TEST BANK

Chapter 02

1. A frequency distribution for qualitative data groups these data into classes called intervals and records the total number of observations in each class.

True False
2. The relative frequency of a category is calculated by dividing the category's frequency by the total number of observations.

True False
3. The percent frequency of a category equals the frequency of the category multiplied by 100%.

True False
4. A pie chart is a segmented circle that portrays the categories and relative sizes of some quantitative variable.

True False
5. A bar chart depicts the frequency or relative frequency of each category of qualitative data as a bar rising vertically from the horizontal axis. It is also acceptable for the bar to extend horizontally from the vertical axis.

True False
6. A bar chart may be displayed horizontally.

True False
7. To approximate the width of a class in the creation of a bar chart, we may use this formula:

Maximum value - Minimum value

Number of classes

True False
8. For quantitative data, a relative frequency distribution identifies the proportion of observations that fall into each class.

True False
9. For quantitative data, a cumulative relative frequency distribution records the proportion (fraction) of values that fall below the upper limit of each class.

True False
10. A histogram is a series of rectangles where the width and height of each rectangle represent the frequency (or relative frequency) and the width of the class, respectively.

True False
11. A polygon connects a series of neighboring points where each point represents the midpoint of a particular class and its associated frequency or relative frequency.

True False
12. An ogive is a graph that plots the cumulative frequency (or the cumulative relative frequency) of each class above the lower limit of the corresponding class.

True False
13. A stem-and-leaf diagram is useful in that it gives an overall picture of where quantitative data are centered and how the data are dispersed from the center.

True False
14. A scatterplot is a graphical tool that helps determine whether or not two quantitative variables are related.

True False
15. When constructing a scatterplot for two quantitative variables, we usually refer to one variable as x and another one as y. Typically, we graph x on the vertical axis and y on the horizontal axis.

True False
16. When constructing a pie chart, only a few, the most frequent, categories must be included in the pie.

True False
17. When summarizing quantitative data it is always better to have up to 30 classes in a frequency distribution.

True False
18. Scatterplot is a graphical tool that is focused on describing one variable.

True False
19. Frequency distributions may be used to describe which of the following types of data?
A. Nominal and ordinal data only
B. Nominal and interval data only
C. Nominal, ordinal, and interval data only
D. Nominal, ordinal, interval, and ratio data
20. In order to summarize qualitative data, a useful tool is a \qquad .
A. histogram
B. frequency distribution
C. stem-and-leaf diagram
D. All of the above
21. For both qualitative and quantitative data, what is the difference between the relative frequency and the percent frequency?
A. The relative frequency equals the percent frequency multiplied by 100.
B. The percent frequency equals the relative frequency multiplied by 100 .
C. As opposed to the relative frequency, the percent frequency is divided by the number of observations in the data set.
D. As opposed to the percent frequency, the relative frequency is divided by the number of observations in the data set.
22. For which of the following data sets will a pie chart be most useful?
A. Heights of high school freshmen
B. Ambient temperatures in the U.S. Capitol Building
C. Percentage of net sales by product for Lenovo in 2011
D. Growth rates of firms in a particular industry
23.

An auto parts chain asked customers to complete a survey rating the chain's customer service as average, above average, or below average. The following shows the results from the survey:

Average	Below Average	
Above Average	Above Average	Abc
Below Average	Average	Bel
Below Average	Average	Bel
Below Average	Below Average	

The proportion of customers who felt the customer service was Average is the closest to \qquad .
A. 0.20
B. 0.33
C. 0.46
D. 0.53
24.

An auto parts chain asked customers to complete a survey rating the chain's customer service as average, above average, or below average. The following table shows the results from the survey.

Average	Below Average	
Above Average	Above Average	Abc
Below Average	Average	
Below Average	Average	Bel
Below Average	Below Average	Bel

A rating of Average or Above Average accounted for what number of responses to the survey?
A. 3
B. 7
C. 8
D. 10
25.

The following is a list of five of the world's busiest airports by passenger traffic for 2010.

Name	Location	\# of Passengers (in millions)
Hartsfield-Jackson	Atlanta, Georgia, United States	89
Capital International	Beijing, China	74
London Heathrow	London, United Kingdom	67
O'Hare	Chicago, Illinois, United States	66
Tokyo	Tokyo, Japan	64

The percentage of passenger traffic in the five busiest airports that occurred in Asia is the closest to \qquad .
A. 18%
B. 21%
C. 25%
D. 38%
26.

The following is a list of five of the world's busiest airports by passenger traffic for 2010.

Name	Location	\# of Passengers (in millions)
Hartsfield-Jackson	Atlanta, Georgia, United States	89
Capital International	Beijing, China	74
London Heathrow	London, United Kingdom	67
O'Hare	Chicago, Illinois, United States	66
Tokyo	Tokyo, Japan	64

How many more millions of passengers flew out of Atlanta than flew out of Chicago?
A. 13
B. 21
C. 23
D. 25
27.

A city in California spent $\$ 6$ million repairing damage to its public buildings in 2010. The following table shows the categories where the money was directed.

	Cause
	Termites
	Water Damage
	Mold
	Earthquake

How much did the city spend to fix damage caused by mold?
A. $\$ 360,000$
B. $\$ 720,000$
C. $\$ 1,440,000$
D. $\$ 1,800,000$
28.

A city in California spent $\$ 6$ million repairing damage to its public buildings in 2010. The following table shows the categories where the money was directed.

	Cause
	Termites
	Water Damage
	Mold
	Earthquake
	Other

How much more did the city spend to fix damage caused by termites compared to the damage caused by water?
A. $\$ 360,000$
B. $\$ 720,000$
C. $\$ 960,000$
D. $\$ 1,320,000$
29.

Students in Professor Smith's business statistics course have evaluated the overall effectiveness of the professor's instruction on a five-point scale, where a score of 1 indicates very poor performance and a score of 5 indicates outstanding performance. The raw scores are displayed in the accompanying table:

1	4	4
5	5	4
4	5	5

What is the most common score given in the evaluations?
A. 2
B. 3
C. 4
D. 5
30.

Students in Professor Smith's business statistics course have evaluated the overall effectiveness of the professor's instruction on a five-point scale, where a score of 1 indicates very poor performance and a score of 5 indicates outstanding performance. The raw scores are displayed in the accompanying table.

1	4	4
5	5	4
4	5	5

What percentage of students gave professor Smith an evaluation higher than 3 ?
A. 20%
B. 30%
C. 50%
D. 80%
31.

Students in Professor Smith's business statistics course have evaluated the overall effectiveness of the professor's instruction on a five-point scale, where a score of 1 indicates very poor performance and a score of 5 indicates outstanding performance. The raw scores are displayed in the accompanying table.

1	4	4
5	5	4
4	5	5

What percentage of students gave Professor Smith an evaluation of 2 or less?
A. 6.7%
B. 13.3%
C. 20%
D. 80%
32.

Students in Professor Smith's business statistics course have evaluated the overall effectiveness of the professor's instruction on a five-point scale, where a score of 1 indicates very poor performance and a score of 5 indicates outstanding performance. The raw scores are displayed in the accompanying table:

1	4	4
5	5	4
4	5	5

What is the relative frequency of the students who gave Professor Smith an evaluation of $3 ?$
A. 0.3
B. 0.5
C. 9
D. 15
33. In the following pie chart representing a collection of cookbooks, which author has more titles?

A. Jeff Smith
B. Julia Child
C. Rachael Ray
D. Paula Deen
34. The accompanying chart shows the numbers of books written by each author in a collection of cookbooks. What type of chart is this?

A. Bar chart for qualitative data
B. Bar chart for quantitative data
C. Frequency histogram for qualitative data
D. Frequency histogram for quantitative data
35. The accompanying chart shows the number of books written by each author in a collection of cookbooks. What type of data is being represented?

A. Quantitative, ordinal
B. Quantitative, ratio
C. Qualitative, nominal
D. Qualitative, ordinal
36. Horizontal bar charts are constructed by placing
A. each category on the vertical axis and the appropriate range of values on the horizontal axis
B. each category on the horizontal axis and the appropriate range of values on the vertical axis
C. each interval of values on the vertical axis and the appropriate range of values on the horizontal axis
D. None of the above
37. When constructing a frequency distribution for quantitative data, it is important to remember that
\qquad .
A. classes are mutually exclusive
B. classes are collectively exhaustive
C. the total number of classes usually ranges from 5 to 20
D. All of the above
38. Which of the following best describes a frequency distribution for qualitative data?
A. It groups data into histograms and records the proportion (fraction) of observations in each histogram.
B. It groups data into categories and records the number of observations in each category.
C. It groups data into intervals called classes and records the proportion (fraction) of observations in each class.
D. It groups data into intervals called classes and records the number of observations in each class.
39. What graphical tool is best used to display the relative frequency of grouped quantitative data?
A. Ogive
B. Pie chart
C. Bar chart
D. Histogram
40.

The following data represent scores on a pop quiz in a statistics section.

45	66	74	72	62	44	55	70	33	82
56	56	84	16	16	47	32	32	17	37

Suppose the data on quiz scores will be grouped into five classes. The width of the classes for a frequency distribution or histogram is the closestto \qquad .
A. 10
B. 12
C. 14
D. 16
41.

The following data represent scores on a pop quiz in a statistics section:

45	66	74	72	62	44	55	70	33	82
56	56	84	16	16	47	32	32	17	37

Suppose the data are grouped into five classes, and one of them will be " 30 up to $44 . "$ that is, $\{x$, $30 \leq x<44\}$. The frequency of this class is \qquad .
A. 0.20
B. 0.25
C. 4
D. 5
42.

The following data represent scores on a pop quiz in a statistics section.

45	66	74	72	62	44	55	70	33	82
56	56	84	16	16	47	32	32	17	37

Suppose the data are grouped into five classes, and one of them will be "30 up to 44" -that is, $\{x, 30 \leq x<44\}$. The relative frequency of this class is \qquad .
A. 0.20
B. 0.25
C. 4
D. 5
43.

The following data represent the recent sales price (in $\$ 1,000$ s) of 24 homes in a Midwestern city.

187	125	165	170
239	135	188	210
122	181	196	237

Suppose the data on house prices will be grouped into five classes. The width of the classes for a frequency distribution or histogram is the closest to \qquad .
A. 15
B. 20
C. 25
D. 30
44.

The following data represent the recent sales price (in $\$ 1,000$ s) of 24 homes in a midwestern city.

187	125	$16!$
239	135	$18 i$
122	181	191

Suppose the data are grouped into five classes, and one of them will be "115 up to 140. " -that is, $\{x, 115 \leq x<140\}$. The relative frequency of this class is \qquad .
A. $6 / 24$
B. $7 / 24$
C. 6
D. 7
45.

The following data represent the recent sales price (in \$1,000s) of 24 homes in a Midwestern city.

187	125	$16!$
239	135	$18!$
122	181	19

Suppose the data are grouped into five classes, and one of them will be "165 up to 190." -that is, $\{x, 165 \leq x<190\}$. The frequency of this class is \qquad .
A. $6 / 24$
B. $7 / 24$
C. 6
D. 7
46.

Thirty students at Eastside High School took the SAT on the same Saturday. Their raw scores are given next.

1,450	1,620	1,800	1,740	1,650	1,710	1,900	1,910	1,950	1,820
1,800	2,010	1,780	1,840	1,490	1,590	2,350	2,260	1,870	1,530
1,620	1,480	2,390	1,640	1,830	1,950	2,000	1,830	1,980	2,100

Consider a frequency distribution of the data that groups the data in classes of 1400 up to 1600 , 1600 up to 1800,1800 up to 2000 , and so on. How many students scored at least 1800 but less than 2000?
A. 3
B. 7
C. 12
D. 18
47.

