

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Decide whether the limit exists. If it exists, find its value.

-2

C) -2 A) Does not exist B) 0 D) -1 Find $x \rightarrow -1/2$ f(x). 10) 10) ____ f(x) 2 1 1 -1 × ż 1 -2 A) -1 B) Does not exist C) 0 D) -2

Use the graph to determine whether each statement is true or false.

9)

13) $\lim_{x \to -3} f(x)$ exists.

B) False

12) _____

 $x \rightarrow -1^-$

B) True

14) _____

B) False

B) False

B) False

18) _____

17) _____

B) False

19) _____

B) False

B) True

Graph the function and then find the specified limit. When necessary, state that the limit does not exist.

-10

-10 -8 -6 -4 -2

2

-2

-6

-10

4 6 8

1.

B)

B)

Solve the problem.

30) Given is a graph of a portion of the postage function, which depicts the cost (in cents) of mailing a letter, p, versus the weight (in ounces) of the letter, x. Find each limit, if it exists:

30)

A) 77; 99; 77 C) 99; 77; does not exist B) 77; 99; does not exist D) 77; 77; 77

31) Given is a graph of a portion of the postage function, which depicts the cost (in cents) of mailing 31) _____a letter, p, versus the weight (in ounces) of the letter, x. What is the postage for a letter weighing 1.1 ounces? 2 ounces? 2.1 ounces? Is the postage function continuous?

- B) 33 cents; 55 cents; 77 cents; no D) 55 cents; 55 cents; 77 cents; yes
- 32) Suppose that the cost, p, of shipping a 3-pound parcel depends on the distance shipped, x, according to the function p(x) depicted in the graph. Is p continuous at x = 50? at x = 500? at x = 1500? at x = 3000?

32) _

33) Suppose that the cost, p, of shipping a 3-pound parcel depends on the distance shipped, x, according to the function p(x) depicted in the graph. Find each limit, if it exists:

 $\lim_{x \to 100} \lim_{p(x), x \to 500} \lim_{p(x), x \to 1500} \lim_{x \to 1500} p(x)$

A) 5; 10; 15

C) 5; does not exist; does not exist

B) 5; does not exist; 15 D) 5; 5; 15

34) Suppose that the cost, C, of producing x units of a product can be illustrated by the given graph. 34) ______ Find each limit, if it exists:

35) Suppose that the cost, C, of producing x units of a product can be illustrated by the given graph. 35) _____ Is C(x) continuous at x = 50? x = 100? x = 150?

36) Suppose that the unit price, p, for x units of a product can be illustrated by the given graph. Find each limit, if it exists:

 $\lim_{x \to 50^{-}} \lim_{x \to 50^{+}} \lim_{x \to 50} \lim_{x \to 50} \lim_{x \to 75} \lim_{x \to 75} p(x),$

A) 8; 8; does not exist; 8	B) 8; 8; 8; 8
C) 10; 8; does not exist; 8	D) 10; 8; 8; 8

37) Suppose that the unit price, p, for x units of a product can be illustrated by the given graph. Is p 37) _____ continuous at x = 50? x = 100? x = 150?

38) Consider the learning curve defined in the graph. Depicted is the accuracy, p, expressed as a percentage, in performing a series of short tasks versus the accumulated amount of time spent practicing the tasks, t. Is p(t) continuous at t = 25? at t = 40? at t = 45?

39) Consider the learning curve defined in the graph. Depicted is the accuracy, p, expressed as a percentage, in performing a series of short tasks versus the accumulated amount of time spent practicing the tasks, t. Find each limit, if it exists:

 $\lim_{x \to 40^{-}} \lim_{x \to 40^{+}} \lim_{x \to 40^{+}} \lim_{p(x), x \to 40} p(x)$

	A) 40; 100; 100		B) 40; 100; does not exis	st	
	C) 100; 100; 100		D) 40; 40; 40		
Find the l	imit, if it exists.				
40)	$\lim_{x \to 6} (8x + 8)$				40)
	A) -40	B) 16	C) 8	D) 56	
41)	$\lim_{x \to 2} (x^2 + 8x - 2)$				41)
	A) 0	B) Does not exist	C) -18	D) 18	
42)	$\lim_{x \to 0} (x^2 - 5)$				42)
	A) 0	B) Does not exist	C) -5	D) 5	
43)	$\lim_{x \to 2} (x^3 + 5^{x^2} - 7x + 1)$				43)
	A) Does not exist	B) 0	C) 15	D) 29	
44)	$\lim_{x \to 2} (2^{x^5} - 2^{x^4} + 4^{x^3} + 2^{x^5})$	⁽² - 5)			44)
	A) 63	B) -1	C) 127	D) 31	
45)	$\lim_{x \to 2} \frac{x^2 + 4}{x + 2}$				45)
	A) Does not exist	B) 2	C) 4	D) 0	
46)	$\lim_{x \to -7} \frac{x^2 - 49}{x - 7}$				46)
	A) 14	B) 0	C) 1	D) Does not exist	

In the exercise below, the initial substitution of x = a yields the form 0/0. Look for ways to simplify the function algebraically, or use a table and/or graph to determine the limit. When necessary, state that the limit does not exist.

47)	$\lim_{x \to 7} \frac{x^2 - 49}{x - 7}$				47)
	A) Does not exist	B) 1	C) 7	D) 14	
48)	$\lim_{x \to -8} \frac{x^2 - 64}{x + 8}$				48)
	A) -16	B) -8	C) 1	D) Does not exist	
49)	$ \lim_{x \to 1} \frac{x^2 + 6x - 7}{x^2 - 1} $				49)
	A) - 3	B) Does not exist	C) 4	D) 0	
50)	$\lim_{x \to -3} \frac{2x^2 - 2x - 24}{9 - x^2}$				50)

