TEST BANK

CALCULUS AND ITS APPLICATIONS

United States is shown below.

1.

Average Farm Size. The average size of a farm in the

Name:

Chapter R, Form A

- 500 450 400 350 300 850 250 150 150 150 100 50 0 1970 1975 1980 1985 1990 1995 2000 2005 Year
- (a) What was the approximate average farm size in 2000?
- (b) In what year was the average farm size approximately 460 acres?
- (c) Estimate the range of the function that expresses average farm size as a function of the year.
- 2. Business: Compound Interest. A person makes an investment at 4%, compounded annually. It has grown to \$1406.08 at the end of 1 yr. How much was originally invested?
- **3.** A function is given by $f(x) = 3x^2 x$. Find (a) f(-4) and (b) f(x+a).
- 4. What are the slope and the *y*-intercept of $y = \frac{1}{2}x 6$?
- 5. Find an equation of the line with slope $\frac{2}{5}$, containing the point (5, -2).
- 6. Find the slope of the line containing the points (-5, 4) and (3, -6).

1. (a)
(b)
(c)
2
3. (a)
(b)
4
5
6

Find the average rate of change.

Use the vertical-line test to determine whether each of the following is the graph of a function.

14. For the following graph of function f, determine
(a) f (-2); (b) the domain; (c) all x-values such that f(x) = 4; and (d) the range.

16. _____

17. _____

16. Convert to rational exponents: $\frac{3}{\sqrt[4]{n}}$.

17. Convert to radical notation: $y^{-2/3}$.

18. Graph:
$$f(x) = \frac{x^2 - 3x - 10}{x + 2}$$
.

2 x -10 -8 -6 -4 -2 2 4 8 10 6 -2 -4 -6 -8 -10

Determine the domain of the function.

19.
$$f(x) = \frac{x^2 + 4}{(x - 3)(x + 2)}$$

20.
$$f(x) = \sqrt{x+5}$$

- **21.** Write interval notation for the following graph.

20. _____

22. Graph:
$$f(x) = \begin{cases} x^2 - 3, \text{ for } x \ge 0 \\ -2x, \text{ for } x < 0 \end{cases}$$

23. World Wide Web Sites. The following table shows the growth of world wide web sites from 2002 through 2007.

Year, x (Since 2000)	Number of Active Web Sites, W (in millions)
2	15
3	17
4	22
5	26
6	35
7	51

(Source: Based on graph at Netcraft, www.netcraft.com, 2007)

- (a) Make a scatterplot of the data.
- (b) Decide whether the data seem to fit a quadratic function.
- (c) Using the data points (2, 15), (5, 26), and (7, 51), find a quadratic function that fits the data.
- (d) Use the function from part (c) to estimate the number of active web sites in 2012.

24.	Simplify: $(625^{1/10})^{-5/2}$.	24
25.	Write an equation with exactly three solutions: -2 , 4, and 6. Answers will vary.	25

26. Graph the function and find the zeros and the domain and range.

$$f(x) = \sqrt[3]{|x^2 - 9|} - 3.$$

26.

- 27. Active Web Sites. Use the data in Question 23.
 - (a) Use the REGRESSION feature to fit a quadratic function to the data.
 27. (a) ______
 - (b) Use the function from part (a) to predict the number of active websites in 2012.

(b) _____

CALCULUS AND ITS APPLICATIONS

Name:

Chapter R, Form B

1. Invasive Species Management Funding. The amount of funding provided by ERS (Economic Research Service of the USDA) to programs that addressed invasive species in 2003-2006 is shown below.

Use the graph to answer the following.

- (a) What was the approximate level of funding by ERS for programs for only animal disease pests in 2003-2006?1.
- (b) Which type of invasive pest program received approximately \$2 million from ERS in 2003-2006?
- (c) Estimate the range of the function that expresses ERS funding for programs by type of invasive pest in 2003-2006.
- 2. Business: Compound Interest. A person makes an investment at 9%, compounded annually. It has grown to \$1144.50 at the end of 1 yr. How much was originally invested?
- **3.** A function is given by $f(x) = 3x^2 5$. Find (a) f(-7) and (b) f(x+1).
- 4. What are the slope and the *y*-intercept of y = 3x + 2?
- 5. Find an equation of the line with slope $\frac{5}{8}$, containing the point (6, -2).
- 6. Find the slope of the line containing the points (6, -5) and (2, 3).

