
TEST BANK

Expand each notation and find its value.

1. 4³

1. _____

 $2. 30^2$

2. _____

Rewrite the number as a product using a power of 10 as a factor.

3. 3,700

3. _____

4. 15,000

4. _____

Evaluate the following square roots.

5. $\sqrt{25}$

5. _____

6. $\sqrt{64}$

6. _____

Evaluate each expression according to the order of operations. Show all of your work.

7. $5+24 \div 3 \cdot 2$

7. _____

8. $3^3 \cdot 2 - 2$

8. _____

9. $4 \cdot (2+1)^2 \div (9-7)^2$

9. _____

Find the equivalent temperature in Fahrenheit using this formula:

$$F = 9 \cdot \frac{C}{5} + 32$$

10. The temperature is 75°C.

10. ____

Find the equivalent temperature in Celsius using this formula:

$$C = 5 \cdot \frac{F - 32}{9}$$

11. The temperature is 50°F.

Evaluate the numerical value of the formula with the given replacement values.

12.
$$A = (a+b+c) \div 4$$
 $a = 22, b = 8, c = 10$

$$a = 22$$
, $b = 8$, $c = 10$

Use one of the distance formulas to answer the following.

$$r = \frac{d}{t}$$
 $t = \frac{d}{r}$ $d = rt$

- 13. If Spike averages 56 miles per hour riding his motorcycle 224 miles from Charleston to Charlotte, how many hours will it take him to get there?
- 13. _____

Of the following numbers, determine which are prime, which are composite, and which are neither.

14. Prime: _____ Composite: Neither:

Of the first three prime numbers 2, 3, and 5, which are factors of the following numbers?

15. _____

16. _____

17. _____

18. 225

18.

Find the prime factorization of the following numbers using the division method. Write the answer in two ways, with and without exponents.

19. _____

20.

Find the GCF of each pair of numbers. If the GCF is 1, write relative prime. You may use any method.

22. 12 and 16	22.	
23. 36 and 54	23.	
24. 60 and 77	24.	
25. 150 and 2	25.	

Expand each notation and find its value.

1. 3³

1. _____

 $2. 60^2$

2. _____

Rewrite the number as a product using a power of 10 as a factor.

3. 4,500

3. _____

4. 57,000

4. _____

Evaluate the following square roots.

5. $\sqrt{36}$

5. _____

6. $\sqrt{100}$

6. ____

Evaluate each expression according to the order of operations. Show all of your work.

7. $6+32 \div 4 \cdot 2$

7. _____

8. $2^3 \cdot 3 - 1$

8. _____

9. $3 \cdot (1+2)^2 \div (5-2)^2$

9. _____

Find the equivalent temperature in Fahrenheit using this formula:

$$F = 9 \cdot \frac{C}{5} + 32$$

10. The temperature is 45°C.

10.

Find the equivalent temperature in Celsius using this formula:

$$C = 5 \cdot \frac{F - 32}{9}$$

11. The temperature is 59°F.

Evaluate the numerical value of the formula with the given replacement values.

12.
$$A = (b+h) \div 2$$
 $b = 8, h = 10$

Use one of the distance formulas to answer the following.

$$r = \frac{d}{t}$$
 $t = \frac{d}{r}$ $d = rt$

13. If Jody averages 57 miles per hour driving 114 miles from Charleston to Hilton Head, how many hours will it take him to get there?

13. _____

Of the following numbers, determine which are prime, which are composite, and which are neither.

14. Prime: ______
Composite: _____
Neither: _____

Of the first three prime numbers 2, 3, and 5, which are factors of the following numbers?

15. _____

16. _____

17. _____

18.

Find the prime factorization of the following numbers using the division method. Write the answer in two ways, with and without exponents.

19. _____

20.

Find the GCF of each <i>j</i>	pair of numbers.	If the GCF is
1, write relative prime.	You may use an	y method.

22. 14 and 35	22
23. 32 and 65	23.
24. 60 and 75	24.
25. 120 and 256	25.

Expand each notation and find its value.

1. 6^3

1. _____

 $2. 15^2$

2. _____

Rewrite the number as a product using a power of 10 as a factor.

3. 6,200

3. _____

4. 35,000

4. _____

Evaluate the following square roots.

5. $\sqrt{25}$

5. _____

6. $\sqrt{144}$

6. _____

Evaluate each expression according to the order of operations. Show all of your work.

7. $3+16 \div 4 \cdot 2$

7. _____

8. $2^3 \cdot 4 - 3$

8. _____

9. $2 \cdot (8-3)^2 \div (2+3)^2$

9. _____

Find the equivalent temperature in Fahrenheit using this formula:

$$F = 9 \cdot \frac{C}{5} + 32$$

10. The temperature is 25°C.

10. _____

Find the equivalent temperature in Celsius using this formula:

$$C = 5 \cdot \frac{F - 32}{9}$$

11. The temperature is 77°F.

Evaluate the numerical value of the formula with the given replacement values.

