TEST BANK

TRUE/FALSE. Write ' T ' if the statement is true and ' F ' if the statement is false.

1) The top term in a fraction is called the numerator.
2) The bottom term in a fraction is the divisor or the number that divides into the numerator.
3) The horizontal line that separates the numerator and the denominator is called the dividend.
4) The fraction 89 is a proper fraction.
5) A proper fraction has a value greater than 1 .
6) A fraction with a numerator that is less than the denominator is called an improper fraction.
7) An improper fraction has a value equal to or less than 1.
8) The number $1 \frac{3}{5}$ is a mixed number.
9) After fractions have been added, subtracted, multiplied, or divided, the fraction in the answer should be increased to its highest terms.
10) To change an improper fraction into a whole or mixed number, you need only divide the denominator by the numerator.
11) An equivalent number is a converted whole or mixed number that has the same numerical value as the original fraction.
12) When an improper fraction is converted, if there is a remainder, it is a whole number.
13) $\frac{546}{12}$ converted to a mixed or whole number is $45 \frac{1}{2}$.
14) In converting mixed numbers to improper fractions, the numerator of the improper fraction will be the same as the numerator of the fractional part of the mixed number.
15) To convert mixed numbers to improper fractions, multiply the whole number times the denominator of the fraction and add the product to the original denominator.
16) $17 \frac{5}{8}$ converted to an improper fraction is $\frac{141}{8}$.
17) \qquad
18) If you multiply or divide both parts of a fraction by the same number, the value of the fraction does not change.
19) A fraction is at its lowest terms when there is no number that can be divided evenly into the numerator and denominator.
20) \qquad
21) \qquad
22) \qquad
23) \qquad
24) \qquad
25) \qquad
26) \qquad
27) \qquad
28) \qquad
29) \qquad
30) \qquad
31) \qquad
32) \qquad
33) \qquad
34) \qquad
35) \qquad
36) \qquad
37) The fraction $\frac{368}{1296}$ is at its lowest terms. \qquad
38) The letters GCD stand for Greatest Common Divisor.
39) \qquad
40) You can rewrite a fraction to higher terms by adding the numerator and the denominator.
41) \qquad
42) The fractions $\frac{11}{18}$ and $\frac{297}{486}$ have the same value.
43) \qquad
44) The greatest common divisor can be zero.
45) Fractions should never be reduced to their lowest terms.
46) Raising a fraction to higher terms changes the value of the fraction.
47) \qquad
48) \qquad
49) \qquad
50) Before you can add or subtract fractions, they must have the same denominators.
51) The sum of $\frac{5}{12}+\frac{7}{18}+\frac{11}{20}$ is $\frac{23}{50}$.
52) \qquad
53) A prime number is any number larger than 1 that is divisible only by itself and 1.
54) $4 \frac{5}{6}+5 \frac{7}{9}$ is equal to $9 \frac{11}{18}$.
55) \qquad
56) The difference between $\frac{7}{12}$ and $\frac{3}{16}$ is $\frac{19}{48}$.
57) $43 \frac{3}{5}$ is the difference between $72 \frac{4}{15}$ and $28 \frac{5}{6}$.
58) \qquad
59) When you multiply or divide fractions, you must first find the common denominator.
60) $\frac{5}{9}$ times $\frac{1}{8}$ is $\frac{1}{12}$.
61) The product of $3 \frac{3}{4} \times 5 \frac{4}{5}$ is $29 \frac{1}{4}$.
62) Multiplication and division of fractions are totally dissimilar activities requiring separate skills.
63) The following two numbers are considered to be reciprocals: $\frac{27}{8}$ and $\frac{8}{27}$. \qquad
64) To divide by a fraction, divide the dividend by the reciprocal of the dividend.
65)
66) The quotient of $\frac{1}{9}$ divided by $\frac{1}{16}$ is $\frac{1}{144}$.