1. (a)	
- (b)	
5	
(C)	
2	
3. (a) . (b) .	
4	
5	
6	

Find the average rate of change.

8. .

- **9.** Ohm's Law. The electrical current I, in amperes, in a circuit is directly proportional to the voltage V. When 45 volts are applied, the current is 15 amperes. Find an equation of variation expressing I as a function of V.
- 10. Business: Profit-and-Loss Analysis. Aldonna's is planning on producing a ladies' shoe. For the first year, the fixed costs are \$135,000. The variable costs for producing each pair of shoes are \$35. The revenue from the sale of each pair of shoes is expected to be \$70.
 - (a) Formulate a function C(x) for the total cost of producing x pairs of shoes.
 - (b) Formulate a function R(x) for the total revenue from the sale of x pairs of shoes.
 - (c) Formulate a function P(x) for the total profit from the production and sale of x pairs of shoes.
 - (d) How many pairs of shoes must Aldonna's sell in order to break even?
- **11.** *Economics: Equilibrium Point.* Find the equilibrium point for the demand and supply functions:

and

Supply:
$$a = x^2 + 5x + 2$$
.

given that x is the unit price, in dollars, and q is the quantity demanded or supplied, in thousands.

Demand: $q = (x - 6)^2$, $0 \le x \le 6$,

9. _____

- 10. (a) _____
 - (b) _____
 - (c) _____
 - (d) _____

Use the vertical-line test to determine whether each of the following is the graph of a function.

14. For the following graph of function f, determine
(a) f (-2); (b) the domain; (c) all x-values such that f(x) = 1; and (d) the range.

у

-1 -2 -3 -4 -5 3

x

5

4

15. Graph:
$$f(x) = \frac{2}{x}$$
.

16. _____

17. _____

16. Convert to rational exponents: $\frac{5}{\sqrt[3]{n^2}}$.

17. Convert to radical notation: $y^{3/4}$.

18. Graph:
$$f(x) = \frac{x^2 - 9}{x + 3}$$
.

Determine the domain of the function.

19.
$$f(x) = \frac{x^2 - 1}{(x+3)(x-4)}$$

20.
$$f(x) = \frac{1}{\sqrt{x-3}}$$

21. Write interval notation for the following graph.

$$\frac{\left(\begin{array}{c} \\ p \end{array}\right)}{p \quad q}$$

19. _____

20. _____

21._____

10

23. United States Farms. The following table shows the number of farms, in millions, in the U.S. for various years.

Number of Years since 1900, x	Number of Farms (in millions), f	
0	5.7	
10	6.4	
20	6.5	
30	6.5	23. (a
40	6.3	_ 01 (4
50	5.6	Ť
60	4.0	
70	2.9	
80	2.4	
90	2.1	
100	2.2	

- (a) Make a scatterplot of the data.
- (b) Decide whether the data seem to fit a quadratic function.
- (c) Using the data points (40, 6.3), (60, 4.0), and (100, 2.1), find a quadratic function that fits the data.
- (d) Use the function from part (c) to estimate the number of farms in the U.S. in 2020, 120 years after 1900.

24. Simplify: $(625^{5/2})^{1/10}$.

24. _____

25. _____

- Write an equation with exactly three solutions:-8, 1, and 2. Answers will vary.
- **26.** Graph the function and find the zeros and the domain and range of the function:

$$f(x) = \left|\sqrt{x^2 - 4} - 5\right| - 6.$$

- 27. United States Farms. Use the data in Question 23.
 - (a) Use the REGRESSION feature to fit a cubic function to the data.

27. (a) _____

(b) ______

(b) Use the function from part (a) to estimate the numbers of U.S. farms in 2020.