12.
$$P = (\ell + w) \div 2$$
 $\ell = 12, w = 8$

12. _____

Use one of the distance formulas to answer the following.

$$r = \frac{d}{t}$$
 $t = \frac{d}{r}$ $d = rt$

13. If Bud averages 59 miles per hour riding his motorcycle 177 miles from Myrtle Beach to Charlotte, how many hours will it take him to get there?

13.

Of the following numbers, determine which are prime, which are composite, and which are neither.

14. Prime: ______
Composite:

Neither:

Of the first three prime numbers 2, 3, and 5, which are factors of the following numbers?

15. ____

16. _____

17. _____

18. _____

Find the prime factorization of the following numbers using the division method. Write the answer in two ways, with and without exponents.

19. _____

20.

Find the GCF of each pair of numbers. If the GCF is 1, write relative prime. You may use any method.

22.	16 and 24	22.	
23.	32 and 50	23.	
24.	14 and 57	24.	
25.	120 and 216	25.	

BASIC MATHEMATICS

Name:

Chapter 2, Form D

1. _____

2. _____

3. _____

4. _____

5. _____

Expand each notation and find its value.

- 1. 3^3
- (b) 9
- (c) 18
- (d) 27

 $2. 50^2$

(a) 100

(a) 6

- (b) 250
- (c) 2,500
- (d) 5,000

Rewrite the number as a product using a power of 10 as a factor.

- 3. 800
- (a) $4 \cdot 200$ (b) $4 \cdot 10^2$ (c) $8 \cdot 10$
- (d) $8 \cdot 10^2$

4. 12,000

- (a) $3 \cdot 20^2$
- (b) $3 \cdot 20^3$ (c) $12 \cdot 10^3$
- (d) $120 \cdot 10^2$

Evaluate the following square roots.

- 5. $\sqrt{64}$
- (b) 8
- (c) 16
- (d) 18

6. $\sqrt{196}$

6. _____

(a) 6

(a) 4

- (b) 8
- (c) 14
- (d) 24

Evaluate each expression according to the order of operations.

7. $4 \cdot 6 - 6 \div 2$

- (a) 0
- (b) 9
- (c) 18
- (d) 21

8. $5^2 \cdot 2^3$

8. ____

- (a) 50
- (b) 60
- (c) 100
- (d) 200

9.
$$12-3\cdot(10-2)\div6$$

9. _____

Find the equivalent temperature in Fahrenheit using this formula:

$$F = 9 \cdot \frac{C}{5} + 32$$

10. The temperature is 50°C.

10. _____

Find the equivalent temperature in Celsius using this formula:

$$C = 5 \cdot \frac{F - 32}{9}$$

11. The temperature is 50°F.

11.

Evaluate the numerical value of the formula with the given replacement values

12.
$$A = (c+d) \div 2$$
 $c = 6, d = 8$

12. _____

Use one of the distance formulas to answer the following.

$$r = \frac{d}{t}$$
 $t = \frac{d}{r}$ $d = rt$

- 13. If Jessie averages 57 miles per hour riding his motorcycle 228 miles from 13. Charleston to Charlotte, how many hours will it take him to get there?
 - (a) 2 hr
- (b) 3 hr
- (c) 4 hr
- 5 hr (d)

Of the following numbers, determine which are composite.

14. 1, 21, 37, 56, 91

- (a) 1, 37, 91
- (b) 21, 56, 91 (c) 21, 37, 56 (d) 21, 37, 91

15.	Fine	d all factors of	27.						15.	
	(a)	1, 9, 27	(b)	1, 3, 9, 27	(c)	1, 3, 9, 18	(d)	3, 9, 27		
16.	Fine	d all factors of	35.						16.	
	(a)	1, 5, 7	(b)	1, 5, 35	(c)	1, 5, 7, 35	(d)	5, 7, 35		
17.	Fine	d all factors of	39.						17.	
	(a)	1, 3, 9	(b)	1, 39	(c)	1, 3, 39	(d)	1, 3, 13, 39		
Fina	l the	prime factoriz	ation	(without exp	onen	ts) of the fol	lowin	g numbers.		
18.	40								18.	
	(a)	prime	(b)	4 · 10	(c)	2 · 2 · 10	(d)	$2 \cdot 2 \cdot 2 \cdot 5$		
19.	42								19.	
	(a)	prime	(b)	6 · 7	(c)	$2 \cdot 3 \cdot 7$	(d)	1 · 42		
Fina	l the	prime factoriz	ation	(with expone	ents) (of the follow	ing n	umbers.		
20.	32								20.	
	(a)	2 · 16	(b)	4 · 8	(c)	2^4	(d)	2^5		
21.	72								21.	
	(a)	$2^2 \cdot 3^2$	(b)	$2^2 \cdot 3^3$	(c)	$2^3 \cdot 3^2$	(d)	$2^3 \cdot 3^3$		
Fina	l the	GCF of each	pair o	f numbers.						
22.	6 ar	nd 9							22.	
	(a)	3	(b)	18	(c)	36	(d)	54		
23.	20 a	and 80							23.	
	(a)	4	(b)	5	(c)	10	(d)	20		
24.	72 a	and 96							24.	
	(a)	8	(b)	9	(c)	12	(d)	24		
25.	36 a	and 120							25.	