67) \qquad
68) $8 \frac{1}{4}$ divided by $3 \frac{5}{9}$ has a quotient of $29 \frac{1}{3}$.
69) \qquad
70) The reciprocal is not used in dividing fractions.
71) \qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

41) The bottom term in a fraction is called the:
42) \qquad
A) denominator
B) divisor
C) fraction line
D) numerator
E) none of the above
43) The bottom term in a fraction is referred to as the:
44) \qquad
A) denominator
B) fraction line
C) numerator
D) dividend
E) none of the above
45) The dividend or number being divided in a fraction is called the:
46) \qquad
A) denominator
B) numerator
C) divisor
D) GCD
E) none of the above
47) The line in a fraction that separates the numerator and denominator is termed the:
48) \qquad
A) divisor
B) dividend
C) numerator
D) GCD
E) none of the above
49) The fraction $\frac{13}{8}$ is referred to as a (an):
50)

A) improper fraction
B) proper fraction
C) mixed number
D) designated number
E) none of the above
46) A fraction that has a value equal to or greater than 1 is a (an):
A) designated fraction
B) mixed number
C) improper fraction
D) proper fraction
E) none of the above
47) To convert an improper fraction into a whole or mixed number you:
A) subtract the numerator from the denominator
B) add the numerator and the denominator
C) multiply the numerator by the denominator
D) divide the numerator by the denominator
E) none of the above
48) $\frac{879}{112}$ converted to a whole or mixed number is:
A) $79 \frac{5}{112}$
B) $7 \frac{95}{112}$
C) $\frac{795}{112}$
D) $\frac{7}{112}$
E) none of the above
49) To convert mixed numbers to improper fractions you would:
A) multiply the whole number times the denominator of the fraction and add the whole number to the denominator
B) multiply the whole number times the denominator of the fraction and add the product to the original numerator
C) multiply the whole number times the denominator of the fraction and add the product to the original denominator
D) multiply the whole number times the numerator of the fraction and add the product to the original denominator
E) none of the above
50) $93 \frac{8}{13}$ converted to an improper fraction is:
\qquad
46) \qquad
,
\qquad
\qquad
50) \qquad
A) $\frac{1209}{13}$
B) $\frac{13}{1217}$
C) $\frac{1217}{13}$
D) $\frac{1213}{17}$
E) none of the above
51) The fraction $\frac{261}{3799}$ reduced to its lowest terms is:
51)
A) $\frac{68}{559}$
B) $\frac{9}{131}$
C) $\frac{45}{655}$
D) $\frac{145}{262}$
E) none of the above
52) To reduce a fraction to its lowest terms:
52)
A) divide the numerator and denominator by the same number
B) add the same number to the numerator and the denominator
C) subtract the same number from the numerator and the denominator
D) multiply the numerator and denominator by the same number
E) none of the above
53) The quickest way to reduce a fraction to its lowest terms is to divide the numerator and
53) \qquad denominator by:
A) NCD
B) HCD
C) $G C D$
D) LCD
E) none of the above
54) Change $\frac{9}{37}$ into a fraction with a denominator of 4514 .
A) $\frac{1098}{4514}$
B) $\frac{108}{4514}$
C) $\frac{122}{4514}$
D) $\frac{1101}{4514}$
E) none of the above
55) Before fractions may be added or subtracted, they must all have the same:
55)
A) factor
B) prime number
C) dividend
D) numerator
E) none of the above
56) The letters LCD stand for:
56) \qquad
A) Lower Contributing Denominator
B) Least Common Denominator
C) Lowest Common Decimal
D) Lowest Central Denominator
E) none of the above
57) A fraction indicates what mathematical function?
