
TEST BANK

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) If the fastest you can safely drive is 65 mi/h, what is the longest time you can stop for dinner if you must travel 487 mi in 9.8 h total?				1)
A) 1.8 h		B) 2.3 h		
C) 2.5 h		D) You can't stop	at all.	
2) A car accelerates fro while accelerating?	m 5.0 m/s to 21 m/s at	a rate of 3.0 m/s ² . Hov	v far does it travel	2)
A) 207 m	B) 41 m	C) 69 m	D) 117 m	
•	•	3.0 km/h to take off. On	•	3)
what is the minimum	acceleration necessary	for the plane to take fl	ight?	
A) 1.0 m/s^2	B) 0.95 m/s^2	C) 0.79 m/s^2	D) 0.87 m/s^2	
4) Assuming equal rates of acceleration in both cases, how much further would you travel if braking from 56 mi/h to rest than from 28 mi/h.				4)
A) 5.2 times farthe	r	B) 4.8 times farthe	er	
C) 4 times farther		D) 3.2 times farthe	er	
acceleration due to tl	he earth's gravity. In a	tiples of g , where $g = 9$ car crash, the car's veloce experienced, on avera	city may go from	5)
A) 14 g	B) 24 g	C) 20 g	D) 26 g	
=	he actual contact with	its direction is complete the bat lasts 0.45 s, what	•	6)
acceleration to the or		C) -0.15 e-1	D) 4.4 a-1	

Figure 2.1

7) The graph in Figure 2.1 shows the position of an object as a function of time. The					7)
letters H-L represent particular moments of time. At which moment in time is the speed					
of the object the	he highest?				
A) H	B) K	C) L	D) I	E) J	
8) The graph in Figure 2.1 shows the position of an object as a function of time. The					
letters H-L represent particular moments of time. At which moment in time is the speed					
of the object e	qual to zero?				

9) A train starts from rest and accelerates uniformly, until it has traveled 5.6 km and acquired a velocity of 42 m/s. The train then moves at a constant velocity of 42 m/s for 420 s. The train then slows down uniformly at 0.065 m/s², until it is brought to a halt. The acceleration during the first 5.6 km of travel is closest to:

C) J

A) 0.17 m/s^2

A) H

- B) 0.20 m/s^2
- C) 0.14 m/s^2
- D) 0.16 m/s^2
- E) 0.19 m/s^2

10) A train starts from rest and accelerates uniformly, until it has traveled 2.1 km and acquired a velocity of 24 m/s. The train then moves at a constant velocity of 24 m/s for 400 s. The train then slows down uniformly at 0.065 m/s², until it is brought to a halt. The distance traveled by the train while slowing down, in km, is closest to:

- A) 3.8
- B) 3.6

B) I

- C) 4.4
- D) 4.0

D) L

E) 4.2

E) K

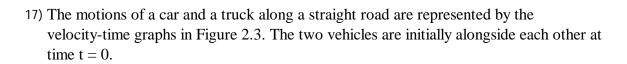
9)

10)

11) A car moving at	a velocity of 20 m/	s is behind a truck	moving at a consta	nt velocity of	11)
18 m/s. When the car is 50 m behind the front of the truck, the car accelerates uniformly					
at 1.8 m/s^2 . The	car continues at th	e same acceleration	n until it reaches a	velocity of	
	the legal speed lim				
	passes the front of the			•	
	meters, is closest to				
A) 58	B) 62	C) 66	D) 54	E) 50	
12) A motorist make	es a trip of 180 mile	es. For the first 90 i	miles she drives at a	a constant	12)
speed of 30 mph	n. At what constant	speed must she dri	ve the remaining di	istance if her	
average speed for	or the total trip is to	be 40 mph?			
A) 45 mph	B) 60 mph	C) 55 mph	D) 50 mph	E) 52.5	
				mph	
13) A racquetball str	rikes a wall with a s	peed of 30 m/s and	l rebounds with a s	peed of 26 m/s.	13)
	xes 20 ms. What is t	he average acceler	ation of the ball du	ring the	
collision?					
A) zero					
B) 200 m/s ²					
C) 1500 m/s^2					
D) 1300 m/s ²					
E) 2800 m/s^2					
14) Which of the following situations is impossible?				14)	
A) An object l	has velocity directed	d east and accelerate	ion directed east.		
B) An object has zero velocity but non-zero acceleration.					
C) An object has constant non-zero acceleration and changing velocity.					
D) An object has constant non-zero velocity and changing acceleration.					
E) An object l	nas velocity directed	d east and accelerate	ion directed west.		