Thirty students at Eastside High School took the SAT on the same Saturday. Their raw scores are given next.

1,450	1,620	1,800	1,740	1,650	1,710	1,900	1,910	1,950	1,820
1,800	2,010	1,780	1,840	1,490	1,590	2,350	2,260	1,870	1,530
1,620	1,480	2,390	1,640	1,830	1,950	2,000	1,830	1,980	2,100

Consider a frequency distribution of the data that groups the data in classes of 1400 up to 1600 , 1600 up to 1800,1800 up to 2000 , and so on. What percent of students scored less than 2200 ?
A. 10%
B. 20%
C. 80%
D. 90%
48.

Thirty students at Eastside High School took the SAT on the same Saturday. Their raw scores are given next.

1,450	1,620	1,800	1,740	1,650	1,710	1,900	1,910	1,950	1,820
1,800	2,010	1,780	1,840	1,490	1,590	2,350	2,260	1,870	1,530
1,620	1,480	2,390	1,640	1,830	1,950	2,000	1,830	1,980	2,100

Consider a frequency distribution of the data that groups the data in classes of 1400 up to 1600 , 1600 up to 1800,1800 up to 2000 , and so on. What is the approximate relative frequency of students who scored more than 1600 but less than $1800 ?$
A. 0.17
B. 0.23
C. 0.40
D. 0.77
49.

Thirty students at Eastside High School took the SAT on the same Saturday. Their raw scores are given next.

1,450	1,620	1,800	1,740	1,650	1,710	1,900	1,910	1,950	1,820
1,800	2,010	1,780	1,840	1,490	1,590	2,350	2,260	1,870	1,530
1,620	1,480	2,390	1,640	1,830	1,950	2,000	1,830	1,980	2,100

Consider a frequency distribution of the data that groups the data in classes of 1400 up to 1600, 1600 up to 1800,1800 up to 2000 , and so on. What graphical tool would you use to display the cumulative relative frequency of the grouped data?
A. Ogive
B. Polygon
C. Pie chart
D. Bar chart
50.

Consider the following frequency distribution.

Class	Frequency
12 up to 15	3
15 up to 18	6
18 up to 21	3
21 up to 24	4
24 up to 27	4

The total number of observations in the frequency distribution is \qquad .
A. 5
B. 6
C. 20
D. 24
51.

Consider the following frequency distribution.

Class	Frequency
12 up to 15	3
15 up to 18	6
18 up to 21	3
21 up to 24	4
24 up to 27	4

How many observations are at least 15 but less than $18 ?$
A. 3
B. 4
C. 5
D. 6
52.

Consider the following frequency distribution.

Class	Frequency
12 up to 15	3
15 up to 18	6
18 up to 21	3
21 up to 24	4
24 up to 27	4

How many observations are less than 21?
A. 6
B. 12
C. 18
D. 24
53.

Consider the following frequency distribution.

Class	Frequency
12 up to 15	3
15 up to 18	6
18 up to 21	3
21 up to 24	4
24 up to 27	4

What proportion of the observations are at least 15 but less than $18 ?$
A. 0.20
B. 0.25
C. 0.30
D. 0.35
54.

Consider the following frequency distribution.

Class	Frequency
12 up to 15	3
15 up to 18	6
18 up to 21	3
21 up to 24	4
24 up to 27	4

What proportion of the observations are less than 21?
A. 0.30
B. 0.60
C. 0.90
D. 1.00
55. The following histogram represents the number of pages in each book within a collection. What is the frequency of books containing at least 250 but fewer than 300 pages?

A. 5
B. 6
C. 7
D. 12
56. The following histogram represents the number of pages in each book within a collection. What is the frequency of books containing at least 200 but fewer than 250 pages?

A. 4
B. 5
C. 6
D. 7
57.

The following histogram represents the number of pages in each book within a collection. What is the frequency of books containing at least 250 but fewer than 400 pages?

A. 7
B. 10
C. 11
D. 12
58.

An analyst constructed the following frequency distribution on the monthly returns for 50 selected stocks.

Class (in percent)	
-10 up to 0	
0 up to 10	
10 upto 20	
20 up to 30	

The number of stocks with returns of 0% up to 10% is \qquad .
A. 2
B. 8
C. 15
D. 25
59.

An analyst constructed the following frequency distribution on the monthly returns for 50 selected stocks.

Class (in percent)	
-10 up to 0	
0 up to 10	
10 upto 20	
20 up to 30	

The number of stocks with returns of less than 10% is \qquad .
A. 8
B. 25
C. 33
D. 48
60.

An analyst constructed the following frequency distribution on the monthly returns for 50 selected stocks: An analyst constructed the following frequency distribution on the monthly returns for 50 selected stocks.

Class (in percent)	
-10 up to 0	
0 up to 10	
10 upto 20	
20 up to 30	

The proportion of stocks with returns of 0% up to 10% is \qquad .
A. 0.30
B. 0.50
C. 0.66
D. 0.80
61.

An analyst constructed the following frequency distribution on the monthly returns for 50 selected stocks.

Class (in percent)	Frequency
-10 up to 0	8
0 up to 10	25
10 upto 20	15
20 up to 30	2

The proportion of stocks with returns of less than 10% is \qquad .
A. 0.30
B. 0.50
C. 0.66
D. 0.80
62.

Automobiles traveling on a road with a posted speed limit of 65 miles per hour are checked for speed by a state police radar system. The following table is a frequency distribution of speeds.

	Speed (miles per hour)
	45 up to 55
	55 up to 65
	65 up to 75
	75 up to 85

How many of the cars traveled less than 75 miles per hour?
A. 275
B. 325
C. 650
D. 675
63.

Automobiles traveling on a road with a posted speed limit of 65 miles per hour are checked for speed by a state police radar system. The following table is a frequency distribution of speeds.

	Speed (miles per hour)
	45 up to 55
	55 up to 65
	65 up to 75
	75 up to 85

What proportion of the cars traveled at least 55 but less than 65 miles per hour?
A. 0.33
B. 0.48
C. 0.56
D. 0.80
64.

Automobiles traveling on a road with a posted speed limit of 65 miles per hour are checked for speed by a state police radar system. The following table is a frequency distribution of speeds.

	Speed (miles per hour)
	45 up to 55
	55 up to 65
	65 up to 75
	75 up to 85

When using a polygon to graph quantitative data, what does each point represent?
A. The lower limit of a particular class and its width
B. The midpoint of a particular class and its associated frequency or relative frequency
C. The midpoint of a particular class and its associated cumulative frequency or cumulative relative frequency
D. The upper limit of a particular class and its associated cumulative frequency or cumulative relative frequency
65.

The accompanying table shows students' scores from the final exam in a history course.

	Scores
	50 up to 60
	60 up to 70
	70 up to 80
80 up to 90	
90 up to 100	

How many of the students scored at least 70 but less than $90 ?$
A. 24
B. 31
C. 55
D. 88
66.

The following table shows the number of payroll jobs the government added during the years it added jobs (since 1973). The jobs are in thousands.

Jobs Added	Frequency
100 up to 200	5
200 up to 300	8
300 up to 400	7
400 up to 500	5
500 up to 600	1

Approximately what percent of the time did the government add 200,000 or more jobs?
A. 19%
B. 50%
C. 77%
D. 81%
67.

The accompanying relative frequency distribution represents the last year car sales for the sales force at Kelly's Mega Used Car Center.

Car Sales	Relative Frequency
35 up to 45	0.07
45 up to 55	0.15
55 up to 65	0.31
65 up to 75	0.22
75 up to 85	0.25

If Kelly's employs 100 salespeople, how many of these salespeople have sold at least 35 but fewer than 45 cars in the last year?
A. 5
B. 7
C. 10
D. 15
68.

The accompanying relative frequency distribution represents the last year car sales for the sales force at Kelly's Mega Used Car Center.

Car Sales	Relative Frequency
35 up to 45	0.07
45 up to 55	0.15
55 up to 65	0.31
65 up to 75	0.22
75 up to 85	0.25

If Kelly's employs 100 salespeople, how many of these salespeople have sold at least 45 but fewer than 65 cars in the last year?
A. 15
B. 31
C. 40
D. 46
69.

The accompanying relative frequency distribution represents the last year car sales for the sales force at Kelly's Mega Used Car Center.

Car Sales	Relative Frequency
35 up to 45	0.07
45 up to 55	0.15
55 up to 65	0.31
65 up to 75	0.22
75 up to 85	0.25

If Kelly's employs 100 salespeople, how many of these salespeople have sold at least 65 cars in the last year?
A. 22
B. 25
C. 31
D. 47
70. When displaying quantitative data, what is an ogive used to plot?
A. Frequency or relative frequency of each class against the midpoint of the corresponding class
B. Cumulative frequency or cumulative relative frequency of each class against the upper limit of the corresponding class
C. Frequency or relative frequency of each class against the midpoint of the corresponding class and cumulative frequency or cumulative relative frequency of each class against the upper limit of the corresponding class
D. None of the above
71. How does an ogive differ from a polygon?
A. An ogive is used for qualitative data, while a polygon is used for quantitative data.
B. An ogive is used for quantitative data, while a polygon is used for qualitative data.
C. An ogive is a graphical depiction of a frequency or relative distribution, while a polygon is a graphical depiction of a cumulative frequency or cumulative relative frequency distribution.
D. An ogive is a graphical depiction of a cumulative frequency or cumulative relative frequency distribution, while a polygon is a graphical depiction of a frequency or relative frequency distribution.
72. Recent home sales in a suburb of Washington, D.C., are shown in the accompanying ogive.

Approximate the percentage of houses that sold for less than \$600,000.
A. 60%
B. 70%
C. 80%
D. 90%
73. Recent home sales in a suburb of Washington, D.C., are shown in the accompanying ogive.

Approximate the percentage of houses that sold for more than $\$ 500,000$.
A. 40%
B. 50%
C. 60%
D. 70%
74. The organization of the Girl Sprouts has completed its annual cookie drive. The sales are reported in the accompanying ogive.

Approximate the percentage of girls who sold less than 90 boxes of cookies.
A. 45%
B. 55%
C. 65%
D. 75%
75. The organization of the Girl Sprouts has completed its annual cookie drive. The sales are reported in the accompanying ogive.

Approximate the percentage of girls who sold more than 70 boxes of cookies.
A. 45%
B. 55%
C. 65%
D. 75%
76. A stem-and-leaf diagram is constructed by separating each value of a data set into two parts. What are these parts?
A. Stem consisting of the last digit and leaf consisting of the leftmost digits
B. Stem consisting of the leftmost digits and leaf consisting of the second digit
C. Stem consisting of the second digit and leaf consisting of the last digit
D. Stem consisting of the leftmost digits and leaf consisting of the last digit
77. In the accompanying stem-and-leaf diagram, the values in the stem and leaf portions represent 10s and 1s digits, respectively.

Stem	Leaf
1	356889
2	012235668889
3	01228
4	22

Which of the following numbers appears in the stem-and-leaf diagram?
A. 3800
B. 380
C. 38
D. 3.8
78. In the accompanying stem-and-leaf diagram, the values in the stem-and-leaf portions represent 10s and 1s digits, respectively.

Stem	Leaf
1	356889
2	012235668889
3	01228
4	22

What would be the frequency of the class 35 up to 45 , that is $\{x, 35 \leq x<45\}$?
A. 0
B. 1
C. 2
D. 3
79. In the accompanying stem-and-leaf diagram, the values in the stem-and-leaf portions represent 10s and 1 s digits, respectively.