A) division
B) addition
C) multiplication
D) subtraction
E) all of the above
58) The least common denominator of $\frac{16}{20}, \frac{8}{5}, \frac{17}{50}$, and $\frac{3}{4}$ is:
58)
57) \qquad
A) 4
B) 20
C) 50
D) 5
E) none of the above
59) $5 \frac{2}{5}$ is an example of a (an):
59)
A) improper fraction
B) complex fraction
C) proper fraction
D) mixed number
E) none of the above
60) $\frac{27}{7}$ converted to a mixed number is:
60)
A) $3 \frac{6}{7}$
B) 4
C) $3 \frac{3}{4}$
D) $3 \frac{7}{6}$
E) none of the above
61) The Least Common Denominator of $\frac{1}{3}, \frac{5}{12}, \frac{5}{6}$, and $\frac{3}{4}$ is:
61)
A) 3
B) 4
C) 6
D) 12
E) none of the above
62) The fractions $22 \frac{3}{8}+15 \frac{5}{6}+11 \frac{3}{10}$ equal:
62)
A) $49 \frac{1}{10}$
B) $48 \frac{11}{24}$
C) $48 \frac{5}{24}$
D) $49 \frac{61}{120}$
E) none of the above
63) John is $6 \frac{3}{8}$ feet tall. John is $\frac{5}{18}$ of a foot taller than Mary. How tall is Mary?
63) \qquad
A) $6 \frac{7}{144}$ feet
B) $6 \frac{7}{72}$ feet
C) $5 \frac{11}{18}$ feet
D) $5 \frac{1}{3}$ feet
E) none of the above
64) Find the difference between $9 \frac{1}{3}$ and $3 \frac{5}{12}$.
64)
A) $5 \frac{1}{2}$
B) $5 \frac{3}{4}$
C) $5 \frac{11}{12}$
D) $5 \frac{1}{3}$
E) none of the above
65) Jill worked $7 \frac{3}{4}$ hours on Monday; $8 \frac{1}{2}$ hours on Tuesday; 9 hours on Wednesday; $8 \frac{1}{4}$ hours \qquad on Thursday; and $7 \frac{3}{8}$ hours on Friday. How many hours did Jill work?
A) $39 \frac{8}{8}$
B) $40 \frac{7}{8}$
C) $39 \frac{8}{18}$
D) 40
E) none of the above
66) Bob traveled a total of $86 \frac{3}{8}$ miles on Tuesday, visiting 3 customers. To visit customer (1) he
66) \qquad traveled $18 \frac{1}{4}$ miles and to visit customer (2) he traveled $25 \frac{7}{32}$ miles. How far did he travel to visit customer (3)?
A) $42 \frac{3}{28}$ miles
B) $43 \frac{5}{28}$ miles
C) $42 \frac{29}{32}$ miles
D) $43 \frac{11}{32}$ miles
E) none of the above
67) Which of the following is a prime number?
67)
A) 29
B) 41
C) 7
D) 19
E) all of the above
68) Derek worked $6 \frac{3}{4}$ hours on Monday, $4 \frac{1}{2}$ hours on Tuesday, 8 hours on Wednesday, $7 \frac{3}{4}$ \qquad hours on Thursday, and $7 \frac{1}{4}$ hours on Friday. How many hours did Derek work during the week?
A) $34 \frac{1}{4}$
B) $32 \frac{9}{4}$
C) $32 \frac{1}{4}$
D) 34
E) none of the above
69) Janice mixes her own bird seed. She recently purchased $\frac{7}{8}$ pounds of sunflower seed, $7 \frac{1}{2}$
69) \qquad pounds of cracked corn, and $6 \frac{5}{8}$ pounds of millet. After mixing the seed, how many pounds of bird seed did she have?
A) $13 \frac{13}{8}$
B) $\frac{147}{8}$
C) $14 \frac{7}{8}$
D) 15
E) none of the above
70) On a recent business math test, $\frac{1}{4}$ of the class achieved an A grade, $\frac{1}{5}$ a B grade, and $\frac{1}{3}$ a C
70) grade. What portion of the class received a grade less than C ?
