interest rate is 6\%, compounded monthly?
a. $\$ 969.34$
b. $\$ 1,020.36$
c. $\$ 1,074.06$
d. $\$ 1,130.59$
e. \$1,187.12
(2.15) APR vs. EAR Answer: b MEDIUM
81. Credit card issuers must by law print the Annual Percentage Rate (APR) on their monthly statements. If the APR is stated to be 18.00% with interest paid monthly, what is the card's EFF\%?
a. 18.58%
b. 19.56%
c. 20.54%
d. 21.57%
e. 22.65%
(2.15) Comparing the effective cost of two bank loans Answer: d MEDIUM
82. East Coast Bank offers to lend you $\$ 25,000$ at a nominal rate of 7.5%, compounded monthly. The loan (principal plus interest) must be repaid at the end of the year. Midwest Bank also offers to lend you the $\$ 25,000$, but it will charge an annual rate of 8.3%, with no interest due until the end of the year. What is the difference in the effective annual rates charged by the two banks?

$$
\begin{array}{ll}
\text { a. } & 0.93 \% \\
\text { b. } & 0.77 \% \\
\text { c. } & 0.64 \% \\
\text { d. } & 0.54 \% \\
\text { e. } & 0.43 \%
\end{array}
$$

(2.15) Nominal rate vs. EFF\% Answer: e MEDIUM
83. Suppose a bank offers to lend you $\$ 10,000$ for one year at a nominal annual rate of 10.25%, but you must make interest payments at the end of each quarter and then pay off the $\$ 10,000$ principal amount at the end of the year. What is the effective annual rate on the loan?
a. 6.99\%
b. 7.76%
c. 8.63%
d. 9.59%
e. 10.65%
84. Suppose a bank offers to lend you $\$ 10,000$ for 1 year on a loan contract that calls for you to make interest payments of $\$ 250.00$ at the end of each quarter and then pay off the principal amount at the end of the year. What is the effective annual rate on the loan?
a. 8.46%
b. 8.90%
c. 9.37%
d. 9.86%
e. 10.38%
(2.15) Nominal rate vs. EAR Answer: e MEDIUM
85. If a bank pays a 4.50% nominal rate, with monthly compounding on deposits, what effective annual rate (EFF\%) does the bank pay?
a. 3.01%
b. 3.35%
c. 3.72%
d. 4.13%
e. 4.59%
(2.15) Nominal rate vs. EAR Answer: b MEDIUM
86. Suppose your credit card issuer states that it charges a 15.00% nominal annual rate. If you must make monthly payments, which amounts to monthly compounding, what is the effective annual rate?
a. 15.27%
b. 16.08%
c. 16.88%
d. 17.72%
e. 18.61%
(2.16) Interest charges, simple interest Answer: c MEDIUM
87. Pace Co. borrowed $\$ 25,000$ at a rate of 7.25%, simple interest, with interest paid at the end of each month. The bank uses a 360-day year. How much interest would Pace have to pay in a 30 -day month?

a.	$\$ 136.32$
b.	$\$ 143.49$
c.	$\$ 151.04$
d.	$\$ 158.59$
e.	$\$ 166.52$

(2.16) Fractional time periods Answer: a MEDIUM
88. Suppose you deposited $\$ 5,000$ in a bank account that pays 5.25% with daily compounding and a 360-day year. How much could you withdraw after 8 months, assuming each month has 30 days?
a. $\$ 5,178.09$
b. $\$ 5,436.99$
c. $\$ 5,708.84$
d. $\$ 5,994.28$
e. $\$ 6,294.00$
(2.17) Loan amortization: payment

Answer: a MEDIUM
89. Suppose you borrowed $\$ 12,000$ at a rate of 9% and must repay it in 4 equal installments at the end of each of the next 4 years. How large would your payments be?

$$
\begin{array}{ll}
\text { a. } & \$ 3,704.02 \\
\text { b. } & \$ 3,889.23 \\
\text { c. } & \$ 4,083.69 \\
\text { d. } & \$ 4,287.87 \\
\text { e. } & \$ 4,502.26
\end{array}
$$

(2.17) Loan amortization: payment

Answer: c MEDIUM
90. Suppose you are buying your first house for $\$ 210,000$, and are making a $\$ 20,000$ down payment. You have arranged to finance the remaining amount with a 30-year, monthly payment, amortized mortgage at a 6.5% nominal interest rate. What will your equal monthly payments be?
a. $\$ 1,083.84$
b. $\$ 1,140.88$
c. $\$ 1,200.93$
d. $\$ 1,260.98$
e. $\$ 1,324.02$
(2.17) Loan amortization: interest

Answer: d MEDIUM
91. Suppose you borrowed $\$ 12,000$ at a rate of 9% and must repay it in 4 equal installments at the end of each of the next 4 years. How much interest would you have to pay in the first year?
a. $\$ 925.97$
b. $\$ 974.70$
c. $\$ 1,026.00$
d. $\$ 1,080.00$
e. $\$ 1,134.00$
92. You plan to borrow $\$ 30,000$ at a 7% annual interest rate. The terms require you to amortize the loan with 6 equal end-of-year payments. How much interest would you be paying in Year 2?
a. $\$ 1,548.79$
b. $\$ 1,630.30$
c. $\$ 1,716.11$
d. $\$ 1,806.43$
e. $\$ 1,896.75$
(2.17) Loan amortization: interest

Answer: c MEDIUM
93. You plan to borrow $\$ 75,000$ at a 7% annual interest rate. The terms require you to amortize the loan with 10 equal end-of-year payments. How much interest would you be paying in Year 2?

$$
\begin{array}{ll}
\text { a. } & \$ 4,395.19 \\
\text { b. } & \$ 4,626.52 \\
\text { c. } & \$ 4,870.02 \\
\text { d. } & \$ 5,113.52 \\
\text { e. } & \$ 5,369.19
\end{array}
$$

(2.17) Loan amortization: payment Answer: e MEDIUM
94. Suppose you take out a $\$ 10,000$ loan at a 6% nominal annual rate. The terms of the loan require you to make 12 equal end-of-month payments each year for 4 years, and then an additional final (balloon) payment of $\$ 4,000$ at the end of the last month. What will your equal monthly payments be?
a. $\$ 131.06$
b. $\$ 137.96$
c. $\$ 145.22$
d. $\$ 152.86$
e. $\$ 160.91$
(2.18) Growing annuity: calculating the real rate Answer: c MEDIUM
95. You plan to make annual deposits into a bank account that pays a 5.00% nominal annual rate. You think inflation will amount to 2.50% per year. What is the expected annual real rate at which your money will grow?