Stem	Leaf
1	356889
2	012235668889
3	01228
4	22

How many values are at least 25 but less than 35 ?
A. 10
B. 11
C. 12
D. 13
80. In the accompanying stem-and-leaf diagram, the values in the stem-and-leaf portions represent 10s and 1 s digits, respectively.

Stem	Leaf
1	356889
2	012235668889
3	01228
4	22

Find the frequency associated with data values that are more than 28.
A. 8
B. 9
C. 10
D. 11
81. In the accompanying stem-and-leaf diagram, the values in the stem-and-leaf portions represent 10s and 1 s digits, respectively.

Stem	Leaf
1	356889
2	012235668889
3	01228
4	22

The stem-and-leaf diagram shows that the distribution is \qquad .
A. symmetric
B. positively skewed
C. negatively skewed
D. None of the above
82. The following stem-and-leaf diagram shows the speeds in miles per hour (mph) of 14 cars approaching a toll booth on a bridge in Oakland, California.

Stem	Leaf
2	566679
3	477789
4	0023

How many of the cars were traveling faster than 25 mph but slower than 40 mph ?
A. 8
B. 9
C. 10
D. 12
83. The following stem-and-leaf diagram shows the last 20 dividend payments (in cents) paid by Proctor and Gamble.

Stem	Leaf
3	15555
4	000044444888
5	333

The most common dividend payment is \qquad .
A. 0.35
B. 0.40
C. 0.44
D. 0.48
84. What may be revealed from a scatterplot?
A. No relationship between two variables
B. A linear relationship between two variables
C. A curvilinear relationship between two variables
D. All of the above
85. What type of relationship is indicated in the scatterplot?

A. No relationship
B. A negative linear relationship
C. A negative curvilinear relationship
D. A positive linear or curvilinear relationship
86. What type of relationship is indicated in the scatterplot?

A. No relationship
B. A negative linear relationship
C. A positive linear relationship
D. A positive curvilinear relationship
87. What type of relationship is indicated in the scatterplot?

A. No relationship
B. A negative linear relationship
C. A negative curvilinear relationship
D. A positive linear or curvilinear relationship
88.

Use the following data to construct a scatterplot. What type of relationship is implied?

x	3	
y	34	

A. No relationship
B. A positive relationship
C. A negative relationship
D. There is not enough information to answer
89.

Use the following data to construct a scatterplot. What type of relationship is implied?

x	3	
y	34	

A. No relationship
B. A positive relationship
C. A negative relationship
D. Not enough information to answer
90. A car dealership created a scatterplot showing the manufacturer's retail price and profit margin for the cars they have on their lot.

As the manufacturer's suggested retail price increases, the profit margin tends to \qquad .
A. increase
B. decrease
C. stay the same
D. None of the above
91. The statistics professor has kept attendance records and recorded the number of absent students per class. The recorded data is displayed in the following histogram with the frequency of each number of absent students shown above the bars.

How many statistics classes had three or more students absent?
A. 8
B. 13
C. 22
D. 43
92.

The following table shows the percentage of e-mail that is sent each day of the business week according to an Intermedia survey.

Day	Percentage
Monday	15%
Tuesday	23%
Wednesday	22%
Thursday	21%
Friday	19%

Which of the following best displays this data?
A. Horizontal bar chart
B. Vertical bar chart
C. Pie chart
D. Histogram
93.

The following frequency distribution displays the weekly sales of a certain brand of television at an electronics store.

Number Sold	Frequency
01-May	3
06-Oct	7
Nov-15	14
$16-20$	22
$21-25$	4

How many weeks of data are included in this frequency distribution?
A. 25
B. 50
C. 75
D. 100
94.

The following frequency distribution shows the frequency of the asking price, in thousands of dollars, for current homes on the market in a particular city.

Asking Price	Frequency
$\$ 350$ up to $\$ 400$	12
$\$ 400$ up to $\$ 450$	9
$\$ 450$ up to $\$ 500$	17
$\$ 500$ up to $\$ 550$	11
$\$ 550$ up to $\$ 600$	6

What percentage of houses has an asking price between $\$ 350,000$ and under $\$ 400,000$?
A. 16.4%
B. 21.8%
C. 30.9%
D. 33.3%
95.

The following frequency distribution shows the frequency of the asking price, in thousands of dollars, for current homes on the market in a particular city.

Asking Price	Frequency
$\$ 350$ up to $\$ 400$	12
$\$ 400$ up to $\$ 450$	9
$\$ 450$ up to $\$ 500$	17
$\$ 500$ up to $\$ 550$	11
$\$ 550$ up to $\$ 600$	6

What percentage of houses has an asking price under $\$ 550,000$?
A. 50.5%
B. 69.1%
C. 89.1%
D. 95.0%
96.

A survey conducted by CBS news asked 1,026 respondents: "What would you do with an unexpected tax refund?" The responses are summarized in the following table.

Category	Percentage
Pay off debts	47%
Put it in the bank	30%
Spend it	11%
I never get a refund	10%
Other	2%

How many people will either put it in the bank or spend it?
A. 421
B. 411
C. 113
D. 482
97.

The manager at a water park constructed the following frequency distribution to summarize attendance in July and August.

Attendance	Frequency
1,000 up to 1,250	5
1,250 up to 1,500	6
1,500 up to 1,750	10
1,750 up to 2,000	20
2,000 up to 2,250	15
2,250 up to 2,500	4

What of the following is the most likely attendance range?
A. 2,000 up to 2,500
B. 1,750 up to 2,000
C. 1,000 up to 1,750
D. 1,250 up to 1,750
98.

The Statistical Abstract of the United States, 2010 provided the following frequency distribution of the number of people who live below the poverty level by region.

Region	Number of People (in 1000 s)
Northeast	6,166
Midwest	7,237
South	15,501
West	8,372

What is the percentage of people who live below the poverty level in the West or Midwest?
A. 35.96%
B. 41.87%
C. 41.58%
D. 31.96%
99. Consider the following stem-and-leaf diagram.

```
3|11145
4|467
5|00456689
6|1336
```

Which data value occurs most often?
A. 1
B. 56
C. 31
D. 63
100.Consider the following stem-and-leaf diagram.

```
3|11145
4|467
5|00456689
6|1336
```

Which of the following statements is correct?
A. There are a total of 10 data values in this data set.
B. The data value that occurs most often is 50 .
C. This largest data value is 59 .
D. The range 50-59 contains the most values.
101.For qualitative data, a frequency distribution groups data into \qquad and records the number of \qquad .
102.Graphically, we can show a(n) \qquad for qualitative data by constructing a pie chart or a bar chart.
103.When constructing a frequency distribution for quantitative data classes are mutually \qquad and \qquad .
104.A \qquad is a table that shows the number of data observations that fall into specific interval.
\qquad
105.The shape of most data distributions can be categorized as either \qquad or \qquad .
\qquad .
107.The \qquad is a graphical technique that cannot be used to display qualitative data.
108.A scatterplot depicts a positive \qquad relationship, if as x increases, y tends to increase at an increasing rate.
109.

Using a scatterplot above we observe a \qquad linear relationship between two variables:

Education and Income.
110.

A survey of 400 unemployed people was completed at a job fair. Each person was asked to categorize his or her job interests. The accompanying relative frequency distribution was constructed.

Field	Relative Frequency
Management	0.15
Business and financial operations	0.2
Computer and mathematical	0.1
Life, physical, and social science	0.3
Community and social service	0.25

a. Construct the corresponding frequency distribution. How many of these people designated that the computer and mathematical industry was their job interest?
b. Construct a pie chart.
111.

A hair stylist records the hair color of her 25 most recent appointments, classifying the color as blonde, brown, black, or red. Her data set is displayed next.

Red	
Blonde	
Brown	
Brown	
Brown	

a. Construct a frequency and relative frequency distribution of the hair color of the stylist's customers.
b. Construct a pie chart. Which hair color is the most common among the stylist's customers?
c. Create a bar chart to display the frequency distribution. How many customers had black hair?
112.

The following table lists some of the busiest ports in the world based on the number of containers in 2010.

| Location of Port |
| :---: | :---: |
| Shanghai |
| Singapure |
| Hong Kong |
| Rotterdam |
| Los Angeles |
| New York |

Construct a pie chart to summarize the data. Approximately what percent of the total number of containers go through Hong Kong?
113.

Johnson and Johnson (JNJ) is a consumer staples company. Consumer staples are products people need and buy even during times of financial hardship. Do you think JNJ will have a volatile stock price? Does the accompanying graph accurately depict the volatility of JNJ stock? Explain.

114.

Each month the Bureau of Labor Statistics reports the number of people (in thousands) employed in the United States by age. The accompanying frequency distribution shows the results for August 2011.

Age	Frequency
16 to 19	4,794
20 to 24	13,273
25 to 34	30,789
35 to 44	30,021
45 to 54	32,798
55 and over	28,660

a. Construct a relative frequency distribution. What proportion of workers is between 20 and 24 years old?
b. Construct a cumulative relative frequency distribution. What proportion of workers is younger than 35 years old?
c. Construct a relative frequency histogram.
115.

The following table displays the top 40 American League batting averages of the 2011 season.

Player	Batting Average	Player	Batting Average
Miguel Cabrera	0.344	Yunel Escobar	0.290
Adrian Gonzalez	0.338	Vladimir Guerrero	0.290
Michael Young	0.338	Alberto Callaspo	0.288
Victor Martinez	0.33	Howard Kendrick	0.285
Jacoby Ellsbury	0.321	Jeff Francoeur	0.285
David Ortiz	0.309	Nick Markakis	0.284
Dustin Pedroia	0.307	Michael Cuddyer	0.284
Casey Kotchman	0.306	Adam Jones	0.280
Melky Cabrera	0.305	Elvis Andrus	0.279
Alex Gordon	0.303	Erick Aybar	0.279
Jose Bautista	0.302	Juan Pierre	0.279
Robinson Cano	0.302	Matt Joyce	0.277
Paul Konerko	0.300	Asdrubal Cabrera	0.273
Jhonny Peralta	0.299	Edwin Encarnacion	0.272
Josh Hamilton	0.298	Ichiro Suzuki	0.272
Derek Jeter	0.297	Peter Bourjos	0.271
Adrian Beltre	0.296	J.J. Hardy	0.269
Alex Avila	0.295	Alexei Ramirez	0.269
Eric Hosmer	0.293	Ben Zobrist	0.269
Billy Butler	0.291	Delmon Young	0.268

a. Construct frequency, relative frequency, and cumulative relative frequency distributions that group the data in classes of 0.265 up to $0.280,0.280$ up to $0.295,0.295$ up to 0.310 , and so on.
b. How many of these players have a batting average above 0.340 ? What proportion of these players has a batting average of at least 0.280 but below 0.295 ? What percentage of these players has a batting average below 0.325 ?
c. Construct a relative frequency histogram. Is the distribution symmetric? If not, is it positively or negatively skewed?
d. Construct an ogive.
e. Using the ogive, approximately what proportion of the players in this group has a batting average above 0.290 ?
116.

The following table shows analyst sentiment ratings for the 30 stocks listed in the Dow Jones Industrial Average.

7	4	6	
6	4	5	
2	9	7	

a. Construct a frequency distribution, relative frequency distribution, cumulative frequency distribution and relative cumulative frequency distribution using classes of 2 up to 4,4 up to 6,6 up to 8 , and 8 up to 10 .
b. Construct a histogram that summarizes the data.
c. What percentage of the stocks in the Dow Jones Industrial Average received a sentiment rating less than 8 ?
d. What percentage of the stocks in the Dow Jones Industrial Average received a sentiment rating of 6 or more?
117.