12

CALCULUS AND ITS APPLICATIONS

Name:

Chapter R, Form C

- 80,000 (in thousands of bushels) 70,000 60,000 Harvest 50,000 40,000 30,000 20,000 10,000 0 COTH, Grain for beans, barley Whear Oaks Crop
- **1.** *Grain Harvest.* The number of bushels of several crops harvested in the U.S. in 2006 is shown below.

- (a) What was the approximate harvest of wheat in 2006?
- (b) Which crop had a harvest of approximately 3 million bu in 2006?
- (c) Estimate the range of the function that expresses volume of harvest in 2006 as a function of type of crop for the data provided.
- 2. Business: Compound Interest. A person makes an investment at 4%, compounded annually. It has grown to \$1310.40 at the end of 1 yr. How much was originally invested?
- **3.** A function is given by $f(x) = 4x^2 + x$. Find (a) f(-4) and (b) f(x-2).
- 4. What are the slope and the *y*-intercept of y = 0.5x 8?
- 5. Find an equation of the line with slope $-\frac{2}{3}$, containing the point (5, -3).
- 6. Find the slope of the line containing the points (-2, -6) and (5, 4).

1. (a) _	
(b) _	
(c) _	
2	
3. (a) _ (b) _	
4	
5	
6	

Find the average rate of change.

- 9. Weight on the Moon. The weight M of an object on the moon is directly proportional to its weight E on earth. A person who weighs 192 lb on Earth weighs 32 lb on the moon. Find an equation of variation expressing E as a function of M.
- 10. Business: Profit-and-Loss Analysis. Sweet Stuff is planning to introduce lollipops to their line of candies. For the first year, the fixed costs are \$10,000. The variable costs for producing each hundred lollipops are estimated to be \$10. The revenue from each hundred lollipops is expected to be \$30.
 - (a) Formulate a function C(x) for the total cost of producing x hundred lollipops.
 - (b) Formulate a function R(x) for the total revenue from the sale of x hundred lollipops.
 - (c) Formulate a function P(x) for the total profit from the production and sale of x hundred lollipops.
 - (d) How many hundred lollipops must Sweet Stuff sell in order to break even?
- **11.** *Economics: Equilibrium Point.* Find the equilibrium point for the demand and supply functions:

Demand:
$$q = (x - 5)^2$$
, $0 \le x \le 5$,
Supply: $q = x^2 + 2x + 7$,

given that x is the unit price, in dollars, and q is the quantity demanded or supplied, in thousands.

- 7. ______ 8. _____

9. _____

10. (a) _____

(c) _____

Use the vertical-line test to determine whether each of the following is the graph of a function.

14. For the following graph of function f, determine
(a) f(1); (b) the domain; (c) all x-values such that f(x) = 2; and (d) the range.

16. _____

16. Convert to rational exponents: $\frac{2}{\sqrt[5]{y^2}}$.

17. Convert to radical notation: $x^{9/10}$.

18. Graph:
$$f(x) = \frac{x^2 + 5x + 6}{x + 2}$$
.

19.
$$f(x) = \frac{x^2 - 3}{(x - 6)(x + 2)}$$

20.
$$f(x) = \frac{1}{\sqrt{x+6}}$$

- **21.** Write interval notation for the following graph.

19. _____

22. Graph:
$$f(x) = \begin{cases} x^2 + 1, & \text{for } x \ge -1 \\ x - 2, & \text{for } x < -1 \end{cases}$$

23. *Household Income.* The following table shows the median U.S. household income for people of various ages.

19.528,77029.547,37939.558,084	Age, a
29.5 47,379 39.5 58,084	19.5
39.5 58,084	29.5
	39.5
49.5 62,462	49.5
59.5 52,260	59.5

(Source: U.S. Bureau of the Census; age groups are a - 5 yr to a + 5 yr for each a.)

- (a) Make a scatterplot of the data.
- (b) Decide whether the data seem to fit a quadratic function.
- (c) Using the data points (29.5, 47, 379), (49.5, 62, 462), and (59.5, 52, 260), find a quadratic function that fits the data.
- (d) Use the function to estimate the income of a person of age 70.