$$
\begin{array}{ll}
\text { a. } & 1.98 \% \\
\text { b. } & 2.20 \% \\
\text { c. } & 2.44 \% \\
\text { d. } & 2.68 \% \\
\text { e. } & 2.95 \%
\end{array}
$$

(2.18) Growing annuity due: withdraw constant real amt Answer: e MEDIUM

96. Your father now has $\$ 1,000,000$ invested in an account that pays 9.00%. He expects inflation to average 3%, and he wants to make annual constant dollar (real) beginning-of-year withdrawals over each of the next 20 years and end up with a zero balance after the 20 th year. How large will his initial withdrawal (and thus constant dollar (real) withdrawals) be?
a. $\$ 66,154.58$
b. $\$ 69,636.40$
c. $\$ 73,301.47$
d. $\$ 77,159.45$
e. $\$ 81,220.47$
(Comp: 2.10,2.15) Annuity due, N , monthly compounding Answer: d MEDIUM
97. You are considering investing in a Third World bank account that pays a nominal annual rate of 18%, compounded monthly. If you invest $\$ 5,000$ at the beginning of each month, how many months will it take for your account to grow to $\$ 250,000$? Round fractional years up.
a. 23
b. 27
c. 32
d. 38
e. 44
(Comp: 2.10,2.15) Annuity, N , monthly compounding Answer: b MEDIUM
98. You are considering investing in a bank account that pays a nominal annual rate of 6%, compounded monthly. If you invest $\$ 5,000$ at the end of each month, how many months will it take for your account to grow to $\$ 200,000$? Round fractional years up.
a. 33
b. 37
c. 41
d. 45
e. 49
(Comp: 2.10,2.15) Int rate, annuity, mos compounding Answer: d MEDIUM
99. Your child's orthodontist offers you two alternative payment plans. The first plan requires a $\$ 4,000$ immediate up-front payment. The second plan requires you to make monthly payments of $\$ 137.41$, payable at the end of each month for 3 years. What nominal annual interest rate is built into the monthly payment plan?
a. 12.31%
b. 12.96%
c. 13.64%
d. 14.36%
e. 15.08%

Medium/Hard:

(2.10) N, lifetime vs. annual pmts Answer: e MEDIUM/HARD
100. Your subscription to Investing Wisely Weekly is about to expire. You plan to subscribe to the magazine for the rest of your life, and you can renew it by paying $\$ 75$ annually, beginning immediately, or you can get a lifetime subscription for $\$ 750$, also payable immediately. Assuming you can earn 5.5\% on your funds and the annual renewal rate will remain constant, how many years must you live to make the lifetime subscription the better buy? Round fractional years up. (Hint: Be sure to remember that you are solving for how many years you must live, not for how many payments must be made.)
a. 7
b. 8
c. 9
d. 11
e. 13
(2.15) Non-annual compounding Answer: b MEDIUM/HARD
101. You just deposited $\$ 2,500$ in a bank account that pays a 12% nominal interest rate, compounded quarterly. If you also add another $\$ 5,000$ to the account one year (12 months) from now and another $\$ 7,500$ to the account two years from now, how much will be in the account three years (12 quarters) from now?
a. $\$ 17,422.59$
b. $\$ 18,339.57$
c. $\$ 19,256.55$
d. $\$ 20,219.37$
e. $\$ 21,230.34$

(2.15) Compare effective cost of two bank loans Answer: d MEDIUM/HARD

102. Merchants Bank offers to lend you $\$ 30,000$ at a nominal rate of 6.0%, simple interest, with interest paid quarterly. Gold Coast Bank offers to lend you the $\$ 30,000$, but it will charge 7.0%, simple interest, with interest paid at the end of the year. What's the difference in the effective annual rates charged by the two banks?
a. 1.49\%
b. 1.24%
c. 1.04%
d. 0.86%
e. 0.69%

(2.17) Loan amortization: principal repayment Answer: b MEDIUM/HARD

103. Suppose you borrowed $\$ 12,000$ at a rate of 9% and must repay it in 4 equal installments at the end of each of the next 4 years. By how much would you reduce the amount you owe in the first year?
a. $\$ 2,492.82$
b. $\$ 2,624.02$
c. $\$ 2,755.23$
d. $\$ 2,892.99$
e. $\$ 3,037.64$

(2.17) Loan amortization: ending balance Answer: e MEDIUM/HARD

104. Suppose you borrowed $\$ 12,000$ at a rate of 9% and must repay it in 4 equal installments at the end of each of the next 4 years. How much would you still owe at the end of the first year, after you have made the first payment?
a. $\$ 7,636.79$
b. $\$ 8,038.73$
c. $\$ 8,461.82$
d. $\$ 8,907.18$
e. $\$ 9,375.98$
(Comp: 2.2,2.10) Retirement planning Answer: c MEDIUM/HARD
105. Your sister turned 35 today, and she is planning to save $\$ 5,000$ per year for retirement, with the first deposit to be made one year from today. She will invest in a mutual fund that will provide a return of 8% per year. She plans to retire 30 years from today, when she turns 65, and she expects to live for 25 years after retirement, to age 90. Under these assumptions, how much can she spend in each year after she retires? Her first withdrawal will be made at the end of her first retirement year.
a. $\$ 47,888$
b. $\$ 50,408$
c. $\$ 53,061$
d. $\$ 55,714$
e. $\$ 58,500$

Hard:

(2.17) Loan amort: int rate, \% of pmt toward principal Answer: e HARD
106. Your company has just taken out a l-year installment loan for $\$ 72,500$. The nominal rate is 12.0%, but with equal end-of-month payments. What percentage of the 2 nd monthly payment will go toward the repayment of principal?
a. 73.01%
b. 76.85%
c. 80.89%
d. 85.15%
e. 89.63\%

(2.17) Loan amort: pmt and \% of pmt toward interest Answer: b HARD

107. A homeowner just obtained a 30-year amortized mortgage loan for $\$ 150,000$ at a nominal annual rate of 6.5% with 360 end-of-month payments. What percentage of the total payments made during the first 3 months will go toward payment of interest?
a. 81.34%
b. 85.62%
c. 89.90%
d. 94.40%
e. 99.12%
(2.18) Growing annuity: withdrawing constant real amt Answer: e HARD
108. Your father now has $\$ 1,000,000$ invested in an account that pays 9.00%. He expects inflation to average 3%, and he wants to make annual constant dollar (real) end-of-year withdrawals over each of the next 20 years and end up with a zero balance after the 20 th year. How large will his initial withdrawal (and thus constant dollar (real) withdrawals) be?
a. $\$ 68,139.22$
b. $\$ 71,725.49$
c. $\$ 75,500.52$
d. $\$ 79,474.23$
e. $\$ 83,657.08$