The accompanying cumulative relative frequency distribution shows a summary of the scores from an Algebra II exam at a local high school. Twenty students took the exam.
$\left.\begin{array}{|c|c|}\hline \text { Class } & \begin{array}{c}\text { Cumulative } \\ \text { Relative } \\ \text { Frequency }\end{array} \\ \hline \begin{array}{c}51- \\ 60\end{array} & 0.05 \\ \hline 61- & 0.20 \\ 70 & \\ \hline 71- & 0.45 \\ 80 & \\ \hline 81- & 0.80 \\ 90\end{array}\right]$
a. Construct the relative frequency distribution. What proportion of students scored between 81 and 90 ?
b. Construct the frequency distribution. How many students scored between 71 and 80 ?
c. Construct an ogive. What is the approximate percentage of students that scored less than $85 ?$
118.

The dividend yields of the stocks in an investor's portfolio are shown in the following cumulative relative frequency distribution.

	Dividend Yields
	0% up to 2%
	2% up to 4%
	4% up to 6%
	6% up to 8%
	8% up to 10%

a. Construct an ogive.
b. Approximately what percent of the stocks had a dividend yield of 3% or larger?
119.

Construct a stem-and-leaf diagram with the following data set.

3.2	1.3	2.1	2.4	4.3	3.1	3.2	1.1	1.4	2.5
2.4	2.9	3.8	1.7	2.3	1.2	3.2	1.4	1.5	2.6

Is the distribution symmetric?

Stem	Leaf
1	1234457
2	1344569
3	12228
4	3

120.

Construct a stem-and-leaf diagram for the following data set.

74	75	63	62	56	79	58	79	53	49
78	69	74	72	53	72	64	65	67	77

Is the distribution symmetric?

Stem	Leaf
4	$\mid 9$
5	$\mid 3368$
6	$\mid 234579$
7	224457899

121.

The following table shows average wind speeds (in miles per hour) during 15 major fires in California.

44	55	22	32	29	24	47	33	32	27	58	39	38	51	41

Construct a stem-and-leaf diagram. Were most of these storms fueled by 45+ mile-per-hour winds? Explain.
122.

The following table shows the prices (in $\$ 1,000$ s) of the last 15 trucks sold at a Toyota dealership.

33	21	26	33	23	24	31	22	17	25	18	23	22	19	35

Construct a stem-and-leaf diagram. Given this diagram, estimate the price that a potential buyer would likely pay for a Toyota truck.
123.

The following data represent the ages of patients in the cardiac section of the local hospital.
Construct a stem-and-leaf diagram. Comment on whether or not the distribution is symmetric.

48	53	60	61	62	63	70	70	72	77	78	79	80	82	87	88	90

124.

A high school football league recorded the average points scored per game, as well as the winning percentage, for the 10 teams in the league.

	Points per Game
	24
	21
	27
	13
	16
	18
	15
	19

Construct a scatterplot. Does scoring more points appear to be associated with a higher winning percentage?
125.

A statistics instructor computes the grade and percentage of classes that each of his students attends. Construct a scatterplot from the data displayed next. Does a relationship exist between attendance and grade?

Attendance	47	60	75	86	95	98	100
Grade	58	72	85	84	90	97	92

Chapter 02 Key

1. A frequency distribution for qualitative data groups these data into classes called intervals and records the total number of observations in each class.

FALSE

A frequency distribution for qualitative data groups these data into categories and records the number of observations that fall into each category.

AACSB: Analytical Thinking Accessibility: Keyboard Navigation

Blooms: Remember
Difficulty: 1 Easy
Jaggia - Chapter 02 \#1
Learning Objective: 02-01 Summarize qualitative data by forming frequency distributions.
Topic: Summarizing Qualitative Data
2. The relative frequency of a category is calculated by dividing the category's frequency by the total number of observations.

TRUE

The relative frequency of each category equals the proportion of observations in each category and is calculated by dividing the frequency by the total number of observations.
3. The percent frequency of a category equals the frequency of the category multiplied by 100%.

FALSE

The percent frequency of a category equals the relative frequency of the category multiplied by 100%.

AACSB: Analytical Thinking
Accessibility: Keyboard Navigation
Blooms: Remember
Difficulty: 1 Easy
Jaggia - Chapter 02 \#3
Learning Objective: 02-01 Summarize qualitative data by forming frequency distributions.
Topic: Summarizing Qualitative Data
4. A pie chart is a segmented circle that portrays the categories and relative sizes of some quantitative variable.

FALSE

A pie chart is a segmented circle whose segments portray the relative (or percent) frequencies of the categories of some qualitative variable.

AACSB: Analytical Thinking
5. A bar chart depicts the frequency or relative frequency of each category of qualitative data as a bar rising vertically from the horizontal axis. It is also acceptable for the bar to extend horizontally from the vertical axis.

TRUE

A bar chart depicts the frequency or the relative frequency for each category as a series of horizontal or vertical bars.
AACSB: Analytical Thinking
Accessibility: Keyboard Navigation
Blooms: Remember
Difficulty: 1 Easy
Jaggia - Chapter 02 \#5

Learning Objective: 02-02 Construct and interpret pie charts and bar charts.
Topic: Summarizing Qualitative Data
6. A bar chart may be displayed horizontally.

TRUE

A bar chart depicts the frequency or the relative frequency for each category as a series of horizontal or vertical bars.

AACSB: Technology
Accessibility: Keyboard Navigation
Blooms: Analyze
Difficulty: 2 Medium
Jaggia - Chapter 02 \#6
7. To approximate the width of a class in the creation of a bar chart, we may use this formula:

Maximum value - Minimum value
Number of classes

FALSE

This formula is used when we construct a frequency distribution or a histogram for quantitative data.
8. For quantitative data, a relative frequency distribution identifies the proportion of observations that fall into each class.

TRUE

Class relative frequency = Class frequency / Total number of observations.

AACSB: Analytical Thinking
9. For quantitative data, a cumulative relative frequency distribution records the proportion (fraction) of values that fall below the upper limit of each class.

TRUE

A cumulative relative frequency distribution represents the proportion of values that fall below the upper limit of each class.

AACSB: Analytical Thinking Accessibility: Keyboard Navigation

Blooms: Remember
Difficulty: 1 Easy
Jaggia - Chapter 02 \#9
Learning Objective: 02-03 Summarize quantitative data by forming frequency distributions.
Topic: Summarizing Quantitative Data
10. A histogram is a series of rectangles where the width and height of each rectangle represent the frequency (or relative frequency) and the width of the class, respectively.

FALSE

A histogram is a series of rectangles where the width and height of each rectangle represent the class width and frequency (or relative frequency) of the class, respectively.
11. A polygon connects a series of neighboring points where each point represents the midpoint of a particular class and its associated frequency or relative frequency.

TRUE

Polygons are graphical depiction of frequency and relative frequency distributions. It connects a series of neighboring points where each point represents the midpoint of a particular class and its associated frequency or relative frequency.

AACSB: Analytical Thinking
Accessibility: Keyboard Navigation
Blooms: Remember
Difficulty: 1 Easy
Jaggia - Chapter 02 \#11
Learning Objective: 02-04 Construct and interpret histograms, polygons, and ogives.
Topic: Summarizing Quantitative Data
12. An ogive is a graph that plots the cumulative frequency (or the cumulative relative frequency) of each class above the lower limit of the corresponding class.

FALSE

An ogive is a graph that plots the cumulative frequency (or the cumulative relative frequency) of each class against the upper limit of the corresponding class.

AACSB: Analytical Thinking
13. A stem-and-leaf diagram is useful in that it gives an overall picture of where quantitative data are centered and how the data are dispersed from the center.

TRUE

A stem-and-leaf diagram is a visual method for displaying quantitative data and gives an idea how data are centered and dispersed.

AACSB: Analytical Thinking Accessibility: Keyboard Navigation

Blooms: Remember
Difficulty: 1 Easy
Jaggia - Chapter 02 \#13
Learning Objective: 02-05 Construct and interpret a stem-and-leaf diagram.
Topic: Stem-and-Leaf Diagrams
14. A scatterplot is a graphical tool that helps determine whether or not two quantitative variables are related.

TRUE

A scatterplot illustrates whether two variables are related or not.

AACSB: Analytical Thinking

Blooms: Remember

Jaggia - Chapter 02 \#14
15. When constructing a scatterplot for two quantitative variables, we usually refer to one variable as x and another one as y. Typically, we graph x on the vertical axis and y on the horizontal axis.

FALSE

When constructing a scatterplot for two quantitative variables, we usually refer to one variable as <i>x</i> and another one as <i>y</i>. Typically, we graph <i>x</i> on the horizontal axis and $<i>y</ i>$ on the vertical axis.

AACSB: Analytical Thinking

Blooms: Remember
Difficulty: 1 Easy
Jaggia - Chapter 02 \#15
Learning Objective: 02-06 Construct and interpret a scatterplot.
Topic: Scatterplots
16. When constructing a pie chart, only a few, the most frequent, categories must be included in the pie.

FALSE

A pie chart is a segmented circle whose segments portray the relative frequencies of all categories.
17. When summarizing quantitative data it is always better to have up to 30 classes in a frequency distribution.

FALSE

It depends on the size of the data set. The recommended number of classes usually ranges from 5 to 20 .

AACSB: Analytical Thinking Accessibility: Keyboard Navigation

Blooms: Remember Difficulty: 1 Easy
Jaggia - Chapter 02 \#17
Learning Objective: 02-03 Summarize quantitative data by forming frequency distributions.
Topic: Summarizing Quantitative Data
18. Scatterplot is a graphical tool that is focused on describing one variable.

FALSE

A scatterplot helps to determine whether or not two variables are related. Multiple Choice

AACSB: Analytical Thinking
Accessibility: Keyboard Navigation
Blooms: Remember
Difficulty: 1 Easy
Jaggia - Chapter 02 \#18
19. Frequency distributions may be used to describe which of the following types of data?
A. Nominal and ordinal data only
B. Nominal and interval data only
C. Nominal, ordinal, and interval data only
D. Nominal, ordinal, interval, and ratio data

AACSB: Analytical Thinking
Accessibility: Keyboard Navigation
Blooms: Understana
Difficulty: 2 Medium
Jaggia - Chapter 02 \#19
Learning Objective: 02-03 Summarize quantitative data by forming frequency distributions.
Topic: Summarizing Quantitative Data
20. In order to summarize qualitative data, a useful tool is a \qquad .
A. histogram
B. frequency distribution
C. stem-and-leaf diagram
D. All of the above
21. For both qualitative and quantitative data, what is the difference between the relative frequency and the percent frequency?
A. The relative frequency equals the percent frequency multiplied by 100.
B. The percent frequency equals the relative frequency multiplied by 100.
C. As opposed to the relative frequency, the percent frequency is divided by the number of observations in the data set.
D. As opposed to the percent frequency, the relative frequency is divided by the number of observations in the data set.

AACSB: Analytical Thinking
Accessibility: Keyboard Navigation
Blooms: Understana
Difficulty: 2 Medium
Jaggia - Chapter 02 \#21
Learning Objective: 02-01 Summarize qualitative data by forming frequency distributions.
Topic: Summarizing Qualitative Data
22. For which of the following data sets will a pie chart be most useful?
A. Heights of high school freshmen
B. Ambient temperatures in the U.S. Capitol Building
C. Percentage of net sales by product for Lenovo in 2011
D. Growth rates of firms in a particular industry
23.