-

$\frac{7}{3}$		B)	<u>7</u> 3	C)	$\frac{1}{3}$	D)	$\frac{1}{3}$	
51)	$\lim_{x \to 1} \frac{1 - x^3}{x - 1}$ A) -3		B) <u>3</u> 2		C) $\frac{3}{2}$		D) 3	51)
52)	$\lim_{x \to 2} \frac{x^3 - 8}{2 - x}$		B) -12		C) 12		D) 6	52)
53)	$\lim_{x \to 16} \frac{x - 16}{\sqrt{x - 4}}$		<i>b)</i> 12		() 12		<i>D</i>) 0	53)
.54)	A) -8		B) 8		C) -4		D) 16	54)
01)	$\begin{array}{c} \lim_{x \to 49} \frac{\sqrt{x}}{x-49} \\ \text{A) 0} \end{array}$		B) <u>1</u> 7		C) 7		D) $\frac{1}{14}$	
Find the 55)	limit, if it exists. $\lim_{x \to 0} \sqrt{x} = 2$							55)
	A) 2		B) 0		C) -2		D) Does not exist	
56)	$\lim_{x \to 7} \sqrt{x^2 + 14x}$ A) ±14	+ 49	B) Does not exi	st	C) 196		D) 14	56)
57)	$\lim_{x \to 1} \sqrt{x-2}$ A) -1		B) Does not exi	st	C) 1		D) 0	57)
58)	$\lim_{x \to 14} \sqrt{x^2 - 9}$							58)
59)	A) Does not exi	.st	в) _± √187		C) 93.5		D) \ \187	59)
	$x \rightarrow -7^{-} \sqrt{x^2 - 49}$ A) 0)	B) Does not exi	st	C) 3.5		D) ₇ √2	

Determine whether the function shown is continuous over the interval (-5, 5).

60)

A) Yes

62) 0 1-. ++ 1 2 3 4 -5 -4 -3 -2 -1 5 6 x .2 -6‡ A) Yes

B) No

61) _____

B) No

62) _____

B) No

63)

А

66)

B) No

64) _____

B) No

65) _____

B) No

Use the graph to answer the question.

69) Is f continuous at x = 1?

B) No

72) Is f continuous at x = 3?

B) No

70) _____

B) Yes

73) Is f continuous at x = 0?

74) Is f continuous at x = 4? y 6 2 1 -4 -3 -5 -2 2 3 6 -1_1 4 5 -2 -3--4--5--6-A) No

75) Is f continuous at x = 0?

B) No

B) No

74) _____

B) Yes

B) No

B) No

77) _____

76) ____

B) No

Evaluate or determine that the limit does not exist for each of the limits (a) $\lim_{x \to d_{-}} f(x)$, (b) $\lim_{x \to d_{+}} f(x)$, (c) $\lim_{x \to d_{-}} f(x)$ for the given function f and number d

for the given function f and number d. 78) $\begin{cases} x^2 - 5, & \text{for } x < 0 \\ -3, & \text{for } x \ge 0 \\ d = -1 \end{cases}$

78) _

A) (a) -5 B) (a) -3 (b) -3 (b) -5 (c) -3 (c) Does not exist C) (a) -5 D) (a) -4 (b) -3 (b) -4 (c) Does not exist (c) -4 79) ____ for x < 179) $\int 2x - 3$, for x = 11, for x > 1; d = 1 $f(x) = \begin{bmatrix} -4x + 8, \\ \end{bmatrix}$ B) (a) -1 A) (a) 4 (b) 4 (b) -1 (c) 3 (c) Does not exist C) (a) -1 D) (a) 4 (b) 4 (b) -1 (c) 3 (c) Does not exist $\int 3x - 10$, for $x \le 1$ 80) ____ 80) $f(x) = \begin{cases} 4x - 11, \text{ for } x > 1 \\ d = 1 \end{cases}$; d = 1A) (a) -10 B) (a) -7 (b) -11 (b) -7 (c) Does not exist (c) -7 D) (a) -11 C) (a) -7 (b) -7 (b) -10 (c) Does not exist (c) Does not exist $f(x) = \begin{cases} \frac{1}{x-4}, & \text{ for } x > 4\\ x^2 - 3x, & \text{ for } x \le 4 \end{cases}, \quad d = 4$ 81) 81) _____ A) (a) 4 B) (a) Does not exist (b) 4 (b) Does not exist (c) 4 (c) 4 C) (a) 4 D) (a) Does not exist (b) Does not exist (b) 4 (c) Does not exist (c) Does not exist

Determine the continuity of the function at the given points.

A) The function f is continuous at x = -3 but not at x = -2. B) The function f is continuous at both x = -3 and x = -2.

C) The function f is continuous at neither x = -3 nor x = -2. D) The function f is continuous at x = -2 but not at x = -3.

D) The function f is continuous at neither x = -2 nor x = 3.

85)
$$\begin{cases} 3, & \text{for } x = -1, \\ \frac{1}{3}x^3 - x - 1, & \text{for } x \neq -1 \\ & \text{at } x = -1 \text{ and } x = 1.5 \end{cases}$$

- A) The function f is continuous at x = -1 but not at x = 1.5.
- B) The function f is continuous at neither x = 1.5 nor x = -1.
- C) The function f is continuous at both x = 1.5 and x = -1.
- D) The function f is continuous at x = 1.5 but not at x = -1.

A) The function f is continuous at both x = 0 and x = 1.

- B) The function f is continuous at x = 0 but not at x = 1.
- C) The function f is continuous at neither x = 0 nor x = 1.
- D) The function f is continuous at x = 1 but not at x = 0.

88)

$$\begin{cases}
3, & \text{for } x = 1 \\
2 - \frac{1}{3}x^3, & \text{for } x \neq 1 \\
& \text{at } x = 1 \text{ and } x = 2
\end{cases}$$

4 + y $3 + \bullet$ $2 + \bullet$ $1 + \bullet$ -1 + 1 + 2 $-2 + \bullet$ $-3 + \bullet$

87) _

86)

A) The function f is continuous at both x = 2 and x = 1.

- B) The function f is continuous at x = 1 but not at x = 2.
- C) The function f is continuous at neither x = 2 nor x = 1.
- D) The function f is continuous at x = 2 but not at x = 1.

91)

$$f(x) = \begin{cases} 3, & \text{for } x = 3 \\ \frac{(3-x)}{(x+4)^2} - \frac{1}{4}x + 1, & \text{for } x \neq 3 \\ & \text{at } x = 3 \text{ and } x = 1 \end{cases}$$

90) ____

function 98) given by f(x) = $\int -5x + 6$, for $x \le 1$ -2x + 3, for x > 1

continuo

us at x =1? Why or why not?

99)

A) $\lim_{X \to 1} \sup_{f(x) = f(1)}$ No, $x \to 1$ f(x) does not exist B) $\int \frac{1}{x-4}, \quad \text{for } x > 4$ 99)

Is the function given by
$$f(x) = \begin{cases} x^2 - 2x, \text{ for } x \le 4 \\ A \end{cases}$$
 continuous at $x = 4$? Why or why not?
A) $\lim_{x \to 4} f(x) = f(4)$
Yes, $x \to 4$ $f(x) = f(4)$
No, $x \to 4$ $f(x)$ does not exist

Find the intervals on which the function is continuous.