15) A racing car accelerates uniformly from rest along a straight track. This track has	
markers spaced at equal distances along it from the start, as shown in Figure 2.2.	The
car reaches a speed of 140 km/h as it passes marker 2.	

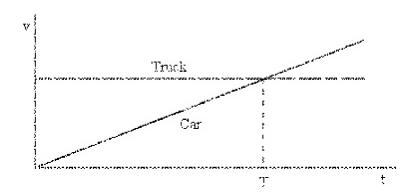
15) _____


Figure 2.2

Whereabouts on the track was the car when it was travelling at half this speed, i.e. at 70 km/h?

- A) Before marker 1
- B) Between marker 1 and marker 2
- C) At marker 1
- 16) A stone is thrown vertically upwards, reaches a highest point, and returns to the ground.

 16) _____
 When the stone is at the **top** of its path, its acceleration
 - A) is zero.
 - B) is directed upwards.
 - C) changes direction from upwards to downwards.
 - D) is directed downwards.



18)

19)

20)

Figure 2.3

At time T, what is true of the distances travelled by the vehicles since time t = 0?

- A) The truck will have travelled further than the car.
- B) The truck will not have moved.
- C) The car will have travelled further than the truck.
- D) They will have travelled the same distance.
- 18) Two identical objects A and B fall from rest from different heights to the ground. If object B takes *twice* as long as A to reach the ground, what is the ratio of the heights from which A and B fell? Neglect air resistance.

c) 1 :
$$\sqrt{2}$$

19) A ball is projected upward at time $t=0.0\,\mathrm{s}$, from a point on a roof 60 m above the ground. The ball rises, then falls and strikes the ground. The initial velocity of the ball is 28.4 m/s. Consider all quantities as positive in the upward direction. At time $t=4.3\,\mathrm{s}$, the acceleration of the ball is closest to:

A)
$$-10 \text{ m/}$$
 s^2

B)
$$-5 \text{ m/s}^2$$

C)
$$+5 \text{ m/s}^2$$

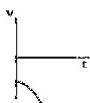
E)
$$+10 \text{ m/}$$

20) A ball is projected upward at time $t=0.0\,\mathrm{s}$, from a point on a roof 10 m above the ground. The ball rises, then falls and strikes the ground. The initial velocity of the ball is 58.5 m/s. Consider all quantities as positive in the upward direction. At time $t=5.97\,\mathrm{s}$, the velocity of the ball is closest to:

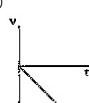
E)
$$+12 \text{ m/s}$$

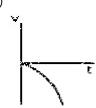
m/s

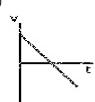
21) A ball is projected upward at time $t = 0.0$ s, from a point on a roof 90 m above the
ground. The ball rises, then falls and strikes the ground. The initial velocity of the ball i
80.5 m/s. Consider all quantities as positive in the upward direction. The velocity of the
ball when it is 89 m above the ground is closest to:


21) _____

- A) -48 m/s
- B) -81 m/s
- C) -97 m/s
- D) -64 m/s
- E) -32 m/s
- 22) A test rocket is fired straight up from rest with a net acceleration of 20 m/s². After 4 seconds the motor turns off, but the rocket continues to coast upward. What maximum elevation does the rocket reach?
- 22) _____


- A) 408 m
- B) 487 m
- C) 160 m
- D) 327 m
- E) 320 m
- 23) A child standing on a bridge throws a rock straight down. The rock leaves the child's hand at t = 0. Which of the graphs shown here best represents the velocity of the stone as a function of time?


A)


B)

C)

D,

E)