A) $\frac{13}{60}$
B) $\frac{47}{60}$
C) $\frac{24}{30}$
D) 13
E) none of the above
71) When you multiply fractions, you do not have to use:
71) \qquad
A) products
B) reciprocals
C) quotients
D) none of the above
E) all of the above
72) The product of $\frac{5}{8}$ and $\frac{2}{5}$ is:
72)
A) $\frac{7}{13}$
B) $\frac{11}{8}$
C) $\frac{1}{40}$
D) $1 \frac{1}{40}$
E) none of the above
73) Douglas has to travel 580 miles on a business trip. On the first day he traveled $\frac{2}{3}$ of the total
73) \qquad miles. How many miles did he travel?
A) $386 \frac{2}{3}$
B) 522
C) $193 \frac{1}{3}$
D) $348 \frac{1}{3}$
E) none of the above
74) There are $10 \frac{3}{4}$ inches of wire available Mary requires $6 \frac{1}{8}$ times that amount. How many
74) inches of wire does she need?
A) $44 \frac{3}{32}$
B) $4 \frac{2}{49}$
C) $65 \frac{27}{32}$
D) $126 \frac{27}{32}$
E) none of the above
75) If the product of two numbers is 1 , they are said to be:
75)
A) unequal
B) reciprocals
C) quotients
D) mixed numbers
E) none of the above
76) The reciprocal of $17 \frac{1}{8}$ is:
76)
A) $\frac{137}{8}$
B) $\frac{17}{8}$
C) $\frac{8}{137}$
D) $19 \frac{8}{1}$
E) none of the above
77) The quotient of $\frac{5}{16}$ divided by $\frac{6}{10}$ is:
77) \qquad
A) $\frac{9}{26}$
B) $\frac{5}{8}$
C) $\frac{25}{48}$
D) $\frac{11}{16}$
E) none of the above
78) Sandy was asked to take an inventory of reams of typing paper. She knew that one ream
78) \qquad was $2 \frac{3}{8}$ inches high. If the total height of all the paper was $110 \frac{1}{5}$ inches, how many reams were in the inventory?
A) $46 \frac{39}{40}$
B) $46 \frac{2}{5}$
C) $261 \frac{29}{40}$
D) $55 \frac{2}{3}$
E) none of the above
79) Reducing before multiplying:
79) \qquad
A) raises fractions to their highest terms
B) has a definite set of rules
C) is an alternative method for multiplying fractions
D) results in multiplying a number evenly times the top and bottom of a fraction or fractions
E) none of the above
80) The reciprocal is used:
80) \qquad
A) in dividing whole numbers
B) in multiplying fractions
C) to replace the cancellation method
D) in dividing fractions
E) none of the above
81) A trip from Kansas City to the Lake of the Ozarks will take $2 \frac{2}{3}$ hours. If we are $\frac{1}{3}$ of the way
81) \qquad there, how long have we traveled?
A) $1 \frac{1}{6}$
B) $\frac{8}{9}$
C) $1 \frac{1}{8}$
D) $\frac{9}{8}$
E) none of the above
82) Paterson Greenup Company buys weed killer spray in 55 gallon drums. They dilute the concentrate with water in 5 gallon containers. Each container is filled with $2 \frac{3}{4}$ gallons of weed killer and $2 \frac{1}{4}$ gallons of water. How many containers can be filled from one 55 gallon drum of weed killer?
A) $24 \frac{4}{9}$
B) 24
C) 11
D) 20
E) none of the above
83) A local community college has 1,694 square feet in their computer lab. If each student
82) \qquad
83) \qquad workstation requires $30 \frac{1}{4}$ square feet, how many student workstations can be placed in the computer lab?
A) 112
B) 56
C) 54
D) 108
E) none of the above

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
84) The \qquad is the bottom term in a fraction.
84) \qquad
85) The bottom term of a fraction is called the \qquad .
85) \qquad
86) Fractions where the numerator is smaller than the denominator are called \qquad . \qquad
87) \qquad are fractions where the numerator is larger than the denominator.
87) \qquad
88) A number composed of both a whole number and a \qquad is called a mixed number.