(2.18) Growing annuity
 Answer: c HARD

109. You anticipate that you will need $\$ 1,500,000$ when you retire 30 years from now. You plan to make 30 deposits, beginning today, in a bank account that will pay 6\% interest, compounded annually. You expect to receive annual raises of 4%, so you will increase the amount you deposit each year by 4\%. (That is, your 2nd deposit will be 4\% greater than your first, the 3rd will be 4% greater than the $2 n d$, etc.) How much must your 1st deposit be if you are to meet your goal?
a. $\$ 10,216.60$
b. $\$ 10,754.31$
c. $\$ 11,320.33$
d. $\$ 11,886.35$
e. $\$ 12,480.66$
110. You want to accumulate $\$ 2,500,000$ in your $401(k)$ plan by your retirement date, which is 35 years from now. You will make 30 deposits into your plan, with the first deposit occurring today. The plan's rate of return typically averages 9%. You expect to increase each deposit by 2% as your income grows with inflation. (That is, your 2nd deposit will be 2% greater than your first, the 3rd will be 2% greater than the 2nd, etc.) How much must your 1st deposit at $t=0$ be to enable you to meet your goal?
a. $\$ 8,718.90$
b. $\$ 9,154.84$
c. $\$ 9,612.58$
d. $\$ 10,093.21$
e. $\$ 10,597.87$
(Comp: 2.7,2.10) Retirement planning
Answer: a HARD
111. Steve and Ed are cousins who were both born on the same day. Both turned 25 today. Their grandfather began putting $\$ 2,500$ per year into a trust fund for Steve on his 20 th birthday, and he just made a 6 th payment into the fund. The grandfather (or his estate's trustee) will continue with these $\$ 2,500$ payments until a 46 th and final payment is made on Steve's 65th birthday. The grandfather set things up this way because he wants Steve to work, not to be a "trust fund baby," but he also wants to ensure that Steve is provided for in his old age.

Until now, the grandfather has been disappointed with Ed, hence has not given him anything. However, they recently reconciled, and the grandfather decided to make an equivalent provision for Ed. He will make the first payment to a trust for Ed later today, and he has instructed his trustee to make additional equal annual payments each year until Ed turns 65, when the 41 st and final payment will be made. If both trusts earn an annual return of 8%, how much must the grandfather put into Ed's trust today and each subsequent year to enable him to have the same retirement nest egg as Steve after the last payment is made on their 65 th birthday?
a. \$3,726
b. $\$ 3,912$
c. $\$ 4,107$
d. $\$ 4,313$
e. $\$ 4,528$

(Comp: 2.2,2.7) FV of uneven CF stream

Answer: d HARD
112. After graduation, you plan to work for Dynamo Corporation for 12 years and then start your own business. You expect to save and deposit \$7,500 a year for the first 6 years and $\$ 15,000$ annually for the following 6 years, with the first deposit being made a year from today. In addition, your grandfather just gave you a $\$ 25,000$ graduation gift which you will deposit immediately. If the account earns 9\% compounded annually, how much will you have when you start your business 12 years from now?

$$
\begin{array}{ll}
\text { a. } & \$ 238,176 \\
\text { b. } & \$ 250,712 \\
\text { c. } & \$ 263,907 \\
\text { d. } & \$ 277,797 \\
\text { e. } & \$ 291,687
\end{array}
$$

(Comp: 2.2,2.3,2.10,2.12) Find CF for given return Answer: c HARD
113. You are negotiating to make a 7 -year loan of $\$ 25,000$ to Breck Inc. To repay you, Breck will pay $\$ 2,500$ at the end of Year $1, \$ 5,000$ at the end of Year 2, and $\$ 7,500$ at the end of Year 3, plus a fixed but currently unspecified cash flow, X, at the end of Years 4 through 7. Breck is essentially riskless, so you are confident the payments will be made, and you regard 8% as an appropriate rate of return on low risk 7 -year loans. What cash flow must the investment provide at the end of each of the final 4 years, that is, what is X ?

$$
\begin{array}{ll}
\text { a. } & \$ 4,271.67 \\
\text { b. } & \$ 4,496.49 \\
\text { c. } & \$ 4,733.15 \\
\text { d. } & \$ 4,969.81 \\
\text { e. } & \$ 5,218.30
\end{array}
$$

(Comp: 2.2,2.3,2.10,2.12) Saving for college Answer: e HARD
114. John and Daphne are saving for their daughter Ellen's college education. Ellen is now 10 years old and will be entering college 8 years from now (t = 8). College tuition and expenses at State U. are currently $\$ 14,500$ a year, but they are expected to increase at a rate of 3.5% a year. They expect Ellen to graduate in 4 years. (If Ellen wants to go to graduate school, she will be on her own.) Tuition and other costs will be due at the beginning of each school year (at $t=8,9,10$, and 11). So far, John and Daphne have accumulated $\$ 15,000$ in the college savings account. Their long-run financial plan is to add an additional $\$ 5,000$ at the beginning of each of the next 4 years (at $t=0,1,2$, and 3). Then they plan to make 4 equal annual contributions at the end of each of the following 5 years ($t=4,5,6,7$, and 8). They expect their investment account to earn 9%. How large must the annual payments be at t $=4,5,6,7$, and 8 to meet Ellen's anticipated college costs?
a. $\$ 777.96$
b. $\$ 818.91$
c. $\$ 862.01$
d. $\$ 907.38$
e. $\$ 955.13$

1.	(2.2)	Compounding			Answer:	a EASY
2.	(2.3)	PV versus FV			Answer: b	- EASY
3.	(2.3)	PV versus FV			Answer: a	a EASY
4.	(2.15)	Effective annual rate			Answer: b	- EASY
5.	(2.17)	Amortization			Answer: a	a EASY
6.	(2.2)	Compounding			Answer: b MEDIUM	
7.	(2.2)	Comparative compounding			Answer: a	MEDIUM
	Work out the numbers with a calculator:					
	PV	1000	$\mathrm{FV}_{\mathrm{A}}=$	\$1,710.34		
	Rate on A	A 5\%	$2 * \mathrm{FV}_{\mathrm{A}}=$	\$3,420.68		
	Rate on B	B 12%	$\mathrm{FV}_{\mathrm{B}}=$	\$3,478.55		
	Years	11	$\mathrm{FV}_{\mathrm{B}}>2 *$	A, so TRUE		
8.	(2.3)	PV of a sum			Answer: a	MEDIUM
9.	(2.9) PV of an annuity				Answer: a	MEDIUM
	One could make up an example and see that the statement is true. Alternatively, one could simply recognize that the PV of an annuity declines as the discount rate increases and recognize that more frequent compounding increases the effective rate.					
10.	(2.15)	Effective and nominal rates			Answer: a	MEDIUM
11.	(2.15)	Periodic and nominal rates			Answer: a	MEDIUM
12.	(2.17)	Amortization			Answer: b	MEDIUM
13.	(2.17)	Amortization			Answer: b	MEDIUM

There is no reason to think that this statement would be true. Each portion of the payment representing interest declines, while each portion representing principal repayment increases. Therefore, the statement is clearly false. We could also work out some numbers to prove this point. Here's an example for a 3-year loan at a 10% annual interest rate. The interest component is never equal to the principal repayment component.