	24) A toy rocket is l	aunched vertically f	rom ground level	(y = 0 m), at time t	= 0.0 s. The	24)
	rocket engine pr	ovides constant upv	vard acceleration	during the burn ph	ase. At the	
		burnout, the rocke		•		
	_	ket continues to rise		-	•	
			-		•	
		ground. The time in	itervai, during wn	ich the rocket engi	ne provides	
	-	tion, is closest to:				
	A) 1.9 s	B) 1.5 s	c) 2.3 s	D) 2.1 s	E) 1.7 s	
	25) A toy rocket is l	aunched vertically f	rom ground level	(y = 0, m) at time t	-0.0 s. The	25)
	•	ovides constant upv	· ·	*		
		burnout, the rocke				
	_			-	•	
		ket continues to rise	-		•	
	falls back to the	ground. The upwar	d acceleration of	the rocket during th	ne burn phase is	
	closest to:					
	A) 9.6 m/	B) 9.0 m/	C) 8.7 m/	D) 9.9 m/	E) 9.3 m/	
	s^2	s^2	s^2	s^2	$_{\rm S}2$	
	J	V	Ü	J	J	
	26) A toy rocket is l	aunched vertically f	rom ground level	(v = 0 m) at time t	=0.0 s. The	26)
	•	ovides constant upv	C	·•		
	_	burnout, the rocke		-	•	
		ket continues to rise	-		•	
		ground. The maxim	•	•		
	A) 233 m	B) 221 m	C) 244 m	D) 256 m	E) 209 m	
			Situation 2.1			
			Situation 2.1			
A roc	k is projected upwar	d from the surface	of the moon, at tir	ne $t = 0.0 \text{ s}$, with a	velocity of 30 m/	's. The
	ration due to gravity			_	•	
accere	ration due to gravit	y at the surface of the	ie moon is 1.02 ii	V S		
	27) In Situation 2.1,	the time when the i	ock is ascending	and at a height of 1	80 m is closest	27)
	to:	VIII VIII VIII VIII VIII VIII VIII VII	our is assuming			,
	A) 17 s	B) 30 s	C) 12 s	D) 23 s	E) 8 s	
	A) 1 / S	b) 30 S	C) 12 S	D) 23 8	L) OS	
	28) In Situation 2.1,	the height of the ro	ck when it is desc	ending with a velo	city of 20 m/s is	28)
	closest to:	the height of the fo	ok when it is desc	enang with a vere	oney 01 20 111 5 15	
	A) 125 m	B) 115 m	C) 135 m	D) 145 m	E) 155 m	
	A) 123 III	D) 113 III	C) 133 III	D) 143 III	E) 133 III	
	29) A ball is thrown	straight unward wit	h a velocity of 18	m/s How much ti	me naccec	29)
			•		me passes	<i></i>
		trikes the ground? I	•		D) 1 1	
	A) 1.8 s	B) 3.7 s	C) 0.	.6 s	D) 1.1 s	

30) An object is dropped from rest into	a pit, and accelerates due to gravity at roughly 1	10 30)
m/s ² . It hits the ground in 5 second	s. A rock is then dropped from rest into a second	
	ds. How much deeper is the second pit, compare	
the first pit? Neglect air resistance.	F	
A) five times deeper	B) three times deeper	
C) four times deeper	D) two times deeper	
, 1	, ,	
SHORT ANSWER. Write the word or phrase th	at best completes each statement or answers the qu	estion.
31) A soccer ball is released from rest a	at the top of a grassy incline. After 6.4	31)
seconds, the ball travels 91 meters.	One second later, the ball reaches the bottom	
of the incline.		
a) What was the ball's acceleration?	(Assume that the acceleration was	
constant.)		
b) How long was the incline?		
	rom the edge of the roof of a building that is	32)
	ne building on its way down, and is observed	
-	fter being thrown. Take the acceleration due	
to gravity to have magnitude 9.80 r	m/s^2 and neglect any effects of air resistance.	
With what speed was the rock throw	wn?	
	1 . 17 / 70	>
	opter moving upward at 15 m/s. If it takes	33)
	e ground, how high above the ground was	
the package when it was released?	Neglect air resistance.	
24) At the same moment, one rock is di	ropped and one is thrown downward with an	34)
	op of a 300 m building. How much earlier	J4)
does the thrown rock strike the gro	-	
does the thrown rock strike the gro	und. Preglect dir Tesistance.	
35) Human reaction times are worsened	d by alcohol. How much further (in feet)	35)
	fore he hits the brakes than a sober driver's	
car? Assume that both are initially t	raveling at 50.0 mph and their cars have the	
same acceleration while slowing do	wn, and that the sober driver takes 0.33 s to	
hit the brakes in a crisis, while the d	trunk driver takes 1.0 s to do so	

Answer Key Testname: UNTITLED2

- 1) B
- 2) C
- 3) C
- 4) C 5) C
- 6) B
- 7) E
- 8) B
- 9) D
- 10) C
- 11) B
- 12) B
- 13) E
- 14) D
- 15) A
- 16) D
- 17) A
- 18) A
- 19) A
- 20) B
- 21) B
- 22) B
- 23) E
- 24) D
- 25) D
- 26) A
- 27) E
- 28) E
- 29) B
- 30) C
- 31) a) 4.4 m/s²
 - b) 120 m
- 32) 5.53 m/s
- 33) 1300 m
- 34) 2.4 s
- 35) 49 ft