TEST BANK

CALCULUS AND ITS APPLICATIONS

Chapter R, Form A

1. Average Farm Size. The average size of a farm in the United States is shown below.

(a) What was the approximate average farm size in 2000 ?
(b) In what year was the average farm size approximately 460 acres?
(c) Estimate the range of the function that expresses average farm size as a function of the year.
2. Business: Compound Interest. A person makes an investment at 4%, compounded annually. It has grown to $\$ 1406.08$ at the end of 1 yr. How much was originally invested?
3. A function is given by $f(x)=3 x^{2}-x$. Find (a) $f(-4)$ and (b) $f(x+a)$.
4. What are the slope and the y-intercept of $y=\frac{1}{2} x-6$?
5. Find an equation of the line with slope $\frac{2}{5}$, containing the point $(5,-2)$.
6. Find the slope of the line containing the points $(-5,4)$ and $(3,-6)$.
(b) \qquad
(c) \qquad
7. (a) \qquad
(b) \qquad
8. \qquad
9. \qquad
10. (a) \qquad
11. \qquad
12. \qquad

Find the average rate of change.

7.

8.

7. \qquad
8. \qquad
9. Relative Aperture. The relative aperture, or f-stop, A, of a $23.5-\mathrm{mm}$ lens is directly proportional to the focal length F of the lens. A $150-\mathrm{mm}$ focal length has an f -stop of 6.3 . Find an equation of variation expressing A as a function of F.
9. \qquad
10. Business: Profit-and-Loss Analysis. A cookie company has fixed costs of $\$ 8000$ for purchasing equipment for producing a new type of cookie. Variable costs are $\$ 0.76$ for producing each cookie with the new equipment. The revenue from each cookie is expected to be $\$ 1.29$.
(a) Formulate a function $C(x)$ for the total cost of producing x cookies.
(b) Formulate a function $R(x)$ for the total revenue from the sale of x cookies.
(c) Formulate a function $P(x)$ for the total profit from the production and sale of x cookies.
(d) How many cookies must the company sell in order to break even?
11. Economics: Equilibrium Point. Find the equilibrium point for the demand and supply functions:

$$
\begin{aligned}
& \text { Demand: } q=(x-7)^{2}, \quad 0 \leq x \leq 7 \text {, } \\
& \text { Supply: } q=\frac{1}{9} x^{2},
\end{aligned}
$$

given that x is the unit price, in dollars, and q is the quantity demanded or supplied, in thousands.
10. (a) \qquad
(b) \qquad
(c) \qquad
(d) \qquad
11. \qquad

Use the vertical-line test to determine whether each of the following is the graph of a function.
12.

13.

12.
13. \qquad
14. For the following graph of function f, determine
(a) $f(-2)$; (b) the domain; (c) all x-values such that $f(x)=4$; and (d) the range.

14. (a)
(b) \qquad
(c) \qquad
(d) \qquad

16. Convert to rational exponents: $\frac{3}{\sqrt[4]{n}}$.
17. Convert to radical notation: $y^{-2 / 3}$.
18. Graph: $f(x)=\frac{x^{2}-3 x-10}{x+2}$.
18.

Determine the domain of the function.
19. $f(x)=\frac{x^{2}+4}{(x-3)(x+2)}$
19. \qquad
20. $f(x)=\sqrt{x+5}$
20. \qquad
21. Write interval notation for the following graph.

21. \qquad
22. Graph: $f(x)= \begin{cases}x^{2}-3, & \text { for } x \geq 0 \\ -2 x, & \text { for } x<0\end{cases}$
22.

23. World Wide Web Sites. The following table shows the growth of world wide web sites from 2002 through 2007.

Year, x (Since 2000)	$\|c\|$ Neb Sites, W (in millions)
2	15
3	17
4	22
5	26
6	35
7	51

(Source: Based on graph at Netcraft, www.netcraft.com, 2007)
(a) Make a scatterplot of the data.
(b) Decide whether the data seem to fit a quadratic function.
(b)

\qquad
(c) \qquad
(d) Use the function from part (c) to estimate the number of active web sites in 2012.
(d) \qquad
24. Simplify: $\left(625^{1 / 10}\right)^{-5 / 2}$.
24. \qquad
25. Write an equation with exactly three solutions:
$-2,4$, and 6 . Answers will vary.
25. \qquad
26. Graph the function and find the zeros and the domain and range.

$$
f(x)=\sqrt[3]{\left|x^{2}-9\right|}-3
$$

26.