Original loan	1000
Rate	10%
Life	3
Payment	$\$ 402.11$

	Beg. Balance	Interest	Principal	Ending Bal.
1	$\$ 1,000.00$	$\$ 100.00$	$\$ 302.11$	$\$ 697.89$
2	$\$ 697.89$	$\$ 69.79$	$\$ 332.33$	$\$ 365.56$
3	$\$ 365.56$	$\$ 36.56$	$\$ 365.56$	$\$ 0.00$

By inspection, we can see that e dominates a and b, and that c dominates d because, with the same interest rate, the account with the most frequent compounding has the highest EFF\%. Thus, the correct answer must be either e or c. Moreover, we can see by inspection that since c and e have the same compounding frequency yet e has the higher nominal rate, e must have the higher EFF\%. You could also prove that e is the correct choice by calculating the EFF\%s:
$\begin{array}{ll}\text { a. } & 8.300 \% \\ \text { b. } & 8.000 \% \\ \text { c. } & =\left(1+0.08 / 12^{212}-1\right. \\ \text { c. } 7.250 \% & =(1+0.07 / 365)^{1}-1 \\ \text { d. } & 7.229 \% \\ \text { e. } & 8.328 \% \\ \text { 年 } & =(1+0.07 / 12)^{12}-1 \\ \end{array}$
(2.15) Quarterly compounding

Answer: c MEDIUM
21.
(2.17) Amortization

Answer: c MEDIUM
a, d, and e can be ruled out as incorrect by simple reasoning. b is incorrect because interest in the first year would be Loan amount * interest rate regardless of the life of the loan. That makes c the "logical guess." It is also logical that the percentage of interest in each payment would be higher if the interest rate were higher. Think about the situation where $r=0 \%$, so interest would be zero. One could also set up an amortization schedule and change the numbers to confirm that only c is correct.
(2.17) Amortization

Answer: a MEDIUM
a is not correct because we would subtract principal repaid, not interest paid. Thus a is the correct response to this question. b is correct by definition. c is correct because the outstanding loan balance is declining. d is clearly correct, as is e. One could also set up an amortization schedule to prove that the above statements are correct.
b is correct. a is clearly wrong, as are c and d. It is not obvious whether e is correct or not, but we could set up an example to see:

Loan	100000	Term	30
Rate	10%	Periods/Year	12
Periodic rate	0.0083333	Total periods	360
Payment	$-\$ 877.57$	Interest month 1	$\$ 833.33$
Interest as \% of total payment: 95%, which is much larger than 10%.			

You could just reason this out, or you could do calculations to manually see which one is largest, as we show below:
A dominates B because it receives the same total amount, but gets it faster, hence it can earn more interest over the 10 years. A also dominates C and E for the same reason, and it dominates D because with D no interest whatever is earned. We could also do these calculations to answer the question:

A	$\$ 4,382.79$	Largest	EFF\%	10.00%	10	250
B	$\$ 4,081.59$		NOM\%	9.76%		125
C	$\$ 4,280.81$				125	
D	$\$ 2,500.00$				2500	
E	$\$ 3,984.36$				250	

25.
26.
27. (Comp: 2.9,2.15,2.17) Various concepts
28.
29.

(Comp: 2.7,2.8,2.9) Annuities
(2.15) Effective annual rates

Answer: d MEDIUM
Answer: c MEDIUM
Answer: e MEDIUM

Answer: d MEDIUM

Answer: e HARD

By inspection, we can see that e dominates b, c, and d because, with the same interest rate, the account with the most frequent compounding has the highest EFF\%. Thus, the correct answer must be either a or e. However, we can cannot tell by inspection whether a or e provides the higher EFF\%. We know that with one compounding period an $\mathrm{EFF} \%$ is 6.1%, so we can calculate e's $\mathrm{EFF} \%$. It is 6.183%, so e is the correct answer.
a. $=(1+0.061 / 12)^{12}-1=6.100 \%$
e. $=(1+0.06 / 365)^{365}-1=6.183 \%$
30. (2.2) FV of a lump sum

Answer: d EASY

N	8
I/YR	8.5%
PV	$\$ 125$
PMT	$\$ 0$
FV	$\mathbf{\$ 2 4 0 . 0 8}$

N	5
I/YR	3.5%
PV	$\$ 1,500$
PMT	$\$ 0$
FV	$\mathbf{\$ 1 , 7 8 1 . 5 3}$

32. (2.2) FV of a lump sum

N	5
I/YR	6.0%
PV	$\$ 225.00$
PMT	$\$ 0.00$
FV	$\mathbf{\$ 3 0 1 . 1 0}$

33. (2.2) FV of a lump sum

N	75
I/YR	3.5%
PV	$\$ 1.00$
PMT	$\$ 0.00$
FV	$\mathbf{\$ 1 3 . 2 0}$

34. (2.2) FV of a lump sum

N	25
I/YR	3.5%
PV	$\$ 1,000$
PMT	$\$ 0$
FV	$\mathbf{\$ 2 , 3 6 3 . 2 4}$

35. (2.3) PV of a lump sum

N	5
I/YR	5.5%
PMT	$\$ 0$
FV	$\$ 1,000.00$
PV	$\$ 765.13$

36. (2.3) PV of a lump sum

N	50
I/YR	7.5%
PMT	$\$ 0$
FV	$\$ 5,000$
PV	$\mathbf{\$ 1 3 4 . 4 5}$

37. (2.3) PV of a lump sum

N	5
I/YR	4.25%
PMT	$\$ 0$
FV	$\$ 2,500.00$
PV	$\mathbf{\$ 2 , 0 3 0 . 3 0}$

38.	(2.4)	Interest rate on a lump sum	Answer: d	EASY
	N	5		
	PV	\$747.25		
	PMT	\$0		
	FV	\$1,000.00		
	I/YR	6.00\%		
39.	(2.4)	Growth rate	Answer: b	EASY
	N	10		
	PV	\$0.50		
	PMT	\$0		
	FV	\$2.20		
	I/YR	15.97\%		
40.	(2.5)	Number of periods	Answer: e	EASY
	I/YR	3.8\%		
	PV	\$50.00		
	PMT	\$0		
	FV	\$150.00		
	N	29.46		
41.	(2.5)	Number of periods	Answer: d	EASY
	I/YR	9.0\%		
	PV	\$2.50		
	PMT	\$0		
	FV	\$5.00		
	N	8.04		
42.	(2.5)	Number of periods	Answer: e	EASY
	I/YR	9.0\%		
	PV	\$5,000.00		
	PMT	\$0		
	FV	\$9,140.20		
	N	7.00		
43.	(2.7)	FV of an ordinary annuity	Answer: c	EASY
	N	3		
	I/YR	5.2\%		
	PV	\$0.00		
	PMT	\$4,200		
	FV	\$13,266.56		