89) When you convert an improper fraction and there is a remainder, you have a
\qquad
89) \qquad
90) \qquad
91) \qquad improper fraction will be the same as the \qquad of the fractional part of the mixed number.
92) To convert a mixed number to an improper fraction, multiply the whole number times the \qquad of the fraction and add the product to the original \qquad _.
93) $7 \frac{1}{8}$ converted to an improper fraction is \qquad .
94) A fraction is said to be in lowest terms when there is no number that can be divided
\qquad into both the numerator and the denominator.
95) The fraction $\frac{18}{192}$ reduced to its lowest terms is \qquad -
96) The \qquad is the largest number that can be divided evenly into both the numerator and denominator of a fraction.
97) You can raise the terms of a fraction by \qquad the \qquad and \qquad by the same number.
98) $\frac{25}{132}$ converted into a fraction with a denominator of 1056 is \qquad .
99) The least common denominator of $\frac{6}{20}, \frac{9}{5}, \frac{7}{50}$, and $\frac{3}{4}$ is \qquad -.
100) When you add or subtract fractions, you must first change the fractions so that they
100) \qquad have the same \qquad _.
101) When you want to convert an improper fraction into a whole or mixed number, you \qquad divide the \qquad by the \qquad _-
99) \qquad
102) Before fractions can be added or subtracted, they must all have the same \qquad .
102) \qquad
103) When you add fractions with the same denominator, you add the \qquad and then
103) \qquad place that number over the denominator and \qquad to the lowest terms.
104) The sum of $\frac{1}{9}+\frac{4}{9}+\frac{5}{9}$ is \qquad .
104) \qquad
105) When adding fractions with different denominators, you must first find the
105) \qquad
\qquad .
106) The total of $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$ is \qquad -
106) \qquad
107) The sum of $4 \frac{1}{6}+11 \frac{5}{9}+15 \frac{7}{27}$ is \qquad -.
107) \qquad
108) When you subtract fractions with the same denominator, you simply subtract the
108) \qquad $\ldots \ldots$ ___ place the difference over the denominator, and reduce to the lowest terms.
109) The difference between the fractions $\frac{11}{32}-\frac{5}{32}$ is \qquad -.
109) \qquad
110) $\frac{1}{16}$ subtracted from $\frac{5}{12}$ is \qquad .
111) Bill has a piece of wood $15 \frac{3}{8}$ inches long. Jane has a piece of wood $18 \frac{10}{16}$ inches long.
111) \qquad Jane's piece of wood is \qquad longer than Bill's.
112) Jim is $6 \frac{5}{12}$ feet tall. Mike is $5 \frac{15}{16}$ feet tall. Jim is \qquad taller than Mike.
112) \qquad
113) When you multiply or divide fractions, you do not have to find the \qquad _.
113) \qquad
114) $\frac{3}{6}$ times $\frac{7}{10}$ is \qquad 114) \qquad
115) \qquad
115) The product of $\frac{3}{6}$ times 9 is \qquad -
116) John walks $4 \frac{3}{8}$ miles per hour. In 4 hours he can walk \qquad miles.
116) \qquad
117) The division of a fraction also involves the operation of \qquad - \qquad
118) Two numbers are \qquad if their product is 1 after being multiplied.
119) \qquad is the reciprocal of $7 \frac{3}{10}$.
119) \qquad
120) To divide by a fraction, \qquad the dividend by the \qquad of the divisor.
121) The quotient of $\frac{7}{10}$ divided by $\frac{4}{7}$ is \qquad -.
122) \qquad is the quotient of $8 \frac{1}{6}$ divided by $4 \frac{3}{8}$.
123) Convert $\frac{15}{45}$ to higher terms having a denominator of 180 .
124) Reduce the fraction $\frac{68}{238}$ to its lowest terms. \qquad
125) Reduce $\frac{22}{114}$ to its lowest terms.
125) \qquad
126) Reduce the fraction $\frac{36}{162}$ to its lowest terms.