¹⁰⁰⁾ Is the function given by $f(x) = x^2 - 15x + 56$ continuous over the interval (-7, 7)? Why or why 100) ____ not? A) No, since f(x) is not continuous at x = 7

B) Yes, f(x) is continuous at each point on (-7, 7)

Is the function given by $f(x) = \frac{1}{x+3}$ continuous over the interval (-∞, 0)? Why or why not?

A) Yes, f(x) is continuous at each point on $(-\infty, 0)$

B) No, since f(x) is not continuous at x = -3

102)

$$\frac{5}{102}$$

Is the function given by $f(x) = \frac{(x+1)^2 + 2}{(x+1)^2 + 2}$ continuous on \mathcal{R} ? Why or why not?

A) Yes, f(x) is continuous at each real number

B) No, since f(x) is not continuous at x = -1

103) ____

101) _____

Is the function given by $f(x) = \frac{x+5}{x^2-7x+12}$ continuous over the interval [-3, 3]? Why or why not? A) No, since f(x) is not continuous at x = 3B) Yes, f(x) is continuous at each point on [-3, 3]

¹⁰⁴⁾ Is the function given by $f(x) = \sqrt{2x+2}$ continuous continuous on \mathcal{R} ? 104) _____

A) No, since f(x) is not continuous over the interval $(-\infty, -1)$

B) Yes, f(x) is continuous at each real number

Solve the problem.

105) A coffee house sells coffee by the pound, charging \$8.75 per pound for quantities up to and including 60 pounds. Above 60 pounds, the coffee house charges \$7.75 per pound for the entire quantity, plus a quantity surcharge, k. If x represents the number of pounds, the price function is

p(x)Find k $\int 8.75$ such for $x \le 6$ 7.75 that, for x > 6

the price 105) function p is continuo us at x = 60. Then explain why it is preferabl e to have continuit y at x =60. A) k = 990; It is preferable so that the coffee house does not lose revenue. B) k = 602.5; It is preferable so that the coffee house makes a profit.

C) k = 60; It is preferable so that the coffee house does not lose revenue.

D) k = 447.5; It is preferable so that the coffee house makes a profit.

106) A biologist controls the humidity H (as a percentage) inside a terrarium. From an initial humidity level of 0%, she allows the humidity in the terrarium to increase by 7% per hour for the next 10 hours. After the 10th hour, she allows the terrarium to dry out (lose humidity) at the rate of 10% per hour. The humidity function H is defined by

106) _____

 $H(t) = \begin{cases} 7t, & \text{for } t \leq 10, \\ k - 10t, & \text{for } t > 10. \end{cases}$

Find k such that H is continuous at t = 24. Then explain why H must be continuous at t = 10 hours.

A) k = 130; H must be continuous at t = 10 hours because time changes continuously.

- B) k = 30; H must be continuous at t = 10 hours because the humidity level changes continuously.
- C) k = 170; H must be continuous at t = 10 hours because the humidity level changes continuously.
- D) k = 270; H must be continuous at t = 10 hours because time changes continuously.

Find the limit by using the TABLE and TRACE features of your graphing calculator.

107) $\lim_{x \to 25} \frac{\sqrt{x-5}}{x-25}$				107)
A) 0	B) <u>1</u> 5	C) 5	D) $\frac{1}{10}$	
108) $\lim_{x \to 49} \frac{7 - \sqrt{x}}{49 - x}$				108)
A) <u>1</u> 14	B) 7	C) 14	D) 0	
109) $\lim_{x \to 0} \frac{\sqrt{16 + x} - \sqrt{16 - x}}{x}$				109)
A) $\frac{1}{4}$	B) $\frac{1}{8}$	C) 4	D) 0	

110)	$\lim_{x \to 0} \frac{\sqrt{1-x}-1}{x}$	в) 1	() 1	ן 1	110)
	A) 2	2	C) 1	2	
111)	$\lim_{x \to 0} \frac{\sqrt{16+2x}-4}{x}$				111)
	A) $\frac{1}{4}$	B) 16	C) $\frac{1}{2}$	D) $\frac{1}{8}$	
112)	$\lim_{x \to 0} \frac{\sqrt{6+6x} - \sqrt{6}}{x}$				112)
	A) √6	B) $\frac{\sqrt{6}}{2}$	C) $\frac{1}{2}$	D) 0	
113)	$\lim_{x \to 0} \frac{5 - \sqrt{25 - x^2}}{x}$				113)
	A) 0	B) $\frac{1}{10}$	C) $\frac{1}{5}$	D) 10	
114)	$\lim_{x \to 2} \frac{x^2 - 9}{\sqrt{x^2 + 7}}$				114)
	A) $\frac{1}{4}$	B) 8	C) 3	D) 4	
115)	$\lim_{x \to 1} \frac{x^2 - 1}{\sqrt{2 - 2}}$				115)
	$A) \frac{1}{4}$	B) 1	C) 4	D) 2	
Provide a	n appropriate response.	•			
116)	Decide whether the functic statement supporting your	n $f(x) = x^2 + 6x - 3$ is cor conclusion.	ntinuous for all x, and pro	ovide a short	116)
	A) Yes, polynomial func B) No, there is a break in	tions are defined for all x	x = 0.		
	C) No, this polynomial is	s not defined for all x.	1 1	1 (1	
	function.	tions are continuous; the	e are no breaks in the gra	iph of a polynomial	

117) Given f(x) = x + 4 and g(x) = x - 4, where is the function f(x)/g(x) continuous? 117)

A) The function f(x)/g(x) is continuous for all x except x = -4 and x = 4.

- B) The function f(x)/g(x) is continuous for all x.
- C) The function f(x)/g(x) is continuous for all x except x = -4.
- D) The function f(x)/g(x) is continuous for all x except x = 4.

118)
$$f(x) = \sqrt[3]{4x} \text{ and } g(x) = x - 2, \text{ where is the function } f(x)/g(x) \text{ continuous?}$$
A) The function $f(x)/g(x)$ is continuous for all x except $x < 0$ and $x = -2$.