N	20
PV	$\$ 15,000,000$
PMT	$\$ 1,050,000$
FV	$\$ 0.00$
I/YR	$\mathbf{3 . 4 4 \%}$

63. (2.10) Interest rate implicit in an annuity due

Answer: e EASY

N	12
PV	$\$ 120,000$
PMT	$\$ 15,000$
FV	$\$ 0.00$
I/YR	$\mathbf{8 . 4 1 \%}$

64. (2.11) PV of a perpetuity

I/YR	5.0%
PMT	$\$ 250$
PV	$\mathbf{\$ 5 , 0 0 0 . 0 0}$

65. (2.11) Rate of return on a perpetuity

Answer: d EASY

Cost (PV)	$\$ 950$
PMT	$\$ 85$
I/YR	$\mathbf{8 . 9 5 \%}$

66. (2.12) PV of an uneven cash flow stream

Answer: e EASY
$\mathrm{I} / \mathrm{YR}=6.25 \%$

	0	1	2	3	4
CFs:	$\$ 0$	$\$ 75$	$\$ 225$	$\$ 0$	$\$ 300$
PV of CFs:	$\$ 0$	$\$ 71$	$\$ 199$	$\$ 0$	$\$ 235$

$\mathbf{P V}=$	$\mathbf{\$ 5 0 5 . 3 0}$	Find the individual PVs and sum them. Automate the process using Excel or a calculator, by inputting the data into the cash flow register and pressing the NPV key.

67. (2.12) PV of an uneven cash flow stream

Answer: c
EASY
$\mathrm{I} / \mathrm{YR}=12.0 \%$

CFs

0	1	2	3	4
$\$ 0$	$\$ 1,500$	$\$ 3,000$	$\$ 4,500$	$\$ 6,000$
$\$ 0$	$\$ 1,339$	$\$ 2,392$	$\$ 3,203$	$\$ 3,813$

$\mathbf{P V}=\quad \$ 10,746.99 \quad$ Found using the Excel NPV function
$\mathbf{P V}=\quad \$ 10,746.99 \quad$ Found by summing individual PVs.
$\mathbf{P V}=\quad \$ 10,746.99 \quad$ Found using the calculator NPV key.

I/YR $=8.0 \%$				
	0	1	2	3
CFs:	$\$ 750$	$\$ 2,450$	$\$ 3,175$	$\$ 4,400$
PV of CFs:	$\$ 750$	$\$ 2,269$	$\$ 2,722$	$\$ 3,493$

$\mathbf{P V}=$	$\mathbf{\$ 9 , 2 3 3 . 4 3}$	Found by summing individual PVs.
$\mathbf{P V}=$	$\mathbf{\$ 9 , 2 3 3 . 4 3}$	Found with a calculator or Excel to automate the process. With a calculator, input the cash flows and I
	into the cash flow register, then press the NPV key.	

$\mathrm{I} / \mathrm{YR}=6.0 \%$

CFs
PV of CFs:

0	1	2	3	4
$\$ 0$	$\$ 1,000$	$\$ 2,000$	$\$ 2,000$	$\$ 2,000$
$\$ 0$	$\$ 943$	$\$ 1,780$	$\$ 1,679$	$\$ 1,584$

$\mathbf{P V}=\quad \$ 5,986.81 \quad$ Found using the Excel NPV function
$\mathbf{P V}=\quad \$ 5,986.81 \quad$ Found by summing individual PVs.
$\mathbf{P V}=\quad \$ 5,986.81 \quad$ Found using the calculator NPV key.
70. (2.15) FV of a lump sum, semiannual compounding Answer: c EASY/MEDIUM

Years	5
Periods/Yr	2
Nom. I/YR	6.0%

$\mathrm{N}=$ Periods $\quad 10$
PMT $\$ 0$
$\mathrm{I}=\mathrm{I} /$ Period $\quad 3.0 \%$
PV \$1,500
FV $\mathbf{\$ 2 , 0 1 5 . 8 7}$

Could be found using a calculator, the equation, or Excel.
Note that we must first convert to periods and rate per period.
71. (2.15) PV of a lump sum, semiannual compounding Answer: d EASY/MEDIUM

Years	5
Periods/Yr	2
Nom. I/YR	6.0%
FV	$\$ 1,500$
N = Periods	10
PMT	$\$ 0$
I = I/Period	3.0%
PV	$\mathbf{\$ 1 , 1 1 6 . 1 4}$

72. (2.10) Years to deplete an ordinary annuity

I/YR	7.50%
PV	$\$ 300,000$
PMT	$\$ 35,000$
FV	$\$ 25,000$
N	$\mathbf{1 4 . 9 6}$

73. (2.10) Years to deplete an annuity due Answer: c MEDIUM

I/YR	7.5%
PV	$\$ 300,000$
PMT	$\$ 35,000$
FV	$\$ 25,000$
N	$\mathbf{1 3 . 2 7}$

74. (2.10) Interest rate implicit in an annuity due

Answer: a MEDIUM

N	24
PV	$\$ 0$
PMT	$\$ 500$
FV	$\$ 13,000$
I/YR	$\mathbf{7 . 6 2 \%}$

75. (2.11) Payments on a perpetuity

Answer: b MEDIUM

Cost (PV)	$\$ 1,250$	
I/YR	7.5%	
PMT	$\$ 93.75$	Multiply cost by I.

$\mathrm{I} / \mathrm{YR}=6.5 \%$					
	0	1	2	3	4
CFs:	\$0	\$75	\$225	\$0	\$300
FV of CFs:	\$0	\$91	\$255	\$0	\$300

$\mathbf{F V}=$	$\$ \mathbf{6 4 5 . 8 0}$	Found by summing individual FVs.
FV $=$	$\$ \mathbf{6 4 5 . 8 0}$	Found with the NFV key in some calculators.
$\mathbf{F V}=$	$\$ \mathbf{6 4 5 . 8 0}$	Found with a calculator by first finding the PV of the stream, then finding the FV of that PV.