126) \qquad
127) Cindy worked the following hours during the current week: Monday: $7 \frac{1}{4}$; Tuesday:
127) \qquad $9 \frac{1}{8}$; Wednesday: $7 \frac{5}{6}$; Thursday: 8 ; and Friday: $8 \frac{3}{4}$. What were her total hours worked for the week?
128) Jill required $5 \frac{7}{8}$ inches of blue ribbon, $8 \frac{4}{5}$ inches of red ribbon, and $3 \frac{3}{4}$ inches of
128) \qquad white ribbon to complete her project. In total, how many inches of ribbon is needed?
129) A car was driven $236 \frac{1}{10}$ miles. Bill drove the car $80 \frac{7}{10}$ miles and Kevin drove $76 \frac{9}{10}$
129) \qquad miles. The balance of the miles were driven by Ann. How many miles did she drive?
130) Jason purchased 3 parcels of land totaling $27 \frac{4}{5}$ acres. If the first two pieces of \qquad property were $11 \frac{1}{6}$ and $7 \frac{9}{10}$ acres respectively, how many acres was the third parcel of land?
131) What is the least common denominator of $\frac{3}{5}$ and $\frac{60}{100}$?
132) Add $\frac{5}{4}$ and $\frac{5}{6}$.
132) \qquad
133)
133) What is the Least Common Denominator of $\frac{9}{20}, \frac{6}{5}, \frac{3}{50}$, and $\frac{1}{4}$?
134) Martin purchased $2 \frac{9}{16}$ pounds of beef brisket, $5 \frac{7}{8}$ pounds of shaved ham, and $\frac{3}{4}$ of a
134) pound of baked beans. What was the total weight of Martin's purchases?
135) A partnership was formed between Gene, Orville, and Jerry. Gene owned $\frac{2}{5}$ and
135) \qquad Orville owned $\frac{3}{8}$. What part was owned by Jerry?
136) If the fabric required for drapes is $27 \frac{1}{4}$ yards and for matching pillows is $2 \frac{1}{8}$ yards,
136) \qquad what is the total number of yards required?
137) Steve has 15 days of vacation per year. To date, he has taken $1 \frac{5}{8}$ days in March, $7 \frac{3}{8}$
137) \qquad days in June, and $4 \frac{1}{4}$ days in July. How many more vacation days can Steve take?
138) What is the sum of $\frac{4}{9}+\frac{1}{4}+\frac{2}{3}$?
138) \qquad
139) Subtract $\frac{1}{4}$ from $\frac{7}{9}$.
139) \qquad
140) \qquad
140) Subtract $9 \frac{5}{15}$ from $15 \frac{11}{12}$.
141) Add the fractions $\frac{5}{12}+\frac{1}{16}+\frac{7}{24}$.
141) \qquad
142) Nancy bought a cake for her son's graduation. The bakery owner indicated that the cake would serve 40 people. If 25 guests each had one serving of the cake, what portion of the cake remained?
143) Subtract $7 \frac{5}{6}$ from $11 \frac{3}{16}$.
\qquad
143) \qquad
144) Add the fractions $\frac{11}{16}+\frac{4}{9}+\frac{1}{3}$.
145) Walter Reed is having 90 people over to his house for a party. He is told to allow for $\frac{2}{3}$ of a pound of meat per person. How many pounds of meat should he order?
146) Spencer knows that it will take $19 \frac{1}{2}$ hours to travel to Florida. After traveling $\frac{2}{3}$ of the time he stops to rest. How many more hours must he travel to reach Florida?
147) John, the carpenter, has a board $20 \frac{1}{2}$ feet in length. He needs pieces cut in lengths of $2 \frac{3}{8}$ feet. How many full pieces can be cut from the board?
148) Phil must travel $306 \frac{3}{4}$ miles. If he averages $51 \frac{1}{8}$ miles per hour, how many hours will the trip take?