- B) The function f(x)/g(x) is continuous for all x except x = 2.
- C) The function f(x)/g(x) is continuous for all x except x = -2.
- D) The function f(x)/g(x) is continuous for all x.
- 119) Why does the general continuity principle regarding the quotient $\frac{g(x)}{f(x)}$ include the phrase 119) ______ "so long as the inputs x do not yield outputs f(x) = 0"?
 - A) The function g(x)/f(x) is not defined for any x such that f(x) = 0, and a function cannot be continuous at any point at which it is undefined.
 - B) Whenever f(x) = 0, the function g(x)/f(x) is so large that it would be difficult to graph it.
 - C) The quotient g(x)/f(x) is an invalid function unless there is no x for which f(x) = 0.
 - D) One needs to avoid an infinite g(x).
- 120) Write the formal notation for the principle "the limit of a quotient is the quotient of the limits" and include a statement of any restrictions on the principle.

A) $\lim_{\substack{x \to a \\ L \neq 0.}} g(x) = M \qquad \lim_{\substack{x \to a \\ x \to a \\ f(x) \\ g(x) = \frac{g(x)}{x \to a}}} f(x) = L, \qquad \lim_{\substack{x \to a \\ x \to a \\ f(x) \\ g(x) \\ x \to a \\ f(x) \\ g(x) \\ g(x$

- 121) What conditions, when present, are sufficient to conclude that a function f(x) is continuous at x = a?
 - A) The limit of f(x) as $x \rightarrow a$ from the left exists, the limit of f(x) as $x \rightarrow a$ from the right exists, and these two limits are the same.
 - B) f(a) exists, the limit of f(x) as $x \rightarrow a$ from the left exists, and the limit of f(x) as $x \rightarrow a$ from the right exists.
 - C) f(a) exists, and the limit of f(x) as $x \rightarrow a$ exists.
 - D) f(a) exists, the limit of f(x) as $x \rightarrow a$ exists, and the limit of f(x) as $x \rightarrow a$ is f(a).
- 122) What conditions, when present, are sufficient to conclude that a function f(x) has a limit as x 122) _____ approaches some value of a?
 - A) Either the limit of f(x) as $x \rightarrow a$ from the left exists or the limit of f(x) as $x \rightarrow a$ from the right exists
 - B) The limit of f(x) as $x \rightarrow a$ from the left exists, the limit of f(x) as $x \rightarrow a$ from the right exists, and at least one of these limits is the same as f(a).
 - C) The limit of f(x) as $x \rightarrow a$ from the left exists, the limit of f(x) as $x \rightarrow a$ from the right exists, and these two limits are the same.
 - D) f(a) exists, the limit of f(x) as $x \rightarrow a$ from the left exists, and the limit of f(x) as $x \rightarrow a$ from the right exists.

120)

123	Provide a short sentence the sentence of th	hat summarizes the genei	ral limit principle given b	y the formal	123)
	$\lim [f(x) \pm g(x)]$	$] = \lim_{x \to \infty} f(x) \pm \lim_{x \to \infty} g(x)$	= L ± M, lin	n f(x) = L	
	notation $x \rightarrow a$	x→a x→a	given that $x \rightarrow$	•a and	
	$\lim g(x) = M.$		0		
	x→a				
	A) The limit of a sum or	a difference is the sum o	r the difference of the fur	ictions.	
	B) The sum or the differ	rence of two functions is t	the sum of two limits		
	C) The sum or the differ	rongo of two functions is	continuous		
	D) The limit of a sum or	a difference is the sum of	n the difference of the lim	,ita	
	D) The limit of a sum of	a difference is the sum o	r the difference of the fift	ints.	
104	The statement "the limit of	(an in the constant time of t	h a limit" fallanna	104)
124) The statement the limit of	f a constant times a functi	ion is the constant times t	ne limit follows	124)
	from a combination of two	o fundamental limit princ	iples. What are they?		
	A) The limit of a function	on is a constant times a lin	nit, and the limit of a cons	stant is the constant.	
	B) The limit of a produc	ct is the product of the lin	hits, and a constant is con	tinuous.	
	C) The limit of a produc	ct is the product of the lin	nits, and the limit of a quo	otient is the quotient	
	of the limits.				
	D) The limit of a constant	nt is the constant, and the	limit of a product is the	product of the limits.	
125) When can direct substituti	ion of a for x be used to fi	nd the limit of a function	f(x) as x approaches	125)
	a?				
	A) When f is continuous	s at a			
	B) When f is continuous	s for all x, except $x = a$			
	C) Always	, I			
	D) Only when f is conti	nuous for all x			
	_,				
Find a si	mplified difference quotie	nt for the function.			
126	x^2				126)
120	$f(\mathbf{x}) = 2^{\mathbf{x}}$				120)
	A) $2x + h$	B) $4x + h$	C) $4x + 2h$	D) 4x	
127	$f(x) = -8^{x^2}$				127)
	A) - 16x	B) - 16x - 8h	C) - 16x + h	D) 16x	
128	$(x) = c x^3$				128)
	(x) = 0		D) 2 12		,
	A) 18^{x^2} + 18xh + 6h		$18^{x^2} + 18xh + 6^{n^2}$		
	C) $18x^2 + h$		D) ₁₈ x ²		
129	~ 3				129)
127	$f(x) = -4^{x^2}$		- 0 0		12)
	A) 12 ^{x2} - h		^{B)} - 12 ^{x2} - 12xh - 4 ^{h2}		
	C) $12x^2$		D) $10x^2$ 10.1 4b		
	/ - 12		/ - 12 ⁴⁴ - 12xn - 4n		
100	3				100)
130) <u>5</u>				130)
	f(x) = x				
	A) <u>3</u>	B) <u>3</u>	C) <u>3</u>	D) <u>3</u>	
	x ² + xh	x ² + h	x ² + h	$x^2 + xh$	
		-		-	
101	$\lambda (t_{\lambda}) = 0$ (10)				101)
131	f(x) = 8x + 10	B) 0	\mathbf{C}		131)
	A) $\delta + h$	D) ð	C) - 8	ט) אר	
	`				
132	$f(x) = \frac{x^2}{9x} + 9x$				132)

$$\begin{array}{rll} {}^{133)} f(x) &=& {}^{x^3} + x \\ & A) \ {}_{3}x^2 &+ 3xh + \ {}^{h^2} + h \\ & C) \ {}_{3}x^2 &+ 3xh + \ {}^{h^2} + 1 \end{array} \qquad \qquad \begin{array}{rll} B) \ {}_{2}x^3 &+ 3x^2 &+ 3xh + \ {}^{h^2} + 1 \\ & D) \ {}_{2}x^3 &+ 3x^2 &+ 3xh + \ {}^{h^2} \end{array}$$

Complete the table after finding a simplified form of the difference quotient.