24.	Simplify: $(81^{3/2})^{-1/3}$.	24
25.	Write an equation with exactly three solutions: -2 , 0, and 5. Answers will vary.	25

26. Graph the function and find the zeros and the domain and range.

$$f(x) = \left|\sqrt{x^2 - 1} - 3\right| - 5.$$

26.

(b) _____

27. Household Income. Use the data in Question 23.

(b) Use the function from part (a) to predict the income of a person of age 70.

18

CALCULUS AND ITS APPLICATIONS

Name:

Chapter R, Form D

1. *Oil Imports.* The amount of oil imported to the U.S. from several countries in 2005 is shown below.

- (a) What is the approximate amount of oil imported from Nigeria in 2005?
- (b) From which country were about 195 million barrels of oil imported in 2005?
- (c) Estimate the range of the function that expresses the amount of oil imported into the U.S. as a function of country of origin (for the data given).
- 2. Business: Compound Interest. A person makes an investment at 2%, compounded annually. It has grown to \$1785 at the end of 1 yr. How much was originally invested?
- **3.** A function is given by $f(x) = 2x^3 + 4$. Find (a) f(-2) and (b) f(x+a).
- 4. What are the slope and the *y*-intercept of y = -4x + 5?
- 5. Find an equation of the line with slope $\frac{2}{3}$, containing the point (3, -6).
- 6. Find the slope of the line containing the points (10,7) and (-2,3).

1. (a)
(b)
(c)
2
3. (a) (b)
4
5
6

Find the average rate of change.

- (b) Formulate a function R(x) for the total revenue from the sale of x dozen erasers.
- (c) Formulate a function P(x) for the total profit from the production and sale of x dozen erasers.
- (d) How many dozen erasers must Office Supplier sell in order to break even?
- Economics: Equilibrium Point. Find the equilibrium 11. point for the demand and supply functions:

Demand: $q = (x - 4)^2$, $0 \le x \le 4$, Supply: $q = x^2 + 3x + 5$.

given that x is the unit price, in dollars, and q is the quantity demanded or supplied, in thousands.

10. (a) _____

(d) _____

11. _

Use the vertical-line test to determine whether each of the following is the graph of a function.

14. For the following graph of function f, determine
(a) f (3); (b) the domain; (c) all x-values such that f(x) = 2; and (d) the range.

17. _____

16. Convert to rational exponents: $\frac{3}{\sqrt{x}}$.

17. Convert to radical notation:
$$y^{-5/9}$$
.

18. Graph:
$$f(x) = \frac{x^2 - 16}{x - 4}$$
.

Determine the domain of the function.

19.
$$f(x) = \frac{x^2 + 4x}{(x-4)(x+8)}$$

20.
$$f(x) = \sqrt{3x - 2}$$

19. _____

20. _____

21. _____

~

22. Graph:
$$f(x) = \begin{cases} x^2 - 4, & \text{for } x \ge 0 \\ x + 1, & \text{for } x < 0 \end{cases}$$

23. Wind Friction. Wind friction, or air resistance, increases with speed. The table below shows some measurements made in a wind tunnel.

Velocity, v (in kilometers per hour)	Force of Resistance, f (in newtons)
10	3
21	4.2
34	6.2
40	7.1
45	15.1
52	29.0

- (a) Make a scatterplot of the data.
- (b) Decide whether the data seem to fit a quadratic function.
- (c) Using the data points (21, 4.2), (40, 7.1), and (45, 15.1), find a quadratic function that fits the data.
- (d) Use the function to estimate force of resistance when velocity is 60 km/h.

24.	Simplify: $(81^{3/4})^{-1/3}$.	24
25.	Write an equation with exactly three solutions: -1 , 4, and -2 . Answers will vary.	25

26. Graph the function and find the zeros and the domain and range.

$$f(x) = \left| \sqrt[3]{x^2 + 1} \right| - 4.$$

26.

27. Wind Friction. Use the data in Question 23.

(a)	Use the REGRESSION feature to fit a quadratic		
	function to the data.	27. (a)
		(/

(b) Use the function from part (a) to estimate the force of resistance when velocity is 60 km/h.(b) ______

CALCULUS AND ITS APPLICATIONS

Name:

Chapter R, Form E

1. *Heating Oil.* The average retail price per gallon of home heating oil in the United States for several years is shown below.