27. Active Web Sites. Use the data in Question 23.
(a) Use the REGRESSION feature to fit a quadratic function to the data.
27. (a) \qquad
(b) Use the function from part (a) to predict the number of active websites in 2012.
(b)

Chapter R, Form B

1. Invasive Species Management Funding. The amount of funding provided by ERS (Economic Research Service of the USDA) to programs that addressed invasive species in 2003-2006 is shown below.

Type of Program
Source: www.ers.usda.com
Use the graph to answer the following.
(a) What was the approximate level of funding by ERS for programs for only animal disease pests in 2003-2006?

1. (a) \qquad
(b) Which type of invasive pest program received approximately $\$ 2$ million from ERS in 2003-2006?
(b) \qquad
(c) Estimate the range of the function that expresses ERS funding for programs by type of invasive pest in 2003-2006.
(c) \qquad
2. Business: Compound Interest. A person makes an investment at 9%, compounded annually. It has grown to $\$ 1144.50$ at the end of 1 yr . How much was originally invested?
3. A function is given by $f(x)=3 x^{2}-5$. Find (a) $f(-7)$ and (b) $f(x+1)$.
4. (a) \qquad
(b) \qquad
5. What are the slope and the y-intercept of $y=3 x+2$?
6. \qquad
7. Find an equation of the line with slope $\frac{5}{8}$, containing the point $(6,-2)$.
8. \qquad
9. Find the slope of the line containing the points $(6,-5)$ and $(2,3)$.
10. \qquad

Find the average rate of change.

7.

8.

7. \qquad
8. \qquad
9. Ohm's Law. The electrical current I, in amperes, in a circuit is directly proportional to the voltage V. When 45 volts are applied, the current is 15 amperes. Find an equation of variation expressing I as a function of V.
9. \qquad
10. Business: Profit-and-Loss Analysis. Aldonna's is planning on producing a ladies' shoe. For the first year, the fixed costs are $\$ 135,000$. The variable costs for producing each pair of shoes are $\$ 35$. The revenue from the sale of each pair of shoes is expected to be $\$ 70$.
(a) Formulate a function $C(x)$ for the total cost of producing x pairs of shoes.
(b) Formulate a function $R(x)$ for the total revenue from the sale of x pairs of shoes.
(c) Formulate a function $P(x)$ for the total profit from the production and sale of x pairs of shoes.
(d) How many pairs of shoes must Aldonna's sell in order to break even?
11. Economics: Equilibrium Point. Find the equilibrium point for the demand and supply functions:

Demand: $q=(x-6)^{2}, 0 \leq x \leq 6$,
and

$$
\text { Supply: } q=x^{2}+5 x+2,
$$

given that x is the unit price, in dollars, and q is the quantity demanded or supplied, in thousands.
10. (a) \qquad
(b) \qquad
(c) \qquad
(d) \qquad
11. \qquad

Use the vertical-line test to determine whether each of the following is the graph of a function.
12.

13.

12. \qquad
13. \qquad
14. (a) \qquad
(b) \qquad
(c) \qquad
(d) \qquad
15. Graph: $f(x)=\frac{2}{x}$.
15.

16. Convert to rational exponents: $\frac{5}{\sqrt[3]{n^{2}}}$.
17. Convert to radical notation: $y^{3 / 4}$.
18. Graph: $f(x)=\frac{x^{2}-9}{x+3}$.
17.
18.

Determine the domain of the function.
19. $f(x)=\frac{x^{2}-1}{(x+3)(x-4)}$
19. \qquad
20. $f(x)=\frac{1}{\sqrt{x-3}}$
20. \qquad
21. Write interval notation for the following graph.