¹³⁴⁾ For the function $f(x) = -7x^2$, complete the table below:

		x	h $\frac{f(x+h)}{h}$	- f(x)				
		5	2					
		5	1					
		5	0.1					
		5	0.01					
A)					B)			
,	x	h	$\frac{f(x+h) - f(x)}{h}$,	x	h	$\frac{f(x+h) - f(x)}{h}$
	5	2	-84			5	2	12
	5	1	-77			5	1	11
	5	0.1	-70.7			5	0.1	10.1
	5	0.01	-70.07			5	0.01	10.01
C)					D)			
,	x	h	$\frac{f(x+h) - f(x)}{h}$,	x	h	$\frac{f(x+h) - f(x)}{h}$
1	5	2	-98			5	2	-49
	5	1	-84			5	1	-42
	5	0.1	-71.4			5	0.1	-35.7
	5	0.01	-70.14			5	0.01	-35.07

¹³⁵⁾ For the function $f(x) = 4^{x^3}$, complete the table below:

x	h	$\frac{f(x+h) - f(x)}{h}$
2	2	
2	1	
2	0.1	
2	0.01	

A)				B)		
,	x	h	$\frac{f(x+h) - f(x)}{h}$	x	h	f
	2	2	104	2	2	
	2	1	76	2	1	
	2	0.1	50.8	2	0.1	
	2	0.01	48.28	2	0.01	
C)						

x	h	$\frac{f(x+h) - f(x)}{h}$
2	2	80
2	1	60
2	0.1	48.84
2	0.01	48.0804

135) _____

v	h	f(x + h) - f(x)	D)			
~		h	,	x	h	$\frac{f(x+h) - f(x)}{1}$
2	2	64				n
2	1	55		2	2	112
2	0.1	48.61		2	1	76
2	0.01	48.0601		2	0.1	50.44
				2	0.01	48.2404

136) For the function f(x) = 6x - 2, complete the table below:

		x	$h \qquad \frac{f(x+h) - f(x+h)}{h}$	<u>x)</u>			
		3	2				
		3	1				
		3	0.1				
		3	0.01				
		U	0.01				
A)				B)			
11)	x	h	$\frac{f(x+h) - f(x)}{h}$	5)	x	h	$\frac{f(x+h) - f(x)}{h}$
	3	2	12		3	2	6
	3	1	6		3	1	6
	3	0.1	0.6		3	0.1	6
	3	0.01	0.06		3	0.01	6
C)				D)			
с)	x	h	$\frac{f(x+h) - f(x)}{h}$	2)	x	h	$\frac{f(x+h) - f(x)}{h}$
	3	2	8		3	2	18
	3	1	7		3	1	18
	3	0.1	6.1		3	0.1	18
	3	0.01	6.01		3	0.01	18

137) $\frac{-4}{x}$, complete the table below:

x	h	$\frac{f(x+h) - f(x)}{h}$
4	2	
4	1	
4	0.1	
4	0.01	

Round to four decimal places.

A)			1	B)			
,	x	h	$\frac{f(x+h) - f(x)}{h}$	-)	x	h	$\frac{f(x+h) - f(x)}{h}$
	4	2	0.3333		4	2	0.6667
	4	1	0.1667		4	1	0.8
	4	0.1	0.0167		4	0.1	0.9756
	4	0.01	0.0017		4	0.01	0.9975
C)							

137) _____

v	h	f(x + h) - f(x)	D)		
~	11	h	x	h	$\frac{f(x+h) - f(x)}{h}$
4	2	0.1667			h
4	1	0.2	4	2	-0.1667
4	0.1	0.2439	4	1	-0.2
4	0.01	0.2494	4	0.1	-0.2439
			4	0.01	-0.2494

Solve the problem.

138) The graph shows the total sales in thousands of dollars from the distribution of x thousand catalogs. Find the average rate of change of sales with respect to the number of catalogs distributed for the change in x.

138)

139) _____

139) The graph shows the total sales in thousands of dollars from the distribution of x thousand catalogs. Find the average rate of change of sales with respect to the number of catalogs distributed for the change in x.

140) The graph shows the total sales in thousands of dollars from the distribution of x thousand catalogs. Find the average rate of change of sales with respect to the number of catalogs distributed for the change in x.

16

140) _____ A)
$$\frac{2}{3}$$
 B) $\frac{1}{4}$ C) $\frac{1}{3}$ D) 4

141) The graph shows the total sales in thousands of dollars from the distribution of x thousand catalogs. Find the average rate of change of sales with respect to the number of catalogs distributed for the change in x.

Sales (in thousands)70 (50,70 60) 6Ø 40 60) 50 (20.50) 40 (10,40) 30 20 10 0 10 20 30 40 50 Number (in thousands) 10 to 50 A) $\frac{3}{4}$ D) $\frac{1}{4}$ B) 1 C) 2

142) The graph shows the total sales in thousands of dollars from the distribution of x thousand catalogs. Find the average rate of change of sales with respect to the number of catalogs distributed for the change in x.

141) _____

145) The graph shows the population in millions of bacteria t minutes after a bactericide is introduced 145) _________ into a culture. Find the average rate of change of population with respect to time for the time interval.

146) The graph below shows the number of tuberculosis deaths in the United States from 1989 to 146) _____ 1998.

Estimate the average rate of change in tuberculosis deaths from 1991 to 1993.

A) About - 45 deaths per yearC) About - .4 deaths per year

B) About - 80 deaths per yearD) About - 30 deaths per year

147) The graph shows the average cost of a barrel of crude oil for the years 1981 to 1990 in constant 14 1996 dollars. Find the approximate average change in price from 1981 to 1985.

148) The graph shows the median weight of girls between the ages of 0 and 24 months.

148) ____

Use the graph to find the average growth rate of a typical girl during the first year of her life. Give your answer in pounds per month.

A) 1.8 lb/month B) 1.1 lb/month C) 1.2 lb/month D) 0.8 lb/month

150) The graph shows the median weight of girls between the ages of 0 and 24 months.

150) _____

Use the graph to find the average growth rate of a typical girl during the first two years of her life. Give your answer in pounds per month.

A) 0.8 lb/month B) 1.1 lb/month

D) 0.6 lb/month

151) The graph shows the median weight of girls between the ages of 0 and 24 months.

Use the graph to find the average growth rate of a typical girl during the first nine months of her life. Give your answer in pounds per month.

A) 2.0 lb/month	B) 1.2 lb/month	C) 1.4 lb/month	D) 1.0 lb/month
-----------------	-----------------	-----------------	-----------------

152) The graph shows the median weight of girls between the ages of 0 and 24 months. 152) _____

Use the graph to find the average growth rate of a typical girl during the first six months of her life. Give your answer in pounds per month.