149) A trip from Cheyenne, Wyoming to the Rocky Mountains takes $3 \frac{3}{4}$ hours. Assuming that you are $\frac{1}{3}$ of the way there, how long have you been traveling?
150) T.C. Industries manufactures $16 \frac{3}{8}$ lighting grills each hour. How many lighting grills can be produced in a 48 -hour week?
151) Find the product of $5 \frac{1}{8}$ times $7 \frac{11}{12}$.
152) Find the quotient for $\frac{11}{17}$ divided by $\frac{5}{12}$.
153) Janice, who loves to cook, is making a peach pie (serves 6) for her family. The recipe calls for 4 cups of sliced peaches, $1 \frac{1}{3}$ cups of flour, $\frac{1}{2}$ cup of margarine, and 1 cup of sugar. However, today additional family members are coming and Janice would like to make enough pie to serve 18 people. How many cups of flour should she use?
154) In a recent antibiotic resistance test, it was found that $\frac{4}{10}$ of all people tested had infections that were resistant to penicillin. If 4,310 people were tested, how many had infections that were resistant to penicillin?
155) Find the product of $\frac{2}{19}$ times $\frac{5}{8}$.
155) \qquad
156) \qquad
157) \qquad basement. If each shelf is to be $2 \frac{1}{2}$ feet in length, how many shelves can Bob construct?
158) Driving from Kansas City, MO to Denver, CO takes $15 \frac{3}{4}$ hours. If you have traveled $\frac{1}{3}$ of the distance, how many hours have you traveled?
159) There are $24 \frac{3}{4}$ inches of cloth available. If Mary requires $6 \frac{1}{8}$ times that amount, how many inches of cloth does she need?
160) $\frac{3}{4}+\frac{1}{2}-\frac{1}{3}=$
161) Nancy bought a cake for her son's graduation. The bakery owner indicated that the cake would serve 40 people. If 25 guests each had one serving of the cake, what portion of the cake remained?
162) Subtract $7 \frac{5}{6}$ from $11 \frac{3}{16}$.
163) Reduce the fraction $\frac{36}{162}$ to its lowest terms.
159) \qquad
160) \qquad
161) \qquad
162) \qquad
163) \qquad

MATCHING. Choose the item in column 2 that best matches each item in column 1.

Match the correct answer from the list provided.

164) The largest possible number that will divide equally into 2 or more other numbers is called the
\qquad _. .
A) Greatest common divisor
B) Lowest terms
165) When no number other than 1 can
166) \qquad
be divided evenly into both the numerator and denominator of a fraction, the fraction must be in its
\qquad _.
167) A type of number that expresses a part of a whole number is called a
\qquad -.
168) A whole number and a proper fraction form a \qquad _.
169) The top of a fraction is called the
\qquad -
170) An \qquad is a fraction that indicates the same portion of the whole amount as another fraction only in higher or lower terms.
171) When the numerator is less than the denominator, the fraction is said to be a \qquad fraction.
172) The line that separates the numerator and denominator is the
\qquad .
173) Interchanging the numerator and denominator gives you the
\qquad of a fraction.
174) The smallest whole number that is evenly divisible by each denominator of two or more fractions is called the \qquad .
175) Numerator is equal to or greater than the denominator.
176) A number divisible by only one and itself.
177) The bottom part of a fraction.