An auto parts chain asked customers to complete a survey rating the chain's customer service as average, above average, or below average. The following shows the results from the survey:

Average	Below Average	Abc
Above Average	Above Average	
Below Average	Average	Bel
Below Average	Average	Bel
Below Average	Below Average	

The proportion of customers who felt the customer service was Average is the closest to
\qquad .
A. 0.20
B. 0.33
C. 0.46
D. 0.53
24.

An auto parts chain asked customers to complete a survey rating the chain's customer service as average, above average, or below average. The following table shows the results from the survey.

Average	Below Average	Abc
Above Average	Above Average	
Below Average	Average	Bel
Below Average	Average	Bel
Below Average	Below Average	

A rating of Average or Above Average accounted for what number of responses to the survey?
A. 3
B. 7
C. 8
D. 10
25.

The following is a list of five of the world's busiest airports by passenger traffic for 2010.

Name	Location	\# of Passengers (in millions)
Hartsfield-Jackson	Atlanta, Georgia, United States	89
Capital International	Beijing, China	74
London Heathrow	London, United Kingdom	67
O'Hare	Chicago, Illinois, United States	66
Tokyo	Tokyo, Japan	64

The percentage of passenger traffic in the five busiest airports that occurred in Asia is the closest to \qquad _.
A. 18%
B. 21%
C. 25%
D. 38%
26.

The following is a list of five of the world's busiest airports by passenger traffic for 2010.

Name	Location	\# of Passengers (in millions)
Hartsfield-Jackson	Atlanta, Georgia, United States	89
Capital International	Beijing, China	74
London Heathrow	London, United Kingdom	67
O'Hare	Chicago, Illinois, United States	66
Tokyo	Tokyo, Japan	64

How many more millions of passengers flew out of Atlanta than flew out of Chicago?
A. 13
B. 21
C. 23
D. 25
27.

A city in California spent $\$ 6$ million repairing damage to its public buildings in 2010. The following table shows the categories where the money was directed.

	Cause
	Termites
	Water Damage
	Mold
	Earthquake
	Other

How much did the city spend to fix damage caused by mold?
A. \$360,000
B. $\$ 720,000$
C. $\$ 1,440,000$
D. $\$ 1,800,000$
28.

A city in California spent $\$ 6$ million repairing damage to its public buildings in 2010. The following table shows the categories where the money was directed.

	Cause
	Termites
	Water Damage
	Mold
	Earthquake
	Other

How much more did the city spend to fix damage caused by termites compared to the damage caused by water?
A. $\$ 360,000$
B. $\$ 720,000$
C. $\$ 960,000$
D. $\$ 1,320,000$
29.

Students in Professor Smith's business statistics course have evaluated the overall effectiveness of the professor's instruction on a five-point scale, where a score of 1 indicates very poor performance and a score of 5 indicates outstanding performance. The raw scores are displayed in the accompanying table:

1	4	4
5	5	4
4	5	5

What is the most common score given in the evaluations?
A. 2
B. 3
C. 4
D. 5
30.

Students in Professor Smith's business statistics course have evaluated the overall effectiveness of the professor's instruction on a five-point scale, where a score of 1 indicates very poor performance and a score of 5 indicates outstanding performance. The raw scores are displayed in the accompanying table.

1	4	4
5	5	4
4	5	5

What percentage of students gave professor Smith an evaluation higher than $3 ?$
A. 20%
B. 30%
C. 50%
D. 80%
31.

Students in Professor Smith's business statistics course have evaluated the overall effectiveness of the professor's instruction on a five-point scale, where a score of 1 indicates very poor performance and a score of 5 indicates outstanding performance. The raw scores are displayed in the accompanying table.

1	4	4
5	5	4
4	5	5

What percentage of students gave Professor Smith an evaluation of 2 or less?
A. 6.7%
B. 13.3%
C. 20%
D. 80%
32.

Students in Professor Smith's business statistics course have evaluated the overall effectiveness of the professor's instruction on a five-point scale, where a score of 1 indicates very poor performance and a score of 5 indicates outstanding performance. The raw scores are displayed in the accompanying table:

1	4	4
5	5	4
4	5	5

What is the relative frequency of the students who gave Professor Smith an evaluation of 3 ?
A. 0.3
B. 0.5
C. 9
D. 15
33. In the following pie chart representing a collection of cookbooks, which author has more titles?

A. Jeff Smith
B. Julia Child
C. Rachael Ray
D. Paula Deen
34. The accompanying chart shows the numbers of books written by each author in a collection of cookbooks. What type of chart is this?

A. Bar chart for qualitative data
B. Bar chart for quantitative data
C. Frequency histogram for qualitative data
D. Frequency histogram for quantitative data
35. The accompanying chart shows the number of books written by each author in a collection of cookbooks. What type of data is being represented?

A. Quantitative, ordinal
B. Quantitative, ratio
C. Qualitative, nominal
D. Qualitative, ordinal
36. Horizontal bar charts are constructed by placing
A. each category on the vertical axis and the appropriate range of values on the horizontal axis
B. each category on the horizontal axis and the appropriate range of values on the vertical axis
C. each interval of values on the vertical axis and the appropriate range of values on the horizontal axis
D. None of the above

AACSB: Analytical Thinking
37. When constructing a frequency distribution for quantitative data, it is important to remember that \qquad .
A. classes are mutually exclusive
B. classes are collectively exhaustive
C. the total number of classes usually ranges from 5 to 20
D. All of the above
38. Which of the following best describes a frequency distribution for qualitative data?
A. It groups data into histograms and records the proportion (fraction) of observations in each histogram.
B. It groups data into categories and records the number of observations in each category.
C. It groups data into intervals called classes and records the proportion (fraction) of observations in each class.
D. It groups data into intervals called classes and records the number of observations in each class.
39. What graphical tool is best used to display the relative frequency of grouped quantitative data?
A. Ogive
B. Pie chart
C. Bar chart
D. Histogram
40.

The following data represent scores on a pop quiz in a statistics section.

45	66	74	72	62	44	55	70	33	82
56	56	84	16	16	47	32	32	17	37

Suppose the data on quiz scores will be grouped into five classes. The width of the classes for a frequency distribution or histogram is the closestto \qquad .
A. 10
B. 12
C. 14
D. 16
41.

The following data represent scores on a pop quiz in a statistics section:

45	66	74	72	62	44	55	70	33	82
56	56	84	16	16	47	32	32	17	37

Suppose the data are grouped into five classes, and one of them will be "30 up to 44 ." that is, $\{x$, $30 \leq x<44\}$. The frequency of this class is \qquad .
A. 0.20
B. 0.25
C. 4
D. 5
42.

The following data represent scores on a pop quiz in a statistics section.

45	66	74	72	62	44	55	70	33	82
56	56	84	16	16	47	32	32	17	37

Suppose the data are grouped into five classes, and one of them will be " 30 up to 44 " -that is, $\{x, 30 \leq x<44\}$. The relative frequency of this class is \qquad .
A. 0.20
B. 0.25
C. 4
D. 5
43.

The following data represent the recent sales price (in $\$ 1,000$ s) of 24 homes in a Midwestern city.

187	125	165	170
239	135	188	210
122	181	196	237

Suppose the data on house prices will be grouped into five classes. The width of the classes for a frequency distribution or histogram is the closest to \qquad .
A. 15
B. 20
C. 25
D. 30
44.

The following data represent the recent sales price (in $\$ 1,000$ s) of 24 homes in a midwestern city.

187	125	
239	135	
122	181	

Suppose the data are grouped into five classes, and one of them will be "115 up to 140." -that is, $\{x, 115 \leq x<140\}$. The relative frequency of this class is \qquad —.
A. 6/24
B. $7 / 24$
C. 6
D. 7
45.

The following data represent the recent sales price (in $\$ 1,000$ s) of 24 homes in a Midwestern city.

187	125	
239	135	
122	181	

Suppose the data are grouped into five classes, and one of them will be "165 up to 190." -that is, $\{x, 165 \leq x<190\}$. The frequency of this class is \qquad .
A. $6 / 24$
B. $7 / 24$
C. 6
D. 7
46.

Thirty students at Eastside High School took the SAT on the same Saturday. Their raw scores are given next.

1,450	1,620	1,800	1,740	1,650	1,710	1,900	1,910	1,950	1,820
1,800	2,010	1,780	1,840	1,490	1,590	2,350	2,260	1,870	1,530
1,620	1,480	2,390	1,640	1,830	1,950	2,000	1,830	1,980	2,100

Consider a frequency distribution of the data that groups the data in classes of 1400 up to 1600, 1600 up to 1800,1800 up to 2000 , and so on. How many students scored at least 1800 but less than 2000?
A. 3
B. 7
C. 12
D. 18
47.

Thirty students at Eastside High School took the SAT on the same Saturday. Their raw scores are given next.

1,450	1,620	1,800	1,740	1,650	1,710	1,900	1,910	1,950	1,820
1,800	2,010	1,780	1,840	1,490	1,590	2,350	2,260	1,870	1,530
1,620	1,480	2,390	1,640	1,830	1,950	2,000	1,830	1,980	2,100

Consider a frequency distribution of the data that groups the data in classes of 1400 up to 1600, 1600 up to 1800,1800 up to 2000 , and so on. What percent of students scored less than 2200 ?
A. 10%
B. 20%
C. 80%
D. 90%
48.

Thirty students at Eastside High School took the SAT on the same Saturday. Their raw scores are given next.

1,450	1,620	1,800	1,740	1,650	1,710	1,900	1,910	1,950	1,820
1,800	2,010	1,780	1,840	1,490	1,590	2,350	2,260	1,870	1,530
1,620	1,480	2,390	1,640	1,830	1,950	2,000	1,830	1,980	2,100

Consider a frequency distribution of the data that groups the data in classes of 1400 up to 1600, 1600 up to 1800,1800 up to 2000 , and so on. What is the approximate relative frequency of students who scored more than 1600 but less than $1800 ?$
A. 0.17
B. 0.23
C. 0.40
D. 0.77
49.

Thirty students at Eastside High School took the SAT on the same Saturday. Their raw scores are given next.

1,450	1,620	1,800	1,740	1,650	1,710	1,900	1,910	1,950	1,820
1,800	2,010	1,780	1,840	1,490	1,590	2,350	2,260	1,870	1,530
1,620	1,480	2,390	1,640	1,830	1,950	2,000	1,830	1,980	2,100

Consider a frequency distribution of the data that groups the data in classes of 1400 up to 1600, 1600 up to 1800 , 1800 up to 2000, and so on. What graphical tool would you use to display the cumulative relative frequency of the grouped data?
A. Ogive
B. Polygon
C. Pie chart
D. Bar chart
50.

Consider the following frequency distribution.

Class	Frequency
12 up to 15	3
15 up to 18	6
18 up to 21	3
21 up to 24	4
24 up to 27	4

The total number of observations in the frequency distribution is \qquad .
A. 5
B. 6
C. 20
D. 24
51.

Consider the following frequency distribution.

Class	Frequency
12 up to 15	3
15 up to 18	6
18 up to 21	3
21 up to 24	4
24 up to 27	4

How many observations are at least 15 but less than $18 ?$
A. 3
B. 4
C. 5
D. 6
52.

Consider the following frequency distribution.

Class	Frequency
12 up to 15	3
15 up to 18	6
18 up to 21	3
21 up to 24	4
24 up to 27	4

How many observations are less than 21 ?
A. 6
B. 12
C. 18
D. 24
53.

Consider the following frequency distribution.