A) 1.6 lb/month B) 1.0 lb/month C) 2.6 lb/month D) 1.3 lb/month

153) The graph shows the median weight of girls between the ages of 0 and 24 months.

Use 36the 32graph 28to find Median weight (pounds) the 24 verag 20 16 12 rate а 4 pica llgir durin 6 9 1 Age (n g the

154) ___

155) ____

1 = 1)	The graph cherve the m	dian waight of	airla hatruaan l	the ages of 0 and	21 months
134)	The graph shows the m	eulan weigin of	gills between i	the ages of 0 and	24 monuis.

Use the graph to find the average growth rate of a typical girl between ages 12 and 18 months. Give your answer in pounds per month.

A) 0.6 lb/month	B) 1.1 lb/month	C) 1.4 lb/month	D) 0.8 lb/month
-----------------	-----------------	-----------------	-----------------

155) The graph shows the median weight of girls between the ages of 0 and 24 months.

Use the graph to find the average growth rate of a typical girl between ages 12 and 15 months. Give your answer in pounds per month.

A) 1.5 lb/month B) 0.6 lb/month C) 0.5 lb/month D) 1.0 lb/month


```
p(12) – p(4)
```

(iv) Find 12-4, and interpret this result.

A) (i) \$9.36

(ii) \$18.00

(iii) \$-8.64

(iv) \$-1.08 is the average annual increase in ticket price from the 4th to the 12th year after 1990 (or from 1994 to 2002).

B) (ii) \$-8.08

(ii) \$-6.48

(iii) \$-1.60

(iv) \$-0.20 is the average annual increase in ticket price from the 4th to the 12th year after 1990 (or from 1994 to 2002).

C) (i) \$11.28

- (ii) \$81.36
- (iii) \$-70.08

(iv) \$-8.76 is the average ticket price in 1994.

D) (i) \$5.84

- (ii) \$7.44
- (iii) \$-1.60

(iv) \$-0.20 is the average annual increase in ticket price from the 4th to the 12th year after 1990 (or from 1994 to 2002).

158) When a balance of \$3000 is owed on a credit card and interest is being charged at a rate of 18% [158] _____ per year, the total amount owed after t years, A(t), is given by

A(t) = 3000(1.18)t.

A(12) - A(6)

Find

12-6 , and interpret this result.

A) \$115,868,187.39 is the average annual increase in the debt from the 6th to the 12th year.

B) \$2294.02 is the average annual increase in the debt from the 6th to the 12th year.

C) \$115,868,187.39 is the total amount owed on the debt up to and including the 12th year.

D) \$2294.02 is the total amount owed on the debt from the 6th to the 12th year.

¹⁵⁹) Suppose that the dolla	ar cost of producing x ra	dios is $c(x) = 200 + 10x -$	$0.2x^2$. Find the average	159)
cost per radio of prod	ucing the first 30 radios.			
A) \$4.00	B) \$120.00	C) \$320.00	D) \$2.00	

160) A car's distance s in miles from its starting point after t hours is given by

 $s(t) = 7^{t^2}$

Find the average rate of change of distance with respect to time (average velocity) as t changes from $t_1 = 4$ to $t_2 = 7$.

A) 38.5 miles/hr	B) 33 miles/hr	C) 49 miles/hr	D) 77 miles/hr
------------------	----------------	----------------	----------------

161) At the beginning of a trip, the odometer on a car reads 22,488 and the car has a full tank of gas. 161) _______
At the end of the trip the odometer reads 22,716 and there are 1.6 gallons remaining in the tank. The tank can hold a total of 9 gallons. What is the average rate of change of the number of miles with respect to the number of gallons? Assume that the tank was not filled during the trip.
A) 228 miles
B) 30.81 miles/gal
C) 21.51 miles/gal
D) 25.33 miles/gal

Find a simplified form of the difference quotient for the function.

162) f(x) =	= b - mx				162)
A)	-mx + h	B) -m + h	C) -mx	D) -m	
$163)_{f(x)} =$	$=a^{x^3} + bx$				163)
A)	$a(2^{x^2} + 3^{x^2} + 3xh + $	h^{2}) + h	B) $_{3a}x^2 + _{3axh} + h^2 + $	b	
C)	$a(3^{x^2} + 3xh + h^2) + b$)	D) $a(3x^2 + 3xh + h^2) + 2$	h	
164) $_{f(x)}$	- a ^{x4}				164)
A)	$a^{h^3} + 4x^{h^2} + 6^{x^2}h +$	4 ^{x³}	B) $a(h^3 + 4xh + 6x^2h) +$	4 ^{x³}	
C)	$a(h^3 + 4x^{h^2} + 6^{x^2}h +$	4 ^{x³})	D) $a(h^3 + 4x^{h^2} + 4x^{2h})$	+ 4 ^{x³})	

 $\frac{9}{x+9}$ 165)

A)
$$\frac{9}{(x+9)(x+9)}$$

C) $\frac{-9}{(x+9)(x+9+h)}$

166)

$$f(x) = \frac{x}{8-x}$$
A)

$$\frac{8h}{(x-8)(x+h-8)}$$
C)

$$\frac{x}{(x-8)(x+h-8)}$$

167)
$$f(x) = \sqrt{x-8}$$

A) $\frac{h}{\sqrt{x-8+h} - \sqrt{x-8}}$
C) $\frac{1}{\sqrt{x-8+h} + \sqrt{x-8}}$