- (a) What was the approximate price per gallon of heating oil in 2003?
- (b) In what year was the average price per gallon for heating oil approximately \$1.25?
- (c) Estimate the range of the function that expresses average price per gallon of heating oil as a function of year (for the years given).
- 2. Business: Compound Interest. A person makes an investment at 3%, compounded annually. It has grown to \$824 at the end of 1 yr. How much was originally invested?
- **3.** A function is given by $f(x) = 2x^2 + 3$. Find (a) f(-1) and (b) f(a-3).
- 4. What are the slope and the *y*-intercept of $y = 4x \frac{1}{2}$?
- 5. Find an equation of the line with slope $-\frac{5}{8}$, containing the point (4,0).
- 6. Find the slope of the line containing the points (-6, 4) and (2, -2).

1. (a)	
(b)	
(c)	
2	
3. (a)	
(b)	
4	
5	
6	

8. .

9. _____

Find the average rate of change.

- **9.** Use of Aluminum Cans. The number N of aluminum cans used each year is directly proportional to the number of people P using the cans. It is known that 250 people use 60,000 cans in one year. Find an equation of variation expressing N as a function of P.
- 10. Business: Profit-and-Loss Analysis. Workshop of Westfield is planning on producing a new model hammer. For the first year, the fixed costs are \$24,000. The variable costs for producing each hammer are \$12. The revenue from each hammer is expected to be \$18.
 - (a) Formulate a function C(x) for the total cost of producing x hammers.
 - (b) Formulate a function R(x) for the total revenue from the sale of x hammers.
 - (c) Formulate a function P(x) for the total profit from the production and sale of x hammers.
 - (d) How many hammers must the company sell in order to break even?
- **11.** *Economics: Equilibrium Point.* Find the equilibrium point for the demand and supply functions:

Demand:
$$q = (x - 6)^2$$
, $0 \le x \le 6$,
Supply: $q = \frac{4}{9}x^2$,

given that x is the unit price, in dollars, and q is the quantity demanded or supplied, in thousands.

10. (a) ______ (b) _____

(c) _____

(d) _____

Use the vertical-line test to determine whether each of the following is the graph of a function.

14. For the following graph of function f, determine
(a) f (-1); (b) the domain; (c) all x-values such that f(x) = 0; and (d) the range.

16. _____

16. Convert to rational exponents: $\frac{6}{\sqrt[5]{m}}$.

17. Convert to radical notation: $x^{-3/4}$.

18. Graph:
$$f(x) = \frac{x^2 + 2x - 8}{x + 4}$$
.

Determine the domain of the function.

19.
$$f(x) = \frac{x^2 + 4x}{(x+2)(x-5)}$$

20.
$$f(x) = \sqrt{4x - 1}$$

21. Write interval notation for the following graph.

19.	

20. _____

22. Graph:
$$f(x) = \begin{cases} x^2 - 4, & \text{for } x > 1 \\ x + 3, & \text{for } x \le 1 \end{cases}$$

23. *Small Business.* The following table shows the number of new small-business incorporations for various years.

Number of years since 1990, x	Number of New Incorporations, C (in thousands)
1	629
2	667
3	707
4	742
5	770
6	786
7	799

(Source: U.S. Small Business Administration)

- (a) Make a scatterplot of the data.
- (b) Decide whether the data seem to fit a quadratic function.
- (c) Using the data points (1, 629), (3, 707), and (6, 786), find a quadratic function that fits the data.
- (d) Use the function to estimate the number of new small-business incorporations 20 years after 1990.

24.	Simplify:	$(256^{-1/2})^{3/4}$.
-----	-----------	------------------------

24. _____

- 25. Write an equation that has exactly three solutions:
 0, 6, and -5. Answers will vary.
 25. _____
- 26. Graph the function and find the zeros and the domain and range.

$$f(x) = \left| \sqrt[3]{2 - x^2} \right| - 2.$$

26.

27. Small Business. Use the data in Question 23.

after 1990.