Class	Frequency
12 up to 15	3
15 up to 18	6
18 up to 21	3
21 up to 24	4
24 up to 27	4

What proportion of the observations are at least 15 but less than $18 ?$
A. 0.20
B. 0.25
C. 0.30
D. 0.35
54.

Consider the following frequency distribution.

Class	Frequency
12 up to 15	3
15 up to 18	6
18 up to 21	3
21 up to 24	4
24 up to 27	4

What proportion of the observations are less than $21 ?$
A. 0.30
B. 0.60
C. 0.90
D. 1.00
55. The following histogram represents the number of pages in each book within a collection. What is the frequency of books containing at least 250 but fewer than 300 pages?

A. 5
B. 6
C. 7
D. 12
56. The following histogram represents the number of pages in each book within a collection. What is the frequency of books containing at least 200 but fewer than 250 pages?

A. 4
B. 5
C. 6
D. 7
57.

The following histogram represents the number of pages in each book within a collection. What is the frequency of books containing at least 250 but fewer than 400 pages?

A. 7
B. 10
C. 11
D. 12
58.

An analyst constructed the following frequency distribution on the monthly returns for 50 selected stocks.

Class (in percent)	
-10 up to 0	
0 up to 10	
10 upto 20	
20 up to 30	

The number of stocks with returns of 0% up to 10% is \qquad .
A. 2
B. 8
C. 15
D. 25
59.

An analyst constructed the following frequency distribution on the monthly returns for 50 selected stocks.

Class (in percent)	
-10 up to 0	
0 up to 10	
10 upto 20	
20 up to 30	

The number of stocks with returns of less than 10% is \qquad .
A. 8
B. 25
C. 33
D. 48
60.

An analyst constructed the following frequency distribution on the monthly returns for 50 selected stocks: An analyst constructed the following frequency distribution on the monthly returns for 50 selected stocks.

Class (in percent)		
-10 up to 0		
0 up to 10		
10 upto 20		
20 up to 30		

The proportion of stocks with returns of 0% up to 10% is \qquad .
A. 0.30
B. 0.50
C. 0.66
D. 0.80
61.

An analyst constructed the following frequency distribution on the monthly returns for 50 selected stocks.

Class (in percent)	Frequency
-10 up to 0	8
0 up to 10	25
10 upto 20	15
20 up to 30	2

The proportion of stocks with returns of less than 10% is \qquad .
A. 0.30
B. 0.50
C. 0.66
D. 0.80
62.

Automobiles traveling on a road with a posted speed limit of 65 miles per hour are checked for speed by a state police radar system. The following table is a frequency distribution of speeds.

	Speed (miles per hour,
	45 up to 55
	55 up to 65
	65 up to 75
	75 up to 85

How many of the cars traveled less than 75 miles per hour?
A. 275
B. 325
C. 650
D. 675
63.

Automobiles traveling on a road with a posted speed limit of 65 miles per hour are checked for speed by a state police radar system. The following table is a frequency distribution of speeds.

	Speed (miles per hour,
	45 up to 55
	55 up to 65
	65 up to 75
	75 up to 85

What proportion of the cars traveled at least 55 but less than 65 miles per hour?
A. 0.33
B. 0.48
C. 0.56
D. 0.80
64.

Automobiles traveling on a road with a posted speed limit of 65 miles per hour are checked for speed by a state police radar system. The following table is a frequency distribution of speeds.

	Speed (miles per hour,
	45 up to 55
	55 up to 65
	65 up to 75
	75 up to 85

When using a polygon to graph quantitative data, what does each point represent?
A. The lower limit of a particular class and its width
B. The midpoint of a particular class and its associated frequency or relative frequency
C. The midpoint of a particular class and its associated cumulative frequency or cumulative relative frequency
D. The upper limit of a particular class and its associated cumulative frequency or cumulative relative frequency
65.

The accompanying table shows students' scores from the final exam in a history course.

	Scores
	50 up to 60
	60 up to 70
	70 up to 80
	80 up to 90
90 up to 100	

How many of the students scored at least 70 but less than 90 ?
A. 24
B. 31
C. 55
D. 88
66.

The following table shows the number of payroll jobs the government added during the years it added jobs (since 1973). The jobs are in thousands.

Jobs Added	Frequency
100 up to 200	5
200 up to 300	8
300 up to 400	7
400 up to 500	5
500 up to 600	1

Approximately what percent of the time did the government add 200,000 or more jobs?
A. 19%
B. 50%
C. 77%
D. 81%
67.

The accompanying relative frequency distribution represents the last year car sales for the sales force at Kelly's Mega Used Car Center.

Car Sales	Relative Frequency
35 up to 45	0.07
45 up to 55	0.15
55 up to 65	0.31
65 up to 75	0.22
75 up to 85	0.25

If Kelly's employs 100 salespeople, how many of these salespeople have sold at least 35 but fewer than 45 cars in the last year?
A. 5
B. 7
C. 10
D. 15
68.

The accompanying relative frequency distribution represents the last year car sales for the sales force at Kelly's Mega Used Car Center.

Car Sales	Relative Frequency
35 up to 45	0.07
45 up to 55	0.15
55 up to 65	0.31
65 up to 75	0.22
75 up to 85	0.25

If Kelly's employs 100 salespeople, how many of these salespeople have sold at least 45 but fewer than 65 cars in the last year?
A. 15
B. 31
C. 40
D. 46
69.

The accompanying relative frequency distribution represents the last year car sales for the sales force at Kelly's Mega Used Car Center.

Car Sales	Relative Frequency
35 up to 45	0.07
45 up to 55	0.15
55 up to 65	0.31
65 up to 75	0.22
75 up to 85	0.25

If Kelly's employs 100 salespeople, how many of these salespeople have sold at least 65 cars in the last year?
A. 22
B. 25
C. 31
D. 47
70. When displaying quantitative data, what is an ogive used to plot?
A. Frequency or relative frequency of each class against the midpoint of the corresponding class
B. Cumulative frequency or cumulative relative frequency of each class against the upper limit of the corresponding class
C. Frequency or relative frequency of each class against the midpoint of the corresponding class and cumulative frequency or cumulative relative frequency of each class against the upper limit of the corresponding class
D. None of the above

Learning Objective: 02-04 Construct and interpret histograms, polygons, and ogives.
71. How does an ogive differ from a polygon?
A. An ogive is used for qualitative data, while a polygon is used for quantitative data.
B. An ogive is used for quantitative data, while a polygon is used for qualitative data.
C. An ogive is a graphical depiction of a frequency or relative distribution, while a polygon is a graphical depiction of a cumulative frequency or cumulative relative frequency distribution.
D. An ogive is a graphical depiction of a cumulative frequency or cumulative relative frequency distribution, while a polygon is a graphical depiction of a frequency or relative frequency distribution.
72. Recent home sales in a suburb of Washington, D.C., are shown in the accompanying ogive.

Approximate the percentage of houses that sold for less than \$600,000.
A. 60%
B. 70%
C. 80%
D. 90%
73. Recent home sales in a suburb of Washington, D.C., are shown in the accompanying ogive.

Approximate the percentage of houses that sold for more than \$500,000.
A. 40%
B. 50%
C. 60%
D. 70%
74. The organization of the Girl Sprouts has completed its annual cookie drive. The sales are reported in the accompanying ogive.

Approximate the percentage of girls who sold less than 90 boxes of cookies.
A. 45%
B. 55%
C. 65%
D. 75%
75. The organization of the Girl Sprouts has completed its annual cookie drive. The sales are reported in the accompanying ogive.

Approximate the percentage of girls who sold more than 70 boxes of cookies.
A. 45%
B. 55%
C. 65%
D. 75%

AACSB: Analytical Thinking
Blooms: Understana
Difficulty: 2 Medium
Jaggia - Chapter 02 \#75
Learning Objective: 02-04 Construct and interpret histograms, polygons, and ogives.
76. A stem-and-leaf diagram is constructed by separating each value of a data set into two parts. What are these parts?
A. Stem consisting of the last digit and leaf consisting of the leftmost digits
B. Stem consisting of the leftmost digits and leaf consisting of the second digit
C. Stem consisting of the second digit and leaf consisting of the last digit
D. Stem consisting of the leftmost digits and leaf consisting of the last digit
77. In the accompanying stem-and-leaf diagram, the values in the stem and leaf portions represent 10s and 1s digits, respectively.

Stem	Leaf
1	356889
2	012235668889
3	01228
4	22

Which of the following numbers appears in the stem-and-leaf diagram?
A. 3800
B. 380
C. 38
D. 3.8
78. In the accompanying stem-and-leaf diagram, the values in the stem-and-leaf portions represent 10s and 1s digits, respectively.

Stem	Leaf
1	356889
2	012235668889
3	01228
4	22

What would be the frequency of the class 35 up to 45 , that is $\{x, 35 \leq x<45\}$?
A. 0
B. 1
C. 2
D. 3
79. In the accompanying stem-and-leaf diagram, the values in the stem-and-leaf portions represent 10s and 1s digits, respectively.

| Stem | Leaf | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $\begin{array}{\|l\|llllll}\hline 1 & 3 & 5 & 6 & 8 & 8 & 9 \\ 2 & 0 & 1 & 2 & 2 & 3 & 5\end{array} \quad 6$ | 6 | 8 | 8 | 8 | 9 |
| 3 | 0 | 1 | 2 | 2 | 8 |$]$

How many values are at least 25 but less than 35 ?
A. 10
B. 11
C. 12
D. 13
80. In the accompanying stem-and-leaf diagram, the values in the stem-and-leaf portions represent 10s and 1s digits, respectively.

Stem	Leaf
1	356889
2	012235668889
3	01228
4	22

Find the frequency associated with data values that are more than 28.
A. 8
B. 9
C. 10
D. 11
81. In the accompanying stem-and-leaf diagram, the values in the stem-and-leaf portions represent 10s and 1s digits, respectively.

Stem	Leaf
1	356889
2	012235668889
3	01228
4	22

The stem-and-leaf diagram shows that the distribution is \qquad .
A. symmetric
B. positively skewed
C. negatively skewed
D. None of the above
82. The following stem-and-leaf diagram shows the speeds in miles per hour (mph) of 14 cars approaching a toll booth on a bridge in Oakland, California.

Stem	Leaf
2	56

How many of the cars were traveling faster than 25 mph but slower than 40 mph ?
A. 8
B. 9
C. 10
D. 12
83. The following stem-and-leaf diagram shows the last 20 dividend payments (in cents) paid by Proctor and Gamble.

Stem	Leaf
3	15555
4	000044444888
5	333

The most common dividend payment is \qquad .
A. 0.35
B. 0.40
C. 0.44
D. 0.48
84. What may be revealed from a scatterplot?
A. No relationship between two variables
B. A linear relationship between two variables
C. A curvilinear relationship between two variables
D. All of the above
85. What type of relationship is indicated in the scatterplot?

A. No relationship
B. A negative linear relationship
C. A negative curvilinear relationship
D. A positive linear or curvilinear relationship
86. What type of relationship is indicated in the scatterplot?

A. No relationship
B. A negative linear relationship
C. A positive linear relationship
D. A positive curvilinear relationship

AACSB: Analytical Thinking
Blooms: Understana
Difficulty: 2 Medium
Jaggia - Chapter 02 \#86
87. What type of relationship is indicated in the scatterplot?

A. No relationship
B. A negative linear relationship
C. A negative curvilinear relationship
D. A positive linear or curvilinear relationship

AACSB: Analytical Thinking
Blooms: Understana
Difficulty: 2 Medium
Jaggia - Chapter 02 \#87
88.