168)
$$f(x) = \sqrt{7 - 2x}$$

A) $\sqrt{7 - 2(x + h)} + \sqrt{7 - 2x}$
C) 2

$$\frac{2}{\sqrt{7 - 2(x + h)} + \sqrt{7 - 2x}}$$

169)
$$\frac{x^{3} + 1}{x}$$

$$f(x) = \frac{x^{3} + 1}{x}$$

$$A) \frac{x(2x + h)(x + h) - 1}{x(x + h)}$$

$$C) 2x + h - 1$$

170)
$$\frac{1}{\sqrt{x+2}}$$

$$f(x) = \frac{h}{\sqrt{x+2}\sqrt{x+2 + h(\sqrt{x+2} - \sqrt{x+2 + h})}}$$

$$f(x) = \frac{h}{\sqrt{x+2}\sqrt{x+2 + h(\sqrt{x+2} - \sqrt{x+2 + h})}}$$

$$f(x) = \frac{1}{\sqrt{x+2}\sqrt{x+2 + h(\sqrt{x+2} + \sqrt{x+2 + h})}}$$

171)
$$\frac{\frac{8}{x^{2}}}{f(x) = \frac{8(h + 2x + xh)}{x^{2}(x + h)^{2}}} \\
C) \frac{\frac{8(h + x)}{x^{2}(x + h)^{2}}}{x^{2}(x + h)^{2}}$$

$$\begin{array}{c} B) \frac{-9}{h(x+9)(x+9+h)} \\ D) \frac{9h}{(x+9)(x+9+h)} \\ D \frac{9h}{(x+9)(x+9+h)} \\ \end{array}$$

$$\begin{array}{c} 166) \\ \hline \\ B) \frac{8}{(x-8)(x+h-8)} \\ D) \frac{1}{(x-8)(x+h-8)} \\ \hline \\ B) \sqrt{x-8+h} + \sqrt{x-8} \\ D) \frac{1}{\sqrt{x+h} + \sqrt{x}} \\ \end{array}$$

$$\begin{array}{c} B) \frac{2}{\sqrt{7-2(x+h)} - \sqrt{7-2x}} \\ D) \frac{1}{\sqrt{7h-2(x+h)} + \sqrt{7-2x}} \\ \hline \\ B) \frac{1}{\sqrt{7h-2(x+h)} + \sqrt{7-2x}} \\ \hline \\ B) \frac{1}{\sqrt{7h-2(x+h)} + \sqrt{7-2x}} \\ \end{array}$$

$$\begin{array}{c} 168) \\ \hline \\ 169) \\ \hline \\ 169) \\ \hline \\ 169) \\ \hline \\ 170) \\ \hline \\ 170) \\ \hline \\ \end{array}$$

B)
$$\frac{(h+2x)}{x^2(x+h)^2}$$

D)
$$\frac{8(h+2x)}{x^2(x+h)^2}$$

Graph the function and the indicated tangent line.

10

-5

5

-5

X

5

172) _

174) Graph $f(x) = x^2 - 2x + 2$ and the tangent line to the graph at the point whose x-coordinate is 1.

177) Graph f(x) = -3x + 6 and the tangent line to the graph at the point whose x-coordinate is -3.

176) _

A) The tangent line is identical to the graph of the original function.

-10

A)

Find the derivative of the function and evaluate the derivative at the given x-value.

$$\begin{aligned} & 181 \right) f(x) = x^2 + 5x \text{ at } x = 4 & 181 \right) \\ & A) f(x) = 2x + 5; f(4) = 13 & B) f(x) = x + 5; f(4) = 9 & 181 \\ & A) f(x) = 2x + 5; f(4) = 21 & D) f(x) = 2x - 5; f(4) = 3 & 182 \right) \\ \hline f(x) = \frac{1}{5} x - \frac{1}{2} a \text{ at } x = 10 & B & f(x) = x + 5; f(4) = 3 & 182 \\ & A) & \frac{1}{f(x)} = \frac{1}{2}; f(10) = \frac{1}{2} & B & \frac{1}{2} & \frac{1}{2} & 1 & 182 \\ & f(x) = \frac{1}{2}; f(10) = -1 & 183 & 183 \\ & f(x) = 5x^2 + x & at x = 4 & 183 & 133 & 133 & 133 & 133 & 133 & 133 &$$

Find an equation for the line tangent to the graph of the given function at the indicated point.

189)
$$\frac{x^2}{f(x)} = \frac{x^2}{4}$$
 at (2, 1)
A) $y = 4 - 1$
B) $y = 1x - 1$
C) $y = 1x - 2$
D) $y = 1x + 1$
190) $\frac{x^3}{f(x)} = \frac{x^3}{4}$ at (3, 6.75)
A) $\frac{27}{2} \frac{27}{x} + \frac{27}{4}$
B) $\frac{9}{4} \frac{27}{2}$
C) $\frac{27}{4} \frac{27}{2}$
D) $\frac{9}{4} \frac{27}{2}$
 $y = \frac{27}{4} \frac{27}{2}$

191) $\frac{x^3}{2}$				191)
$f(x) = \begin{bmatrix} 2 & at (-2, -4) \\ A & y = 6x + 8 \end{bmatrix}$	B) $y = 8x + 6$	C) y = 8x + 2	D) y = 2x + 8	
192) $\frac{16}{x}$ = t (2, 8)				192)
A) $y = -4x$	B) y = - 8x + 24	C) y = - 4x + 16	D) y = - 4x + 8	
193) $\frac{45}{x}$ at (0, 5)				193)
$f(x) = -\frac{at(9, 5)}{9}$ A) $\frac{5}{9}x + 10$	B) $y = -\frac{5}{9}x + 5$	C) $\frac{10}{9}x + 15$	D) $y = -\frac{5}{9}x$	
194) $f(x) = \frac{x^2}{-4} = 4 \text{ at } (2, 0)$ A) $y = 4x - 8$	B) y = 4x - 12	C) y = 2x - 8	D) y = 4x - 16	194)
195) $f(x) = \frac{x^2}{4} + 4$ at (3, 13) A) $y = 6x - 5$	B) y = 6x - 14	C) y = 3x - 5	D) y = 6x - 10	195)
$ \begin{array}{rl} 196) & f(x) = & x^2 & -x \text{ at } (-4, 20) \\ & A) & y = -9x - 16 \end{array} $	B) y = -9x - 12	C) y = -9x + 12	D) y = -9x + 16	196)
¹⁹⁷⁾ $f(x) = \frac{x^3}{2} \frac{x^2}{2}$ at (0, 0) A) y = -2	B) y = 3	C) y = 1	D) y = 0	197)
198) $f(x) = x - \frac{x^2}{x}$ at (-4, -20) A) $y = 9x + 16$	B) $y = -9x + 16$	C) y = -7x - 16	D) y = -7x + 16	198)

List the x-values in the graph at which the function is not differentiable.

B) x = 1

D) x = 0

B) x = -2, x = 2 D) x = 2

203) _____

202) _____

201) _____

204) _____

B) Function is differentiable at all points.D) x = 5

B) x = 0D) Function is differentiable at all points.

A) x = 0C) x = -2, x = 0, x = 2

ż

A) x = 0, x = 3

C) x = 3

B) x = -2, x = 2D) Function is differentiable at all points.

B) Function is differentiable at all points.D) x = 0

Solve the problem.