(b) 6 (c) 12 (d) 18

(a) 4

BASIC MATHEMATICS

Name:

Chapter 2, Form E

1. _____

2. _____

3. ____

5. _____

Expand each notation and find its value.

1. 4^3

(a) 12

- (b) 16
- (c) 48
- (d) 64

 $2. 30^2$

- (a) 60
- (b) 600
- (c) 900
- (d) 9,000

Rewrite the number as a product using a power of 10 as a factor.

- 3. 600
- (a) $2 \cdot 300$ (b) $6 \cdot 10^2$ (c) $6 \cdot 10$
- (d) $6 \cdot 10^2$

4. 8,000

- (a) $2 \cdot 20^2$
- (b) $4 \cdot 20^3$ (c) $8 \cdot 10^3$
- (d) $80 \cdot 10^3$

Evaluate the following square roots.

- 5. $\sqrt{36}$
- (b) 6
- (c) 9
- (d) 18

6. $\sqrt{144}$

6. _____

(a) 9

(a) 4

- (b) 11
- (c) 12
- 14 (d)

Evaluate each expression according to the order of operations.

7. $8^2 - 5^2 \div (9 - 4)$

7. _____

- (a) 3
- (b) 31
- (c) 59
- (d) 60

8. $5^2 \cdot 2^3 \cdot 7$

- (a) 420
- (b) 1050
- (c) 1280
- (d) 1400

9. $20-(12 \div 4) \cdot 2 + 5$

9. _____

- (a) 9
- (b) 18
- (c) 19
- (d) 39

Find the equivalent temperature in Fahrenheit using this formula:

$$F = 9 \cdot \frac{C}{5} + 32$$

10. The temperature is 25°C.

10. _____

- (a) 37°F
- (b) 48°F
- (c) 77°F
- (d) 87°F

Find the equivalent temperature in Celsius using this formula:

$$C = 5 \cdot \frac{F - 32}{9}$$

11. The temperature is 86°F.

11.

- (a) 30°C
- (b) 35°C
- (c) 40°C
- (d) 54°C

Evaluate the numerical value of the formula with the given replacement values

- 12. $A = (a+b+c) \div 3$ a = 4, b = 6, c = 8

12. _____

- (a) 6
- (b) 8
- (c) 12
- (d) 18

Use one of the distance formulas to answer the following.

$$r = \frac{d}{t}$$
 $t = \frac{d}{r}$ rt

- 13. If Jose averages 56 miles per hour riding his motorcycle 224 miles from Charleston to Charlotte, how many hours will it take him to get there?
- 13. _____

- (a) 2 hours
- (b) 3 hours
- (c) 4 hours
- 5 hours (d)

Of the following numbers, determine which are composite.

14. 1, 19, 34, 77, 83

- (a) 1, 34, 83
- (b) 19, 77, 83 (c) 34, 77
- (d) 34, 77, 83

15.	Find all factor	s of 22.						15	
	(a) 1, 11, 22	(b)	2, 11, 22	(c)	1, 2, 11	(d)	1, 2, 11, 22		
16.	Find all factor	s of 34.						16	
	(a) 1, 2, 17, 3	34 (b)	1, 17, 34	(c)	2, 17, 34	(d)	1, 2, 17, 34		
17.	Find all factor	s of 57.						17	
	(a) 1, 3, 19	(b)	1, 3, 57	(c)	1, 3, 57	(d)	1, 3, 19, 57		
Fina	d the prime fact	torizatio	n (without	exponen	ts) of the fo	ollowir	ig numbers.		
18.	50							18	
	(a) prime	(b)	5 · 10	(c)	$2 \cdot 5 \cdot 5$	(d)	$2 \cdot 2 \cdot 5 \cdot 5$		
19.	98							19	
	(a) prime	(b)	2 · 49	(c)	$2 \cdot 2 \cdot 7$	(d)	$2 \cdot 7 \cdot 7$		
Fina	d the prime fact	torizatio	n (with exp	onents)	of the follo	wing n	numbers.		
20.	24							20	
	(a) 2 · 12	(b)	3 · 8	(c)	$2^2 \cdot 3$	(d)	$2^3 \cdot 3$		
21.	120							21	
	(a) $2^2 \cdot 30$	(b)	$2^3 \cdot 15$	(c)	$2^3 \cdot 3 \cdot 5$	(d)	$2^2 \cdot 5 \cdot 6$		
Fina	d the GCF of ea	ach pair	of number.	S.					

Find the GCF of each pair of numbers.

(a) 17

22. _____ 22. 8 and 10

(a) 2 (b) 4 (c) 40 (d) 80

23. 30 and 75 23. _____

(a) 5 (b) 15 (c) 30 (d) 450

(b) 34

24. 34 and 102 24. _____

(c) 51 25. 16 and 40

25. _____

(d) 102

(a) 4 (b) 8 (c) 16 (d) 80