21.
22. Graph: $f(x)= \begin{cases}x^{2}+1, & \text { for } x>0 \\ x-2, & \text { for } x \leq 0\end{cases}$

23. United States Farms. The following table shows the number of farms, in millions, in the U.S. for various years.

Number of Years since 1900, x	Number of Farms (in millions), f
0	5.7
10	6.4
20	6.5
30	6.5
40	6.3
50	5.6
60	4.0
70	2.9
80	2.4
90	2.1
100	2.2

(Source: www.usda.gov)
(a) Make a scatterplot of the data.

(b) Decide whether the data seem to fit a quadratic function.
(b) \qquad
(c) Using the data points $(40,6.3),(60,4.0)$, and $(100,2.1)$, find a quadratic function that fits the data.
(c) \qquad
(d) Use the function from part (c) to estimate the number of farms in the U.S. in 2020, 120 years after 1900.
(d) \qquad
24. Simplify: $\left(625^{5 / 2}\right)^{1 / 10}$.
25. Write an equation with exactly three solutions:
$-8,1$, and 2 . Answers will vary.
24. \qquad
25. \qquad
\qquad
26. Graph the function and find the zeros and the domain and range of the function:

$$
f(x)=\left|\sqrt{x^{2}-4}-5\right|-6
$$

26.

27. United States Farms. Use the data in Question 23.
(a) Use the REGRESSION feature to fit a cubic function to the data.
(b) Use the function from part (a) to estimate the numbers of U.S. farms in 2020.
27. (a) \qquad
(b) \qquad

CALCULUS AND ITS APPLICATIONS

Chapter R, Form C

1. Grain Harvest. The number of bushels of several crops harvested in the U.S. in 2006 is shown below.

(a) What was the approximate harvest of wheat in $2006 ?$
(b) Which crop had a harvest of approximately 3 million bu in $2006 ?$
(c) Estimate the range of the function that expresses volume of harvest in 2006 as a function of type of crop for the data provided.
2. (a) \qquad
(b) \qquad
(c) \qquad
3. Business: Compound Interest. A person makes an investment at 4\%, compounded annually. It has grown to $\$ 1310.40$ at the end of 1 yr. How much was originally invested?
4. \qquad
5. A function is given by $f(x)=4 x^{2}+x$. Find (a) $f(-4)$ and (b) $f(x-2)$.
6. (a) \qquad
(b) \qquad
7. What are the slope and the y-intercept of $y=0.5 x-8$?
8. \qquad
9. Find an equation of the line with slope $-\frac{2}{3}$, containing the point $(5,-3)$.
10. \qquad
11. Find the slope of the line containing the points $(-2,-6)$ and $(5,4)$.
12. \qquad

Find the average rate of change.

7.

8.

7.
8. \qquad
9. Weight on the Moon. The weight M of an object on the moon is directly proportional to its weight E on earth. A person who weighs 192 lb on Earth weighs 32 lb on the moon. Find an equation of variation expressing E as a function of M.
9. \qquad
10. Business: Profit-and-Loss Analysis. Sweet Stuff is planning to introduce lollipops to their line of candies. For the first year, the fixed costs are $\$ 10,000$. The variable costs for producing each hundred lollipops are estimated to be $\$ 10$. The revenue from each hundred lollipops is expected to be $\$ 30$.
(a) Formulate a function $C(x)$ for the total cost of producing x hundred lollipops.
(b) Formulate a function $R(x)$ for the total revenue from the sale of x hundred lollipops.
(c) Formulate a function $P(x)$ for the total profit from the production and sale of x hundred lollipops.
(d) How many hundred lollipops must Sweet Stuff sell in order to break even?
10. (a) \qquad
(b) \qquad
(c) \qquad
(d)
11. Economics: Equilibrium Point. Find the equilibrium point for the demand and supply functions:

$$
\begin{aligned}
& \text { Demand: } q=(x-5)^{2}, 0 \leq x \leq 5 \text {, } \\
& \text { Supply: } q=x^{2}+2 x+7,
\end{aligned}
$$

given that x is the unit price, in dollars, and q is the quantity demanded or supplied, in thousands.
11.

Use the vertical-line test to determine whether each of the following is the graph of a function.
12.

13.

12.
13. \qquad
14. (a) \qquad
(b) \qquad
(c) \qquad
(d) \qquad
15.