- (a) Use the REGRESSION feature to fit a quadratic function to the data.
 (b) Use the function from part (a) to predict the number of new small business incorporations in 2010, 20 years
 - (b) _____

CALCULUS AND ITS APPLICATIONS

Name:

Chapter R, Form F

- \$3.00 \$2.75 \$2.50 \$2.25 Price per gallon \$2.00 \$1.75 \$1.50 \$1.25 \$1.00 \$0.75 \$0.50 \$0.25 \$0.00 2000 2001 2002 2003 2004 2005 2006 Year Source: www.eia.doe.gov
- **1.** *Gasoline Prices.* The average retail price per gallon of gasoline in U.S. cities for several years is shown below.

- (a) What was the approximate price per gallon for gasoline in 2005?
- (b) In which year was the average price per gallon \$1.44?
- (c) Estimate the range of the function that expresses average price per gallon of gasoline in a U.S. city as a function of year.
- 2. Business: Compound Interest. A person makes an investment at 1.5%, compounded annually. It has grown to \$761.25 at the end of 1 yr. How much was originally invested?
- **3.** A function is given by $f(x) = x^3 4$. Find (a) f(-2) and (b) f(x+h).
- 4. What are the slope and the *y*-intercept of y = 1.5x + 6?
- 5. Find an equation of the line with slope $-\frac{1}{4}$, containing the point (2, -8).
- 6. Find the slope of the line containing the points (-9, 1) and (-5, -2).

1. (a)	_
(b)	_
(c)	_
2	
3. (a)	_
(b)	_
4	
5	_
6	_

Find the average rate of change.

- (c) Formulate a function P(x) for the total profit from the production and sale of x specialty soaps.
- (d) How many specialty soaps must the company sell in order to break even?
- **11.** *Economics: Equilibrium Point.* Find the equilibrium point for the demand and supply functions:

Demand:
$$q = (x - 8)^2$$
, $0 \le x \le 8$,
Supply: $q = \frac{9}{25}x^2$,

given that x is the unit price, in dollars, and q is the quantity demanded or supplied, in thousands.

32

Use the vertical-line test to determine whether each of the following is the graph of a function.

14. For the following graph of function f, determine
(a) f(1); (b) the domain; (c) all x-values such that f(x) = 3; and (d) the range.

16._____

17. _____

16. Convert to rational exponents: $\frac{4}{\sqrt[6]{m^5}}$.

17. Convert to radical notation: $y^{-1/3}$.

18. Graph:
$$f(x) = \frac{x^2 - x - 6}{x + 2}$$
.

19. _____

20. _____

Determine the domain of the function.

19.
$$f(x) = \frac{x^2 - x}{(x+1)(x-2)}$$

20.
$$f(x) = \frac{1}{\sqrt{2-x}}$$

21. Write interval notation for the following graph.

22. Graph: $f(x) = \begin{cases} -x^2 - 3, & \text{for } x \ge -2 \\ x - 1, & \text{for } x < -2 \end{cases}$

23. *Pizza Prices.* Pizza Unlimited has the following prices, in dollars, for pizzas of the given diameter, in inches.

Diameter, d	Price, p
6	5.00
8	6.00
12	8.50
16	11.50
24	20.00

- (a) Make a scatterplot of the data.
- (b) Decide whether the data seem to fit a quadratic function.
- (c) Using the data points (6,5), (8,6), and (16,11.50), find a quadratic function that fits the data.
- (d) Use the function to estimate the price of a pizza with a 20-in. diameter.

24.	Simplify: $(8^{2/3})^{-5/2}$.	24
25	Write an equation that has exactly three solutions:	
20.	2, -4, and $6.$ Answers will vary.	25

26. Graph the function and find the zeros and the domain and range.

$$f(x) = \sqrt[3]{|10 - x^2|} - 4.$$

26.

- 27. *Pizza Prices.* Use the data in Question 23.
 - (a) Use the REGRESSION feature to fit a quadratic function to the data.
 27. (a) ______
 - (b) Use the function from part (a) to estimate the price of a pizza with a 20-in. diameter.

(b) _____