PV of the stream: $\$ 501.99$
FV of the PV: $\quad \mathbf{6 4 5 . 8 0}$

CFs:

0	1	2	3	4	5
$-\$ 1,000$	$\$ 75$	$\$ 75$	$\$ 75$	$\$ 75$	$\$ 75$ $\$ 1,000$
$-\$ 1,000$	$\$ 75$	$\$ 75$	$\$ 75$	$\$ 75$	$\$ 1,075$

I/YR $\quad \mathbf{7 . 5 0 \%}$ I is the discount rate that causes the PV of the inflows to equal the initial negative CF , and is found with Excel's IRR function or by inputting the CFs into a calculator and pressing the IRR key.
78. (2.14) Interest rate built into uneven CF stream

Answer: e MEDIUM

CFs:

0	1	2	3	4
$-\$ 725$	$\$ 75$	$\$ 100$	$\$ 85$	$\$ 625$

I/YR $\quad \mathbf{6 . 0 5 \%}$ I is the discount rate that causes the PV of the positive inflows to equal the initial negative CF. I can be found using Excel's IRR function or by inputting the CFs into a calculator and pressing the IRR key.
79. (2.15) FV of a lump sum, monthly compounding

Answer: b MEDIUM

Years 5
Periods/Yr 12
Nom. I/YR 6.0%
$\mathrm{N}=$ Periods $\quad 60$
PMT \$0
I/Period $\quad 0.5 \%$
PV \$1,500

FV $\quad \mathbf{\$ 2 , 0 2 3 . 2 8}$

Could be found using a calculator, the equation, or Excel. Note that we must first convert to periods and rate per period.
80. (2.15) PV of a lump sum, monthly compounding

Answer: d MEDIUM

Years	5
Periods/Yr	12
Nom. I/YR	6.0%
N $=$ Periods	60
PMT	$\$ 0$
I/Period	0.5%
FV	$\$ 1,525$
PV	$\mathbf{\$ 1 , 1 3 0 . 5 9}$

Could be found using a calculator, the equation, or Excel.
Note that we must first convert to periods and rate per period.
81. (2.15) APR vs. EAR

Answer: b MEDIUM

APR	18.00%
Periods/yr	12
EFF\%	$\mathbf{1 9 . 5 6 \%}$

82. (2.15) Comparing the effective cost of two bank loans Answer: d MEDIUM

This problem can be worked most easily using the interest conversion feature of a calculator. It could also be worked using the conversion formula. We used the conversion formula.

Nominal rate, East Coast Bank	7.5%
Nominal rate, Midwest Bank	8.3%
Periods/yr, East Coast	12
Periods/yr, Midwest	1
EFF\% East Coast	7.76%
EFF\% Midwest	8.30%
Difference	$\mathbf{0 . 5 4 \%}$

Nominal I/YR	10.25%	
Periods/yr	4	
EFF\%	$\mathbf{1 0 . 6 5 \%}$	Using conversion formula

You could also find the EFF\% as follows:
Interest paid each quarter $=$ Loan $*$ rate $/ 4=$ quarterly $\mathrm{PMT}=\$ 256.25$

Then find the IRR as a quarterly rate and convert to an annual rate. This procedure is obviously longer.

CFs:

0	1	2	3	4
$10,000.00$	-256.25	-256.25	-256.25	-256.25
				$-10,000.00$
$10,000.00$	-256.25	-256.25	-256.25	$-10,256.25$

IRR (quarterly) $=2.56 \%$
Annual effective rate $=\mathbf{1 0 . 6 5 \%}$ vs. nominal rate $=10.25 \%$
(2.15) Nominal rate vs. EFF\% Answer: e MEDIUM

Interest payment: $\$ 250.00$

CFs:

0	1	2	3	4
$10,000.00$	-250.00	-250.00	-250.00	-250.00
				$-10,000.00$

$\operatorname{IRR}($ quarterly $)=2.50 \%$
Annual effective rate $=\mathbf{1 0 . 3 8 \%}$ vs. nominal rate $=10.00 \%$
85.
(2.15) Nominal rate vs. EAR

Answer: e MEDIUM

Nominal I/YR	4.50%
Periods/yr	12
EFF\%	$\mathbf{4 . 5 9 \%}$

92. (2.17) Loan amortization: interest

Answer: d MEDIUM

Find the required payment:

N	6
I/YR	7.0%
PV	$\$ 30,000$
FV	$\$ 0$
PMT	$\$ 6,293.87$

Amortization schedule (first 2 years)

Year	Beg. Balance	Payment	Interest	Principal	End. Balance
1	$30,000.00$	$6,293.87$	$2,100.00$	$4,193.87$	$25,806.13$
2	$25,806.13$	$6,293.87$	$\mathbf{1 , 8 0 6 . 4 3}$	$4,487.45$	$21,318.68$

93. (2.17) Loan amortization: interest

Answer: c MEDIUM

Find the required payment:

N	10
I/YR	7.0%
PV	$\$ 75,000$
FV	$\$ 0$
PMT	$\$ 10,678.31$

Amortization schedule (first 2 years)

Year	Beg. Balance	Payment	Interest	Principal	End. Balance
1	$75,000.00$	$10,678.31$	$5,250.00$	$5,428.31$	$69,571.69$
2	$69,571.69$	$10,678.31$	$\mathbf{4 , 8 7 0 . 0 2}$	$5,808.29$	$63,763.39$

94. (2.17) Loan amortization: payment Answer: e MEDIUM

Years	4	Nominal rate	6.0%
N	48	Payments/year	12
I/YR	0.5%	Monthly annuity, so interest must be calculated on monthly basis	
PV	$\$ 10,000$		
FV	$\$ 4,000$		
PMT	$\mathbf{\$ 1 6 0 . 9 1}$		

95. (2.18) Growing annuity: calculating the real rate Answer: c MEDIUM

$r_{\text {NOM }}$	5.00%
Inflation	2.50%
$r_{r}=\left[\left(1+r_{\text {NOM }}\right) /(1+\right.$ Inflation $\left.)\right]-1$	
$r_{r}=\mathbf{2 . 4 4 \%}$	

96. (2.18) Growing annuity due: withdraw constant real amt Answer: e MEDIUM

$\mathrm{r}_{\text {NOM }}$	9.00%	Initial sum
Inflation	3.00%	Years
$\mathrm{r}_{\mathrm{r}}=\left[\left(1+\mathrm{r}_{\text {NOM }}\right) /(1+\right.$ growth $]-1$		$1,000,000$
$\mathrm{r}_{\mathrm{r}}=5.825243 \%$		20
PMT $=\$ \mathbf{8 1 , 2 2 0 . 4 7}$		

97.