16. Convert to rational exponents: $\frac{2}{\sqrt[5]{y^{2}}}$.
17. Convert to radical notation: $x^{9 / 10}$.
18. Graph: $f(x)=\frac{x^{2}+5 x+6}{x+2}$.
17.
18.

Determine the domain of the function.
19. $f(x)=\frac{x^{2}-3}{(x-6)(x+2)}$
19. \qquad
20. $f(x)=\frac{1}{\sqrt{x+6}}$
20. \qquad
21. Write interval notation for the following graph.

21. \qquad
22. Graph: $f(x)= \begin{cases}x^{2}+1, & \text { for } x \geq-1 \\ x-2, & \text { for } x<-1\end{cases}$
22.

23. Household Income. The following table shows the median U.S. household income for people of various ages.

Age, a	Median Income, i, in 2005 for the age group containing a.
19.5	28,770
29.5	47,379
39.5	58,084
49.5	62,462
59.5	52,260

(Source: U.S. Bureau of the Census;
age groups are $a-5$ yr to $a+5 \mathrm{yr}$ for each a.)
(a) Make a scatterplot of the data.

(b) Decide whether the data seem to fit a quadratic function.
(c) Using the data points $(29.5,47,379),(49.5,62,462)$, and $(59.5,52,260)$, find a quadratic function that fits the data.
(c)
(b) \qquad
(d) Use the function to estimate the income of a person of age 70 .
(d) \qquad
24. Simplify: $\left(81^{3 / 2}\right)^{-1 / 3}$.
24. \qquad
25. Write an equation with exactly three solutions:
$-2,0$, and 5 . Answers will vary.
25. \qquad
26. Graph the function and find the zeros and the domain and range.

$$
f(x)=\left|\sqrt{x^{2}-1}-3\right|-5
$$

27. Household Income. Use the data in Question 23.
(a) Use the REGRESSION feature to fit a quadratic function to the data.
27. (a) \qquad
(b) Use the function from part (a) to predict the income of a person of age 70 .
(b) \qquad

Chapter R, Form D

1. Oil Imports. The amount of oil imported to the U.S. from several countries in 2005 is shown below.

Source: http://tonto.eia.doe.gov
(a) What is the approximate amount of oil imported from Nigeria in 2005?
(b) From which country were about 195 million barrels of oil imported in $2005 ?$
(c) Estimate the range of the function that expresses the amount of oil imported into the U.S. as a function of country of origin (for the data given).

1. (a) \qquad
(b) \qquad
(c) \qquad
2. Business: Compound Interest. A person makes an investment at 2%, compounded annually. It has grown to $\$ 1785$ at the end of 1 yr. How much was originally invested?
3. \qquad
4. A function is given by $f(x)=2 x^{3}+4$. Find (a) $f(-2)$ and (b) $f(x+a)$.
5. (a) \qquad
(b) \qquad
6. What are the slope and the y-intercept of $y=-4 x+5$?
7. \qquad
8. Find an equation of the line with slope $\frac{2}{3}$, containing the point $(3,-6)$.
9. \qquad
10. Find the slope of the line containing the points $(10,7)$ and $(-2,3)$.
11. \qquad

Find the average rate of change.

7.

8.

7. \qquad
8. \qquad
9. Weekly Allowance. According to Fidelity Investments Investment Vision Magazine, the average weekly allowance A of children is directly proportional to their grade level G. Recently, the average allowance of a 9 th-grade student was $\$ 9.66$ per week. Find an equation of variation expressing A as a function of G.
9. \qquad
10. Business: Profit-and-Loss Analysis. Office Supplier, Inc. is planning on producing erasers. For the first year, the fixed costs are $\$ 5760$. The variables costs are estimated to be $\$ 6$ per dozen erasers. The revenue from each dozen erasers is expected to be $\$ 10.80$.
(a) Formulate a function $C(x)$ for the total cost of producing x dozen erasers.
(b) Formulate a function $R(x)$ for the total revenue from the sale of x dozen erasers.
(c) Formulate a function $P(x)$ for the total profit from the production and sale of x dozen erasers.
(d) How many dozen erasers must Office Supplier sell in order to break even?
10. (a) \qquad
(b) \qquad
(c) \qquad
(d) \qquad
11. Economics: Equilibrium Point. Find the equilibrium point for the demand and supply functions:

$$
\begin{aligned}
& \text { Demand: } q=(x-4)^{2}, 0 \leq x \leq 4, \\
& \text { Supply: } q=x^{2}+3 x+5
\end{aligned}
$$

given that x is the unit price, in dollars, and q is the quantity demanded or supplied, in thousands.
11.