206)

207)

208) Suppose that the cost, p, of shipping a 3-pound parcel depends on the distance shipped, x, according to the function p(x) depicted in the graph. At what values is the function p not differentiable?

208) ____

209) Suppose that the cost, C, of producing x units of a product can be illustrated by the given graph.209) _____At what values is the function C not differentiable?

a letter in ounces, then p(x)is the cost of mailing the letter, where **p(x)** = \$0.37, $if \quad 0 < x$ ≤1, **p(x)** = \$0.60, $if \quad 1 < x$ ≤2, **p(x)** = \$0.83, $if \quad 2 < x$ ≤3, and so on, up to 13 ounces. The graph of p is shown below. 1.2⁺₽ 0 1 0 0.8-0.6-C 0.4 0.2- \rightarrow_{x} 3 2 4 1

weight of function p not differentiable?

At what values is the A) Function is differentiable for all x in the domain B) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 C) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, D) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

211) In one city, taxicabs charge passengers \$2.00 for entering a cab and then \$0.40 for each one-quarter of a mile (or fraction thereof) that the cab travels. (There are additional charges for slow traffic and idle times, but these are not considered here). If x is the distance traveled in miles, then C(x) is the cost of the taxi fare, where

C(x) = \$2.00,	if	$\mathbf{x} = 0,$
C(x) = \$2.40,	if	0 < x < 0.25,
C(x) = \$2.80,	if	$0.25 \le x < 0.5,$
C(x) = \$3.20,	if	$0.5 \le x < 0.75,$

and so on. The graph of C is shown below.

At what values is the function C not differentiable?

- A) 0.25, 0.5, 0.75, 1.0
- B) Function is differentiable for all x in the domain
- C) 0.25, 0.5, 0.75
- D) 0.25, 0.5, 0.75, 1.0, 1.25, 1.5.....
- 212) The graph shows the total sales in thousands of dollars from the distribution of x thousand catalogs. At what values is the function not differentiable?

- A) Function is differentiable for all x in the domain
- B) 20, 30
- C) 10, 20, 40
- D) 10, 20, 30, 40, 50
- 213) The graph shows the population in millions of bacteria t minutes after a bactericide is introduced into a culture. At what values of t is the function not differentiable?

- D) 1, 2, 3, 4, 0
- C) 3

D) Function is differentiable for all t in the domain

Find f'(x). $f(x) = \frac{\frac{1}{5x^2}}{A}$ $f'(x) = -\frac{\frac{2}{5x}}{A}$ 214) 214) _____ B) $\frac{1}{5x^3}$ C) $\frac{2}{5x^3}$ D) $\frac{2}{f'(x)} = \frac{2}{5x^3}$ $f(x) = \frac{4}{x^3}$ 215) 215) _____ $f'(x) = \frac{\frac{12}{x^4}}{x^4}$ B) $\frac{12}{x^2}$ C) $\frac{12}{x^4}$ D) $\frac{4}{x^4}$ A) $\begin{array}{l} 216) \\ f(x) = \end{array} \frac{8}{x+2} \end{array}$ 216) _____ A) $f'(x) = -\frac{8}{(x+2)^2}$ B) $\frac{8}{f'(x) = (x+2)^2}$ D) $f'(x) = -8(x+2)^2$ C) f'(x) = 8217) $f(x) = \sqrt{x-6}$ 217) _____ A) $f'(x) = \frac{1}{2\sqrt{x-6}}$ C) $\frac{1}{2\sqrt{x-6}}$ f'(x) = -B) $f'(x) = \frac{\sqrt{x-6}}{2}$ D) $f'(x) = \frac{\sqrt{x-6}}{x-6}$ $\frac{\sqrt{x-6}}{x-6}$ $f(x) = \frac{x}{x+7}$ A) $\frac{7}{f'(x)} = \frac{7}{(x+7)^2}$ B) $\frac{-7}{(x+7)^2}$ C) $\frac{7}{x^2}$ f'(x) = $\frac{7}{x^2}$ 218) 218) _____ D) $\frac{7}{f'(x)} = \frac{7}{x+7}$ 219) $f(x) = \sqrt{5x}$ 219) _____ A) $\frac{1}{f'(x)} = \frac{1}{\sqrt{5x}}$ B) $\frac{5}{2\sqrt{5x}}$ C) $f'(x) = 5\sqrt{5x}$ D) $\frac{5}{\sqrt{5x}}$

1) D 2) A 3) A 4) D 5) C 6) C 7) B 8) C 9) A 10) A 11) A 12) B 13) A 14) A 15) B 16) A 17) A 18) B 19) B 20) B 21) D 22) B 23) B 24) C 25) C 26) A 27) C 28) D 29) A 30) B 31) A 32) D 33) B 34) A 35) D 36) C 37) B 38) B 39) B 40) D 41) D 42) C 43) C 44) A 45) B 46) B 47) D 48) A 49) C 50) A 51) A

52) B 53) B 54) D 55) C 56) D 57) B 58) D 59) A 60) B 61) B 62) B 63) A 64) B 65) B 66) B 67) A 68) A 69) B 70) A 71) B 72) A 73) B 74) B 75) A 76) A 77) A 78) D 79) B 80) B 81) C 82) A 83) D 84) C 85) D 86) B 87) A 88) D 89) C 90) C 91) A 92) B 93) A 94) B 95) B 96) B 97) A 98) A 99) B 100) B 101) B 102) A 103) A

104) A 105) C 106) C 107) D 108) A 109) A 110) B 111) A 112) B 113) A 114) B 115) C 116) D 117) D 118) B 119) A 120) A 121) D 122) C 123) D 124) D 125) A 126) C 127) B 128) B 129) B 130) D 131) B 132) A 133) C 134) A 135) D 136) B 137) C 138) C 139) A 140) A 141) A 142) C 143) B 144) B 145) A 146) A 147) C 148) B 149) B 150) A 151) B 152) D 153) D 154) A 155) B

156) A 157) A 158) B 159) A 160) D 161) B 162) D 163) C 164) C 165) C 166) B 167) C 168) C 169) A 170) C 171) D 172) B 173) B 174) D 175) A 176) D 177) A 178) C 179) C 180) B 181) A 182) D 183) C 184) D 185) A 186) D 187) D 188) B 189) B 190) C 191) A 192) C 193) A 194) A 195) A 196) A 197) D 198) A 199) A 200) B 201) C 202) D 203) D 204) A 205) B 206) C 207) A 208) C 209) A 210) D 211) D 212) A 213) D 214) C 215) C 216) A 217) A 218) A

219) B