Use the following data to construct a scatterplot. What type of relationship is implied?

x	3	
y	34	

A. No relationship
B. A positive relationship
C. A negative relationship
D. There is not enough information to answer
89.

Use the following data to construct a scatterplot. What type of relationship is implied?

x	3	
y	34	

A. No relationship
B. A positive relationship
C. A negative relationship
D. Not enough information to answer
90. A car dealership created a scatterplot showing the manufacturer's retail price and profit margin for the cars they have on their lot.

As the manufacturer's suggested retail price increases, the profit margin tends to
\qquad .
A. increase
B. decrease
C. stay the same
D. None of the above
91. The statistics professor has kept attendance records and recorded the number of absent students per class. The recorded data is displayed in the following histogram with the frequency of each number of absent students shown above the bars.

How many statistics classes had three or more students absent?
A. 8
B. 13
C. 22
D. 43

The following table shows the percentage of e-mail that is sent each day of the business week according to an Intermedia survey.

Day	Percentage
Monday	15%
Tuesday	23%
Wednesday	22%
Thursday	21%
Friday	19%

Which of the following best displays this data?
A. Horizontal bar chart
B. Vertical bar chart
C. Pie chart
D. Histogram
93.

The following frequency distribution displays the weekly sales of a certain brand of television at an electronics store.

Number Sold	Frequency
01-May	3
06-Oct	7
Nov-15	14
$16-20$	22
$21-25$	4

How many weeks of data are included in this frequency distribution?
A. 25
B. 50
C. 75
D. 100
94.

The following frequency distribution shows the frequency of the asking price, in thousands of dollars, for current homes on the market in a particular city.

Asking Price	Frequency
$\$ 350$ up to $\$ 400$	12
$\$ 400$ up to $\$ 450$	9
$\$ 450$ up to $\$ 500$	17
$\$ 500$ up to $\$ 550$	11
$\$ 550$ up to $\$ 600$	6

What percentage of houses has an asking price between $\$ 350,000$ and under $\$ 400,000$?
A. 16.4\%
B. 21.8%
C. 30.9%
D. 33.3%
95.

The following frequency distribution shows the frequency of the asking price, in thousands of dollars, for current homes on the market in a particular city.

Asking Price	Frequency
$\$ 350$ up to $\$ 400$	12
$\$ 400$ up to $\$ 450$	9
$\$ 450$ up to $\$ 500$	17
$\$ 500$ up to $\$ 550$	11
$\$ 550$ up to $\$ 600$	6

What percentage of houses has an asking price under \$550,000?
A. 50.5%
B. 69.1%
C. 89.1%
D. 95.0%
96.

A survey conducted by CBS news asked 1,026 respondents: "What would you do with an unexpected tax refund?" The responses are summarized in the following table.

Category	Percentage
Pay off debts	47%
Put it in the bank	30%
Spend it	11%
I never get a refund	10%
Other	2%

How many people will either put it in the bank or spend it?
A. 421
B. 411
C. 113
D. 482
97.

The manager at a water park constructed the following frequency distribution to summarize attendance in July and August.

Attendance	Frequency
1,000 up to 1,250	5
1,250 up to 1,500	6
1,500 up to 1,750	10
1,750 up to 2,000	20
2,000 up to 2,250	15
2,250 up to 2,500	4

What of the following is the most likely attendance range?
A. 2,000 up to 2,500
B. 1,750 up to 2,000
C. 1,000 up to 1,750
D. 1,250 up to 1,750
98.

The Statistical Abstract of the United States, 2010 provided the following frequency distribution of the number of people who live below the poverty level by region.

Region	Number of People (in 1000 s)
Northeast	6,166
Midwest	7,237
South	15,501
West	8,372

What is the percentage of people who live below the poverty level in the West or Midwest?
A. 35.96%
B. 41.87%
C. 41.58%
D. 31.96%
99. Consider the following stem-and-leaf diagram.
$3 \mid 11145$
$4 \mid 467$
$5 \mid 00456689$
$6 \mid 1336$

Which data value occurs most often?
A. 1
B. 56
C. 31
D. 63
100. Consider the following stem-and-leaf diagram.
$3 \mid 11145$
$4 \mid 467$
5|00456689
6|1336

Which of the following statements is correct?
A. There are a total of 10 data values in this data set.
B. The data value that occurs most often is 50 .
C. This largest data value is 59 .
D. The range 50-59 contains the most values.

AACSB: Analytical Thinking
Blooms: Understana
Difficulty: 2 Medium
Jaggia - Chapter 02 \#100
Learning Objective: 02-05 Construct and interpret a stem-and-leaf diagram.
Topic: Stem-and-Leaf Diagrams
101. For qualitative data, a frequency distribution groups data into \qquad and records the number of \qquad .
categories; observations
102. Graphically, we can show $a(n)$ \qquad for qualitative data by constructing a pie chart or a bar chart.

frequency distribution

AACSB: Analytical Thinking Accessibility: Keyboard Navigation

Blooms: Remember Difficulty: 1 Easy

Jaggia - Chapter 02 \#102
Learning Objective: 02-02 Construct and interpret pie charts and bar charts.
Topic: Summarizing Qualitative Data
103. When constructing a frequency distribution for quantitative data classes are mutually
\qquad and \qquad .

exclusive; exhaustive

AACSB: Analytical Thinking
Accessibility: Keyboard Navigation
Blooms: Understana
Difficulty: 2 Medium
Jaggia - Chapter 02 \#103
Learning Objective: 02-03 Summarize quantitative data by forming frequency distributions.
Topic: Summarizing Quantitative Data
104.

A \qquad is a table that shows the number of data observations that fall into specific interval.
frequency distribution
105. The shape of most data distributions can be categorized as either \qquad or \qquad .

symmetric; skewed

AACSB: Analytical Thinking Accessibility: Keyboard Navigation

Blooms: Understana
Difficulty: 2 Medium
Jaggia - Chapter 02 \#105
Learning Objective: 02-04 Construct and interpret histograms, polygons, and ogives.
Topic: Summarizing Quantitative Data
106. A stem-and-leaf diagram most resembles $a(n)$ \qquad .

histogram

AACSB: Analytical Thinking
Accessibility: Keyboard Navigation
Blooms: Understana
Difficulty: 2 Medium
Jaggia - Chapter 02 \#106
Learning Objective: 02-05 Construct and interpret a stem-and-leaf diagram.
Topic: Stem-and-Leaf Diagrams
107. The \qquad is a graphical technique that cannot be used to display qualitative data.

stem-and-leaf

AACSB: Analytical Thinking
Accessibility: Keyboard Navigation
Blooms: Understana
Difficulty: 2 Medium
Jaggia - Chapter 02 \#107
Learning Objective: 02-05 Construct and interpret a stem-and-leaf diagram.
Topic: Stem-and-Leaf Diagrams
108. A scatterplot depicts a positive \qquad relationship, if as x increases, y tends to increase at an increasing rate.
curvilinear

AACSB: Analytical Thinking Accessibility: Keyboard Navigation

Blooms: Understana
Difficulty: 2 Medium
Jaggia - Chapter 02 \#108
Learning Objective: 02-06 Construct and interpret a scatterplot.
Topic: Scatterplots
109.

Using a scatterplot above we observe a \qquad linear relationship between two variables:

Education and Income.

positive

A positive linear relationship exists between variables x and y, when y tends to increase as x increases.
110.

A survey of 400 unemployed people was completed at a job fair. Each person was asked to categorize his or her job interests. The accompanying relative frequency distribution was constructed.

Field	Relative Frequency
Management	0.15
Business and financial operations	0.2
Computer and mathematical	0.1
Life, physical, and social science	0.3
Community and social service	0.25

a. Construct the corresponding frequency distribution. How many of these people designated that the computer and mathematical industry was their job interest?
b. Construct a pie chart.

In order to construct the frequency distribution, multiply each relative frequency by 400, the sample size. For the pie chart, each segment corresponds to the relative frequency for each job category.

Learning Objective: 02-01 Summarize qualitative data by forming frequency distributions.
Learning Objective: 02-02 Construct and interpret pie charts and bar charts.
Topic: Summarizing Qualitative Data

A hair stylist records the hair color of her 25 most recent appointments, classifying the color as blonde, brown, black, or red. Her data set is displayed next.

Red	
Blonde	
Brown	
Brown	
Brown	

a. Construct a frequency and relative frequency distribution of the hair color of the stylist's customers.
b. Construct a pie chart. Which hair color is the most common among the stylist's customers?
c. Create a bar chart to display the frequency distribution. How many customers had black hair?

To construct a pie chart in Excel, select both columns of data, and then select Insert > Pie > 2D Pie. Choose the option at the top left. To construct a bar chart in Excel, select both columns of data, and then select Insert > Column > 2-D Column. Choose the option at the top left. See instructions in text for other formatting options.
112.

The following table lists some of the busiest ports in the world based on the number of containers in 2010.

| Location of Port |
| :---: | :---: |
| Shanghai |
| Singapure |
| Hong Kong |
| Rotterdam |
| Los Angeles |
| New York |

Construct a pie chart to summarize the data. Approximately what percent of the total number of containers go through Hong Kong?

To construct a pie chart in Excel, select both columns of data, and then select Insert > Pie > 2D Pie. Choose the option at the top left. See instructions in the text for other formatting options. Twenty-four million out of 104 million containers went through Hong Kong: 24/104 = 23\%.
113.

Johnson and Johnson (JNJ) is a consumer staples company. Consumer staples are products people need and buy even during times of financial hardship. Do you think JNJ will have a volatile stock price? Does the accompanying graph accurately depict the volatility of JNJ stock? Explain.

The scale on the vertical axis should begin at zero. Refer to Figure 2.6 where graphs with misleading scales are shown.

Each month the Bureau of Labor Statistics reports the number of people (in thousands) employed in the United States by age. The accompanying frequency distribution shows the results for August 2011.

Age	Frequency
16 to 19	4,794
20 to 24	13,273
25 to 34	30,789
35 to 44	30,021
45 to 54	32,798
55 and over	28,660

a. Construct a relative frequency distribution. What proportion of workers is between 20 and 24 years old?
b. Construct a cumulative relative frequency distribution. What proportion of workers is younger than 35 years old?
c. Construct a relative frequency histogram.

First find the total number of people surveyed by summing the frequency column ($n=$ 140,335).
a. To find the relative frequency for each class, divide each class's frequency by n; so the
proportion of workers that are between 20 and 24 years old is $13,273 / 140,335=0.095$.
b. To find the cumulative relative frequency for each class, take each class's relative frequency and add it to the preceding relative frequencies. So the proportion of workers that are younger than 35 years old is $0.034+0.095+0.219=0.348$.
c. To construct a relative frequency histogram by hand, let the width of each rectangle equal the width of the class, and its height equal the corresponding relative frequency. In order to construct a relative frequency histogram in Excel, put the class column and the relative frequency column next to one another in the spreadsheet. Select both columns simultaneously and then choose Insert > Column > 2-D Column. Choose the option at the top left. See instructions in the text for other formatting options.
115.

The following table displays the top 40 American League batting averages of the 2011 season.