Use the vertical-line test to determine whether each of the following is the graph of a function.
12.

13.

12.
13. \qquad
14. For the following graph of function f, determine
(a) $f(3)$; (b) the domain; (c) all x-values such that $f(x)=2$; and (d) the range.

14. (a) \qquad
(b) \qquad
(c) \qquad
(d) \qquad
15. Graph: $f(x)=-\frac{2}{x}$.
15.

16. Convert to rational exponents: $\frac{3}{\sqrt{x}}$.
17. Convert to radical notation: $y^{-5 / 9}$.
18. Graph: $f(x)=\frac{x^{2}-16}{x-4}$.
18.

Determine the domain of the function.
19. $f(x)=\frac{x^{2}+4 x}{(x-4)(x+8)}$
19.
20.
20. $f(x)=\sqrt{3 x-2}$
21. Write interval notation for the following graph.

21.
22. Graph: $f(x)= \begin{cases}x^{2}-4, & \text { for } x \geq 0 \\ x+1, & \text { for } x<0\end{cases}$
22.

23. Wind Friction. Wind friction, or air resistance, increases with speed. The table below shows some measurements made in a wind tunnel.

Velocity, v (in kilometers per hour)	Force of Resistance, f (in newtons)
10	3
21	4.2
34	6.2
40	7.1
45	15.1
52	29.0

(a) Make a scatterplot of the data.
(b) Decide whether the data seem to fit a quadratic function.
(c) Using the data points $(21,4.2),(40,7.1)$, and $(45,15.1)$, find a quadratic function that fits the data.
(d) Use the function to estimate force of resistance when velocity is $60 \mathrm{~km} / \mathrm{h}$.
(c) \qquad

(b) \qquad
(d) \qquad
24. Simplify: $\left(81^{3 / 4}\right)^{-1 / 3}$.
24. \qquad
25. Write an equation with exactly three solutions:
$-1,4$, and -2 . Answers will vary.
25. \qquad
26. Graph the function and find the zeros and the domain and range.

$$
f(x)=\left|\sqrt[3]{x^{2}+1}\right|-4
$$

26.

27. Wind Friction. Use the data in Question 23.
(a) Use the REGRESSION feature to fit a quadratic function to the data.
(b) Use the function from part (a) to estimate the force of resistance when velocity is $60 \mathrm{~km} / \mathrm{h}$.
27. (a) \qquad
(b) \qquad

CALCULUS AND ITS APPLICATIONS

Chapter R, Form E

1. Heating Oil. The average retail price per gallon of home heating oil in the United States for several years is shown below.

(a) What was the approximate price per gallon of heating oil in $2003 ?$
(b) In what year was the average price per gallon for heating oil approximately $\$ 1.25$?
(c) Estimate the range of the function that expresses average price per gallon of heating oil as a function of year (for the years given).
2. Business: Compound Interest. A person makes an investment at 3%, compounded annually. It has grown to $\$ 824$ at the end of 1 yr. How much was originally invested?
3. \qquad
4. A function is given by $f(x)=2 x^{2}+3$. Find (a) $f(-1)$ and (b) $f(a-3)$.
5. (a) \qquad
(b) \qquad
6. What are the slope and the y-intercept of $y=4 x-\frac{1}{2}$?
7. \qquad
8. Find an equation of the line with slope $-\frac{5}{8}$, containing the point $(4,0)$.
9. \qquad
10. Find the slope of the line containing the points $(-6,4)$ and $(2,-2)$.
11. (a) \qquad
(b) \qquad
(c) \qquad全

Find the average rate of change.

7.