(Comp: 2.10,2.15) Annuity due, N, monthly compounding
Answer: d MEDIUM

I/YR	18.0%	
I/MO	1.5%	Monthly annuity due, so interest must be calculated on monthly basis
PV	$\$ 0$	
PMT	$\$ 5,000$	
FV	$\$ 250,000$	
N	$\mathbf{3 7 . 1 6}$	Rounded up $\mathbf{3 8}$

98. (Comp: 2.10,2.15) Annuity, N , monthly compounding Answer: b MEDIUM

I/YR	6.0%	
I/MO	0.5%	Monthly annuity, so interest must be calculated on monthly basis
PV	$\$ 0$	
PMT	$\$ 5,000$	
FV	$\$ 200,000$	
N	$\mathbf{3 6 . 5 6}$	Rounded up: $\mathbf{3 7}$

N	36	
PV	$\$ 4,000$	
PMT	$\$ 137.41$	
FV	$\$ 0$	
I/MO	1.20%	Monthly annuity, so interest must be calculated on monthly basis
I/YR	$\mathbf{1 4 . 3 6 \%}$	

100. (2.10) N , lifetime vs. annual pmts Answer: e MEDIUM/HARD

Find N for an annuity due with the indicated terms to determine how long you must live to make the lifetime subscription worthwhile.
Interest rate

$$
5.5 \%
$$

Annual cost $\$ 75$
Lifetime subscription cost $\$ 750$
Number of payments made 13.76 Rounded up: 14
Recall that we used BEGIN mode (because it is an annuity due), so it takes 14 payments to make the
lifetime subscription better. Since the 1 st payment occurs today, the 14 th payment occurs at $\mathrm{t}=13$, which is 13 years from now.

So, you must live for: $14-1=\mathbf{1 3}$ years.

Interest rate	12.0%			
Periods/year	4	Years on	Quarters	Ending
Quarterly rate	3.0%	Deposit	on Deposit	Amount
1st deposit	$\$ 2,500$	3	12	$\$ 3,564.40$
2nd deposit	$\$ 5,000$	2	8	$\$ 6,333.85$
3rd deposit	$\$ 7,500$	1	4	$\$ 8,441.32$
				$\$ \mathbf{1 8 , 3 3 9 . 5 7}$

102. (2.15) Compare effective cost of two bank loans Answer: d MEDIUM/HARD

Students must understand that "simple interest with interest paid quarterly" means that the bank gets the interest at the end of each quarter, hence it can invest it, presumably at the same nominal rate. This results in the same effective rate as if it were stated as " 6%, quarterly compounding."

Nominal rate, Merchants Bank	6.0%
Periods/yr, Merchants	4
Nominal rate, Gold Coast Bank	7.0%
Periods/yr, Gold Coast	1
EFF\% Merchants	6.14%
EFF\% Gold coast	7.00%
Difference	$\mathbf{0 . 8 6 \%}$

103. (2.17) Loan amortization: principal repayment Answer: b MEDIUM/HARD

Interest rate	9.0%
Years	4
Amount borrowed	$\$ 12.000$

Step 1: Find the PMT	$\$ 3,704.02$
Step 2: Find the 1st year's interest	$\$ 1,080.00$
Step 3: Subtract the interest from the payment; this is repayment of principal	$\mathbf{\$ 2 , 6 2 4 . 0 2}$

104. (2.17) Loan amortization: ending balance

Answer: e MEDIUM/HARD

Interest rate	9.0%
Years	4
Amount borrowed	$\$ 12,000$

Step 1: Find the PMT
\$3,704.02
Step 2: Find the 1st year's interest
Step 3: Subtract the interest from the payment; this is repayment of principal
Step 4: Subtract the repayment of principal from the beginning amount owed
\$9,375.98
105. (Comp: 2.2,2.10) Retirement planning

Answer: c MEDIUM/HARD

Interest rate	8.0%
Years to retirement	30
Years in retirement	25
Amount saved per year	$\$ 5,000$

Step 1: Find the amount at age 65; use the FV function
\$566,416
Step 2: Find the PMT for a 25-year ordinary annuity using that FV as the PV
\$53,061
106. (2.17) Loan amort: int rate, \% of pmt toward principal Answer: e HARD

N	12	
$\mathrm{r}_{\text {NOM }}$	12.0%	
Periodic r	1.0%	
PV	$\$ 72,500$	
PMT	$\$ 6,442$	
FV	$\$ 0$	\% paid toward prin. $=\mathbf{8 9 . 6 3 \%}$

Amortization schedule(first 4 years)

Month	Beg. Balance	Payment	Interest	Principal	Ending Balance
1	$72,500.00$	$6,441.54$	725.00	$5,716.54$	$66,783.46$
2	$66,783.46$	$6,441.54$	667.83	$5,773.70$	$61,009.76$
3	$61,009.76$	$6,441.54$	610.10	$5,831.44$	$55,178.32$
4	$55,178.32$	$6,441.54$	551.78	$5,889.75$	$49,288.57$

107. (2.17) Loan amort: pmt and \% of pmt toward interest Answer: b HARD

Years	30	Periods/yr	12
Nominal r	6.50%	$\mathrm{~N}(12 \mathrm{mo})$.	360
PV	$\$ 150,000$	I/YR	0.54%
FV	$\$ 0$	Total pmts	$\$ 2,844.31$
PMT	$\$ 948.10$	Interest	$\$ 2,435.29$
		$\%$ interest	$\mathbf{8 5 . 6 2 \%}$

Amortization schedule(first 3 months)

Year	Beg. Balance	Payment	Interest	Principal	Ending Balance
1	$150,000.00$	948.10	812.50	135.60	$149,864.40$
2	$149,864.40$	948.10	811.77	136.34	$149,728.06$
3	$149,728.06$	948.10	811.03	137.08	$149,590.99$
Total payments:	$2,844.31$	$2,435.29$	409.01		

108.