Player	Batting Average	Player	Batting Average
Miguel Cabrera	0.344	Yunel Escobar	0.290
Adrian Gonzalez	0.338	Vladimir Guerrero	0.290
Michael Young	0.338	Alberto Callaspo	0.288
Victor Martinez	0.33	Howard Kendrick	0.285
Jacoby Ellsbury	0.321	Jeff Francoeur	0.285
David Ortiz	0.309	Nick Markakis	0.284
Dustin Pedroia	0.307	Michael Cuddyer	0.284
Casey Kotchman	0.306	Adam Jones	0.280
Melky Cabrera	0.305	Elvis Andrus	0.279
Alex Gordon	0.303	Erick Aybar	0.279
Jose Bautista	0.302	Juan Pierre	0.279
Robinson Cano	0.302	Matt Joyce	0.277
Paul Konerko	0.300	Asdrubal Cabrera	0.273
Jhonny Peralta	0.299	Edwin Encarnacion	0.272
Josh Hamilton	0.298	Ichiro Suzuki	0.272
Derek Jeter	0.297	Peter Bourjos	0.271
Adrian Beltre	0.296	J.J. Hardy	0.269
Alex Avila	0.295	Alexei Ramirez	0.269
Eric Hosmer	0.293	Ben Zobrist	0.269
Billy Butler	0.291	Delmon Young	0.268

a. Construct frequency, relative frequency, and cumulative relative frequency distributions that group the data in classes of 0.265 up to $0.280,0.280$ up to $0.295,0.295$ up to 0.310 , and so on.
b. How many of these players have a batting average above 0.340 ? What proportion of these players has a batting average of at least 0.280 but below 0.295 ? What percentage of these players has a batting average below 0.325 ?
c. Construct a relative frequency histogram. Is the distribution symmetric? If not, is it positively or negatively skewed?
d. Construct an ogive.
e. Using the ogive, approximately what proportion of the players in this group has a batting average above 0.290 ?
a. To construct the frequency distribution, count the number of players whose batting average falls in each class. To construct a relative frequency distribution, divide the frequency of each class by the total number of observations (in this case, 40). To construct the cumulative relative frequency distribution, take the relative distribution and add it to the preceding class's cumulative relative frequency. For the lowest class, the cumulative relative frequency is simply the relative frequency of that class. b. Use the distributions computed in part a. to answer these questions. c. Because the distribution has a tail toward the right, we are able to say that it is positively skewed. To construct a relative frequency histogram by hand, let the width of each rectangle equal the width of the class, and its height equal the corresponding relative frequency. To construct a relative frequency histogram in Excel, put the class column and the relative frequency column next to one another in the spreadsheet. Select both columns simultaneously and then choose Insert > Column > 2-D Column. Choose the option at the top left. See instructions in the text for other formatting options. d. To construct an ogive in Excel, create a table with two columns. In the left column, put the upper limit of each class, and in the right column put the cumulative relative frequency or cumulative percent frequency. In the first row of this table, insert the lower bound of the first class in the left column and a 0 in the right column. Select both columns simultaneously and then choose Insert > Scatter and pick the option given at the top right (a scatterplot with a smooth line connecting the points). e. Draw a vertical line up from . 290 on the horizontal axis of the ogive. This intersects the ogive at about 0.45 , so about 45% of this group of players have a batting average less than .290 . Therefore,
about 55% have a batting average greater than .290 .

AACSB: Analytical Thinking
Blooms: Apply
Difficulty: 3 Hara
Jaggia - Chapter 02 \#115
Learning Objective: 02-04 Construct and interpret histograms, polygons, and ogives.
116.

The following table shows analyst sentiment ratings for the 30 stocks listed in the Dow Jones Industrial Average.

7	4	6	
6	4	5	
2	9	7	

a. Construct a frequency distribution, relative frequency distribution, cumulative frequency distribution and relative cumulative frequency distribution using classes of 2 up to 4,4 up to 6 , 6 up to 8 , and 8 up to 10 .
b. Construct a histogram that summarizes the data.
c. What percentage of the stocks in the Dow Jones Industrial Average received a sentiment rating less than 8 ?
d. What percentage of the stocks in the Dow Jones Industrial Average received a sentiment rating of 6 or more?
c. $23 / 30 \approx 0.77$ or about 77%. See cumulative relative frequency distribution in part a. d. 15/30 $=0.5$ or 50%. See cumulative relative frequency distribution in part a.

Learning Objective: 02-03 Summarize quantitative data by forming frequency distributions.
Learning Objective: 02-04 Construct and interpret histograms, polygons, and ogives.
117.

The accompanying cumulative relative frequency distribution shows a summary of the scores from an Algebra II exam at a local high school. Twenty students took the exam.
$\left.\begin{array}{|c|c|}\hline \text { Class } & \begin{array}{c}\text { Cumulative } \\ \text { Relative } \\ \text { Frequency }\end{array} \\ \hline \begin{array}{c}51- \\ 60\end{array} & 0.05 \\ \hline \begin{array}{c}61- \\ 70\end{array} & 0.20 \\ \hline 71- & 0.45 \\ 80 & \\ \hline 81- & 0.80 \\ 90\end{array}\right]$
a. Construct the relative frequency distribution. What proportion of students scored between 81 and 90 ?
b. Construct the frequency distribution. How many students scored between 71 and 80 ?
c. Construct an ogive. What is the approximate percentage of students that scored less than 85?
a. To find the relative frequency for each class, subtract each class's cumulative relative
frequency from the preceding cumulative relative frequency; so the proportion of students that scored between 81 and 90 is $0.80-0.45=0.35$.
b. To find the frequency for each class, multiply each class's relative frequency by $N(N=20)$; so the number of students that scored between 71 and 80 is $0.25 \times 20=5$.
c. To construct an ogive, we plot the five points corresponding to the upper class limits and their cumulative relative frequencies. In addition, we add one point being the first class lower limit with a zero value. See instructions in the text for plotting an ogive in Excel. We then draw a vertical line at the score 85 (not shown) until it intersects the curve. At the intersection, draw a horizontal line to the y axis-it intersects at approximately 0.60 , or 60%.
118.

The dividend yields of the stocks in an investor's portfolio are shown in the following cumulative relative frequency distribution.

	Dividend Yields
	0% up to 2%
	2% up to 4%
	4% up to 6%
	6% up to 8%

a. Construct an ogive.
b. Approximately what percent of the stocks had a dividend yield of 3% or larger?

To construct an ogive, we plot the five points corresponding to the upper class limits and their cumulative relative frequencies. In addition, we add one point being the first class lower limit with a zero value. See instructions in the text for plotting an ogive in Excel. We then draw a vertical line at the score .03 (not shown) until it intersects the curve. At the intersection, draw a horizontal line to the yaxis-it intersects at approximately 0.70 . One minus 0.7 equals 0.3 , which is the approximate proportion with dividend yields of 3% or more.
119.

Construct a stem-and-leaf diagram with the following data set.

3.2	1.3	2.1	2.4	4.3	3.1	3.2	1.1	1.4	2.5
2.4	2.9	3.8	1.7	2.3	1.2	3.2	1.4	1.5	2.6

Is the distribution symmetric?

Stem	Leaf
1	1234457
2	1344569
3	12228
4	3

Sort the data from lowest value to highest value, grouping by the leftmost digit. Write the leftmost digit in the left-hand column. In the right column, write the right-most digit of each data point, separated by a space, in ascending order. By turning the stem-and-leaf diagram on its side, we notice that the distribution has a tail toward the right. The distribution is therefore positively skewed.
120.

Construct a stem-and-leaf diagram for the following data set.

74	75	63	62	56	79	58	79	53	49
78	69	74	72	53	72	64	65	67	77

Is the distribution symmetric?

Stem	Leaf
4	9
5	$\mid 3368$
6	234579
7	224457899

Sort the data from lowest value to highest value, grouping by the leftmost digit. Write the leftmost digit in the left-hand column. In the right column, write the right-most digit of each data point, separated by a space, in ascending order. By turning the stem-and-leaf diagram on its side, we notice that the distribution has a tail toward the left. The distribution is therefore negatively skewed.
121.

The following table shows average wind speeds (in miles per hour) during 15 major fires in California.

44	55	22	32	29	24	47	33	32	27	58	39	38	51	41

Construct a stem-and-leaf diagram. Were most of these storms fueled by 45+ mile-per-hour winds? Explain.

- Sort data, then group according to the 10 s digit.

20s 22, 24, 27, 29
30s 32, 32, 33, 38, 39
40s 41, 44, 47
<p> 50s 51, 55, $58 \quad$ </p>

- Write the 10s digits in the left-hand column.
- Draw a line next to the 10s digit.

On the right-hand side of the line, write the 1 s digit for each number.
122.

The following table shows the prices (in $\$ 1,000$ s) of the last 15 trucks sold at a Toyota dealership.

33	21	26	33	23	24	31	22	17	25	18	23	22	19	35

Construct a stem-and-leaf diagram. Given this diagram, estimate the price that a potential buyer would likely pay for a Toyota truck.

- Sort data, then group according to the 10 s digit.

10s 17, 18, 19
20s 21, 22, 22, 23, 23, 24, 25, 26
<p> 30 s $31,32,33,35$

$$
</ p>
$$

- Write the 10 s digits in the left-hand column.
- Draw a line next to the 10 s digit.

On the right-hand side of the line, write the 1 s digit for each number.
123.

The following data represent the ages of patients in the cardiac section of the local hospital.
Construct a stem-and-leaf diagram. Comment on whether or not the distribution is symmetric.

48	53	60	61	62	63	70	70	72	77	78	79	80	82	87	88	90

Because the numbers are already sorted, begin by grouping according to the 10 s digit.Write the 10s digits in the left-hand column.Draw a line next to the 10 s digit. On the right-hand side of the line, write the 1 s digit for each number.
124.

A high school football league recorded the average points scored per game, as well as the winning percentage, for the 10 teams in the league.

	Points per Game
	24
	21
	27
	13
	16
	18
	15
	17

Construct a scatterplot. Does scoring more points appear to be associated with a higher winning percentage?

To construct the scatterplot, plot each team's points per game-winning percentage combination, where, in our answer key, the points per game correspond to the value on the horizontal axis, and the winning percentage corresponds to the value on the vertical axis. Since the relationship is clearly positive (as one variable gets larger, the other tends to get larger as well), teams that score more points tend to have a higher winning percentage.

Learning Objective: 02-06 Construct and interpret a scatterplot.
125.

A statistics instructor computes the grade and percentage of classes that each of his students attends. Construct a scatterplot from the data displayed next. Does a relationship exist between attendance and grade?

Attendance	47	60	75	86	95	98	100
Grade	58	72	85	84	90	97	92

To construct the scatterplot, plot each attendance-grade combination, where, in our answer key, the attendance corresponds to the value on the horizontal axis and the grade corresponds to the value on the vertical axis. Since a clear positive relationship exists, we are able to say that the two variables are related.

Chapter 02 Summary

Category
\# of Questions
AACSB: Analytical Thinking 124
AACSB: Technology 1
Accessibility: Keyboard Navigation 36
Blooms: Analyze 3
Blooms: Apply 8
Blooms: Remember 35
Blooms: Understand 79
Difficulty: 1 Easy 35
Difficulty: 2 Medium 80
Difficulty: 3 Hard 10
Jaggia - Chapter 02 125
Learning Objective: 02-01 Summarize qualitative data by forming frequency distributions. 22
Learning Objective: 02-02 Construct and interpret pie charts and bar charts. 15
Learning Objective: 02-03 Summarize quantitative data by forming frequency distributions. 38
Learning Objective: 02-04 Construct and interpret histograms, polygons, and ogives. 21
Learning Objective: 02-05 Construct and interpret a stem-and-leaf diagram. 18
Learning Objective: 02-06 Construct and interpret a scatterplot. 14
Topic: Scatterplots 14
Topic: Stem-and-Leaf Diagrams 18
Topic: Summarizing Qualitative Data 37
Topic: Summarizing Quantitative Data 56