7.
8. \qquad
9. Use of Aluminum Cans. The number N of aluminum cans used each year is directly proportional to the number of people P using the cans. It is known that 250 people use 60,000 cans in one year. Find an equation of variation expressing N as a function of P.
9. \qquad
10. Business: Profit-and-Loss Analysis. Workshop of Westfield is planning on producing a new model hammer. For the first year, the fixed costs are $\$ 24,000$. The variable costs for producing each hammer are $\$ 12$. The revenue from each hammer is expected to be $\$ 18$.
(a) Formulate a function $C(x)$ for the total cost of producing x hammers.
(b) Formulate a function $R(x)$ for the total revenue from the sale of x hammers.
(c) Formulate a function $P(x)$ for the total profit from the production and sale of x hammers.
(d) How many hammers must the company sell in order to break even?
10. (a) \qquad
(b) \qquad
(c) \qquad
(d) \qquad
11. Economics: Equilibrium Point. Find the equilibrium point for the demand and supply functions:

Demand: $q=(x-6)^{2}, 0 \leq x \leq 6$,
Supply: $q=\frac{4}{9} x^{2}$,
given that x is the unit price, in dollars, and q is the quantity demanded or supplied, in thousands.
11. \qquad

Use the vertical-line test to determine whether each of the following is the graph of a function.
12.

13.

12.
13. \qquad
14. For the following graph of function f, determine
(a) $f(-1)$; (b) the domain; (c) all x-values such that $f(x)=0$; and (d) the range.

14. (a) \qquad
(b) \qquad
(c) \qquad
(d) \qquad
15. Graph: $f(x)=\frac{6}{x-3}$.
15.

16. Convert to rational exponents: $\frac{6}{\sqrt[5]{m}}$.
17. Convert to radical notation: $x^{-3 / 4}$.
18. Graph: $f(x)=\frac{x^{2}+2 x-8}{x+4}$.
16. \qquad
17. \qquad
18.

19. $f(x)=\frac{x^{2}+4 x}{(x+2)(x-5)}$
20. $f(x)=\sqrt{4 x-1}$
21. Write interval notation for the following graph.

19.
20. \qquad
21. \qquad
22. Graph: $f(x)= \begin{cases}x^{2}-4, & \text { for } x>1 \\ x+3, & \text { for } x \leq 1\end{cases}$
22.

23. Small Business. The following table shows the number of new small-business incorporations for various years.

Number of years since 1990, x	Number of New Incorporations, C (in thousands)
1	629
2	667
3	707
4	742
5	770
6	786
7	799

(Source: U.S. Small Business Administration)
(a) Make a scatterplot of the data.
(b) Decide whether the data seem to fit a quadratic function.
(b)

(c) Using the data points $(1,629),(3,707)$, and $(6,786)$, find a quadratic function that fits the data.
(c) \qquad
(d) Use the function to estimate the number of new small-business incorporations 20 years after 1990.
(d)
24. Simplify: $\left(256^{-1 / 2}\right)^{3 / 4}$.
24. \qquad
25. Write an equation that has exactly three solutions:

0,6 , and -5 . Answers will vary.
25. \qquad
26. Graph the function and find the zeros and the domain and range.

$$
f(x)=\left|\sqrt[3]{2-x^{2}}\right|-2
$$

26.

27. Small Business. Use the data in Question 23.
(a) Use the REGRESSION feature to fit a quadratic function to the data.
27. (a) \qquad
(b) Use the function from part (a) to predict the number of new small business incorporations in 2010, 20 years after 1990.
(b) \qquad

CALCULUS AND ITS APPLICATIONS

Chapter R, Form F

1. Gasoline Prices. The average retail price per gallon of gasoline in U.S. cities for several years is shown below.

(a) What was the approximate price per gallon for gasoline in 2005?
(b) In which year was the average price per gallon $\$ 1.44$?
(c) Estimate the range of the function that expresses average price per gallon of gasoline in a U.S. city as a function of year.
2. (a) \qquad
(b) \qquad
(c) \qquad
3. Business: Compound Interest. A person makes an investment at 1.5%, compounded annually. It has grown to $\$ 761.25$ at the end of 1 yr . How much was originally invested?
4. \qquad
5. A function is given by $f(x)=x^{3}-4$. Find (a) $f(-2)$ and (b) $f(x+h)$.
6. (a) \qquad
(b) \qquad
7. \qquad
8. Find an equation of the line with slope $-\frac{1}{4}$, containing the point $(2,-8)$.
9. Find the slope of the line containing the points $(-9,1)$ and $(-5,-2)$.
10. \qquad
11. \qquad

Find the average rate of change.