A) proper
B) equivalent fraction
C) Fraction
D) prime number
E) Least common denominator (LCD)
F) Numerator
G) fraction line
H) improper fraction
I) Mixed number
J) reciprocal
K) denominator
178)
179) \qquad
180) \qquad
181) \qquad
182) \qquad
183) \qquad

\qquad
172) \qquad
173) \qquad
174) \qquad
175) \qquad
176) \qquad

Answer Key
Testname: UNTITLED2

1) TRUE
2) TRUE
3) FALSE
4) TRUE
5) FALSE
6) FALSE
7) FALSE
8) TRUE
9) FALSE
10) FALSE
11) TRUE
12) FALSE
13) TRUE
14) FALSE
15) FALSE
16) TRUE
17) TRUE
18) TRUE
19) FALSE
20) TRUE
21) FALSE
22) TRUE
23) FALSE
24) FALSE
25) FALSE
26) TRUE
27) FALSE
28) TRUE
29) FALSE
30) TRUE
31) FALSE
32) FALSE
33) FALSE
34) FALSE
35) FALSE
36) TRUE
37) FALSE
38) FALSE
39) FALSE
40) FALSE
41) A
42) A
43) B
44) E
45) A
46) C
47) D
48) B
49) B
50) C
51) B
52) A
53) C
54) A
55) E
56) B
57) A
58) E
59) D
60) A
61) D
62) D
63) B
64) C
65) B
66) C
67) E
68) A
69) D
70) A
71) B
72) E
73) A
74) C
75) B
76) C
77) C
78) B
79) C
80) D
81) B
82) D
83) B
84) denominator
85) denominator
86) proper fractions
87) Improper fractions
88) fraction
89) mixed number
90) $26 \frac{1}{6}$
91) denominator
92) denominator, numerator
93) $\frac{57}{8}$
94) evenly

Answer Key
Testname: UNTITLED2
95) $\frac{3}{32}$
96) Greatest Common Divisor
97) multiplying, numerator, denominator
98) $\frac{200}{1056}$
99) 100
100) denominator
101) numerator, denominator
102) denominator
103) numerators, reduce
104) $1 \frac{1}{9}$
105) Least Common Denominator
106) $\frac{7}{8}$
107) $30 \frac{53}{54}$
108) numerators
109) $\frac{3}{16}$
110) $\frac{17}{48}$
111) $3 \frac{1}{4}$ inches
112) $\frac{23}{48}$ feet
113) common denominator
114) $\frac{7}{20}$
115) $4 \frac{1}{2}$
116) $17 \frac{1}{2}$
117) multiplication
118) reciprocals
119) $\frac{10}{73}$
120) multiply, reciprocal
121) $1 \frac{9}{40}$
122) $1 \frac{13}{15}$
123) $\frac{60}{180}$

Answer Key
Testname: UNTITLED2
124) $\frac{2}{7}$
125) $\frac{11}{57}$
126) $\frac{2}{9}$
127) $40 \frac{23}{24}$
128) $18 \frac{17}{40}$
129) $78 \frac{5}{10}$ or $78 \frac{1}{2}$ miles
130) $8 \frac{11}{15}$ acres
131) 100
132) $2 \frac{1}{12}$
133) 100
134) $9 \frac{3}{16}$ pounds
135) $\frac{9}{40}$
136) $29 \frac{3}{8}$
137) $1 \frac{3}{4}$
138) $1 \frac{13}{36}$
139) $\frac{19}{36}$
140) $6 \frac{7}{12}$
141) $\frac{37}{48}$
142) $\frac{3}{8}$ of the cake
143) $3 \frac{17}{48}$
144) $1 \frac{67}{144}$
145) 60 pounds
146) $6 \frac{1}{2}$ hours
147) 8 pieces

Answer Key
Testname: UNTITLED2
148) 6 hours
149) $1 \frac{1}{4}$ hours
150) 786
151) $40 \frac{55}{96}$
152) $1 \frac{47}{85}$
153) 4
154) 1724 people
155) $\frac{5}{76}$
156) $\frac{2}{3}$
157) 36 shelves
158) $5 \frac{1}{4}$ hours
159) $151 \frac{19}{32}$ inches
160) $\frac{9}{12}+\frac{6}{12}-\frac{4}{12}=\frac{11}{12}$
161) $\frac{3}{8}$ of the cake
162) $3 \frac{17}{48}$
163) $\frac{2}{9}$
164) A
165) В
166) C
167) I
168) F
169) B
170) A
171) G
172) J
173) E
174) H
175) D
176) K