(2.18) Growing annuity: withdrawing constant real amt

Answer: e HARD

$\mathrm{r}_{\text {NOM }}$	9.00%	Initial sum
Inflation	3.00%	Years
$\mathrm{r}_{\mathrm{r}}=\left[\left(1+\mathrm{r}_{\text {NOM }}\right) /(1+\right.$ growth $]-1$		$1,000,000$
$\mathrm{r}_{\mathrm{r}}=5.825243 \%$		20
PMT $=\$ 81,220.47$		
Adj. PMT $=\$ \mathbf{8 3 , 6 5 7 . 0 8}$		

109. (2.18) Growing annuity

Answer: c HARD
Step 1. Calculate the purchasing power of $\$ 1,500,000$ in 30 years at an inflation rate of 4% :

N	30
I/YR	4.0%
PMT	$\$ 0.00$
FV	$\$ 1,500,000$
PV	$\$ 462,478.00$

Step 2. Calculate the real rate of return on the growing annuity:
$r_{\text {NOM }} \quad 6.0 \%$
Inflation
$r_{r}=\left[\left(1+r_{\text {NOM }}\right) /(1+\right.$ Inflation $\left.)\right]-1$
$r_{r}=1.92308 \%$

Step 3. Calculate the required initial payment of the growing annuity by using inputs converted to "real" terms:

N	30
I/YR	1.92308%
PV	$\$ 0.00$
FV	$462,478.00$
PMT	$\mathbf{\$ 1 1 , 3 2 0 . 3 3}$

Step 1. Calculate the purchasing power of $\$ 2,500,000$ in 35 years at an inflation rate of 2% :

N	35
I/YR	2.0%
PMT	$\$ 0.00$
FV	$\$ 2,500,000$
PV	$\$ 1,250,069.03$

Step 2. Calculate the real rate on the growing annuity:

$r_{\text {NOM }}$	9.0%
Inflation	2.0%
$r_{r}=\left[\left(1+r_{\text {NOM }}\right) /(1+\right.$ Inflation $\left.)\right]-1$	
$r_{r}=6.86275 \%$	

Step 3. Calculate the required initial payment of the growing annuity by using inputs converted to "real" terms:

N	35
I/YR	6.86275%
PV	$\$ 0.00$
FV	$1,250,069.03$
PMT	$\mathbf{\$ 8 , 7 1 8 . 9 0}$

111. (Comp: 2.7,2.10) Retirement planning

Steve's retirement account	
No. of payments thus far, at end of day	6
Number of remaining payments	40
N	46
I/YR	8.0%
PV	$\$ 0$
PMT	$\$ 2,500$
FV Ed's FV should equal this:	$\$ 1,046,065$

Ed's retirement account	
	1
	40
N	41
I/YR	8.0%
PV	$\$ 0$
FV	$\$ 1,046,065$
	$\$ \mathbf{3 , 7 2 6}$

There are 3 cash flow streams: the gift and the two annuities. The gift will grow for 12 years. Then there is a 6 -year annuity that will compound for an additional 6 years. Finally, there is a second 6 -year annuity. The sum of the compounded values of those three sets of cash flows is the final amount.

		Amount at Year 6	Amount at Year 12
Interest rate	9.0\%		
1st annuity	\$7,500	\$56,425	\$94,630
2nd annuity	\$15,000	NA	\$112,850
Gift	\$25,000	NA	\$70,317
Total years	12		
Annuity years	6		\$277,797

(Comp: 2.2,2.3,2.10,2.12) Find CF for given return
This is a relatively easy problem to work with Excel, but it is quite difficult to work it with a calculator because it is hard to conceptualize how to set it up for an efficient calculator solution. We would not use it for a regular classroom exam, but it might be appropriate for a take-home or online exam.
$I=8 \%$

0	1	2	3	4	5	6	7
$-\$ 25,000$	$\$ 2,500$	$\$ 5,000$	$\$ 7,500$	X	X	X	X

Calculator solution:

Step 1. Use the CF register to find the NPV of the 4 known cash flows, CF_{0} to CF_{3} : $-\$ 12,444.75$
Step 2. Find the FV of this NPV at the end of period 3, i.e., compound the NPV for 3 years. $-\$ 15,676.80$
Step 3. Now find the PMT for a 4 -year annuity with this PV.

Excel solution:

Set the problem up as shown below. Put a guess-we initially guessed $\$ 5,000$-in the boxed cell under the first X. The IRR initially is greater than 8%, so lower the guess, and keep iterating until IRR $=8 \%$. This value of X is the required payment for the investment to provide the 8% rate of return. The problem can be worked faster if you use Goal Seek. Here you would highlight the cell with the IRR, then tell Excel to change the Year 4 cell reference to the value that causes IRR $=8 \%$. It turns out to be $\$ 4,733.15$. If input values are changed PMT does not change automatically-you must repeat this step again.

0	1	2	3	4	5	6	7
$-\$ 25,000$	$\$ 2,500$	$\$ 5,000$	$\$ 7,500$	$\$ 4,733.15$	$\$ 4,733.15$	$\$ 4,733.15$	$\$ 4,733.15$

$\operatorname{IRR}=8.00 \%$
114. (Comp: 2.2,2.3,2.10,2.12) Saving for college

Answer: e HARD

Current college costs	$\$ 14,500$
College cost inflation	3.5%
Account return	9.0%
First 4 payments	$\$ 5,000$
Current account balance	$\$ 15,000$

First, determine each year of college's costs.
Year 1 of college $(t=8) \quad=19,093.73$
Year 2 of college $(t=9) \quad=19,762.01$
Year 3 of college $(t=10) \quad=20,453.68$
Year 4 of college $(t=11) \quad=21,169.56$

The PV (at $t=8)$ of all college costs is: 70,786.26. This is what they need at $t=8$.
After the first 4 payments, the college account will have (at $t=3$): $\$ 42,291.08$
5 more contributions are left in order to get the required funds for college costs.

N	5
I	9.0%
PV	$\$ 42,291$
FV	$\$ 70,786.26$
PMT	$\mathbf{\$ 9 5 5 . 1 3}$

This problem can also be solved with Excel using Goal Seek:

Period $=$ t		College Costs:	Need to Have $\text { at } t=8$	FV of Initial Balance	Payments:	FV of Pmts
now	0	14,500.00		15,000.00	5,000.00	9,962.81
	1	15,007.50			5,000.00	9,140.20
	2	15,532.76			5,000.00	8,385.50
	3	16,076.41			5,000.00	7,693.12
	4	16,639.08			955.13	1,348.25
	5	17,221.45			955.13	1,236.92
	6	17,824.20			955.13	1,134.79
	7	18,448.05			955.13	1,041.09
	8	19,093.73	70,786.26	29,888.44	955.13	955.13
	9	19,762.01				40,897.82
	10	20,453.68				
	11	21,169.56	Amt. needed	V initial bal - F	Pmts $=0.0$	

Use Goal Seek to set blue pmt such that we get zero for the pink sum. Note that the Goal Seek solution step must be repeated again if input values change. It doesn't change automatically with input changes.