7.

8.

7.
8.
9. Hooke's Law. The distance d that a spring is stretched by a hanging object is directly proportional to the mass m of the object. A $5-\mathrm{kg}$ object stretches a particular spring 28 cm . Find an equation of variation expressing d as a function of m.
10. Business: Profit-and-Loss Analysis. A manufacturing company has fixed costs of $\$ 15,000$ for producing a specialty soap mold. Thereafter the variable costs are $\$ 0.95$ for each bar of soap produced in the mold. The revenue from each specialty soap is expected to be $\$ 3.50$.
(a) Formulate a function $C(x)$ for the total cost of producing x specialty soaps.
(b) Formulate a function $R(x)$ for the total revenue from the sale of x specialty soaps.
(c) Formulate a function $P(x)$ for the total profit from the production and sale of x specialty soaps.
(d) How many specialty soaps must the company sell in order to break even?
11. Economics: Equilibrium Point. Find the equilibrium point for the demand and supply functions:

$$
\begin{aligned}
& \text { Demand: } q=(x-8)^{2}, \quad 0 \leq x \leq 8 \\
& \text { Supply: } q=\frac{9}{25} x^{2}
\end{aligned}
$$

given that x is the unit price, in dollars, and q is the quantity demanded or supplied, in thousands.
10. (a) \qquad
(b) \qquad
(c)
(d) \qquad

Use the vertical-line test to determine whether each of the following is the graph of a function.
12.

13.

12.
13.
14. For the following graph of function f, determine
(a) $f(1)$; (b) the domain; (c) all x-values such that $f(x)=3$; and (d) the range.

14. (a)
(b) \qquad
(c) \qquad
(d) \qquad
15. Graph: $f(x)=\frac{4}{x-4}$.
15.

16. Convert to rational exponents: $\frac{4}{\sqrt[6]{m^{5}}}$.
17. Convert to radical notation: $y^{-1 / 3}$.
18. Graph: $f(x)=\frac{x^{2}-x-6}{x+2}$.
17.
18.

Determine the domain of the function.
19. $f(x)=\frac{x^{2}-x}{(x+1)(x-2)}$
20. $f(x)=\frac{1}{\sqrt{2-x}}$
21. Write interval notation for the following graph.

19. \qquad
20. \qquad
21.
22. Graph: $f(x)=\left\{\begin{array}{cc}-x^{2}-3, & \text { for } x \geq-2 \\ x-1, & \text { for } x<-2\end{array}\right.$
22.

23. Pizza Prices. Pizza Unlimited has the following prices, in dollars, for pizzas of the given diameter, in inches.

Diameter, d	Price, p
6	5.00
8	6.00
12	8.50
16	11.50
24	20.00

(a) Make a scatterplot of the data.
23. (a)

(b) Decide whether the data seem to fit a quadratic function.
(b)
(c) Using the data points $(6,5),(8,6)$, and $(16,11.50)$, find a quadratic function that fits the data.
(d) Use the function to estimate the price of a pizza with a 20 -in. diameter.
(c) \qquad
(d) \qquad
24. Simplify: $\left(8^{2 / 3}\right)^{-5 / 2}$.
24. \qquad
25. Write an equation that has exactly three solutions:
$2,-4$, and 6 . Answers will vary.
25. \qquad
26. Graph the function and find the zeros and the domain and range.

$$
f(x)=\sqrt[3]{\left|10-x^{2}\right|}-4
$$

26.

27. Pizza Prices. Use the data in Question 23.
(a) Use the REGRESSION feature to fit a quadratic function to the data.
(b) Use the function from part (a) to estimate the price of a pizza with a $20-\mathrm{in}$. diameter.
27. (a) \qquad
(b) \qquad

