

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.		
1)	What is the difference between a subscript and an exponent?	1)
,	Answer: An exponent is a mathematical operation. A subscript is used to define a	/
	variable a specific feature or component of a variable	
	variable a specific readure of component of a variable.	
2)	What is the difference between a formula and a working equation?	2)
2)	what is the difference between a formula and a working equation?	2)
	Answer: A formula is a basic equation, usually expressed in letters and numbers. A	
	working equation is created when the desired variable is isolated on one side of	
	the equation.	
3)	What is the purpose of estimation when problem solving?	3)
	Answer: Estimating the expected answer in problem solving can serve as a check to make	
	sure the answer is correct.	
4)	Solve for m in the formula $F = ma$	4)
-)	Answer: F	-)
	m =	
5)	Solve for t in the formula $s = 1/2 (v_f + v_i)t$.	5)
	Answer: 2s	
	$v_{f} - v_{i}$	
	t =	
6)	Solve for v_f in the formula $s = 1/2 (v_f + v_i)t$.	6)
,	Answer: 2s	,
	t	
	$v_f = -v_i$	
7)	Solve for h in $PE = mgh$.	7)
	Answer: PE	
	mg	
	n =	
-		-
8)	Given A = $1/2$ bh, if b = 10.0 cm and h = 12.2 cm, what is A?	8)
	Answer: $A = 61.0 \text{ cm}^2$	
9)	A cone has a volume of 315 cm ³ and a radius of 7.50 cm What is its height?	9)
,	Answer: $h = 5.35$ cm	,
	$I \operatorname{MiSWC1}, \operatorname{II} = 5.55 \operatorname{CHI}$	
10)	A wight twight has a side of 00.4 mere and a side of 10.6 mere. Find the length of the	10)
10)	A right triangle has a side of 82.4 mm and a side of 19.6 mm. Find the length of the	10)
	hypotenuse.	
	Answer: 84.7 mm	
11)	Given a cylinder with a radius of 14.4 cm and a height of 16.8 cm, find the lateral surface	11)
	area.	
	Answer: $A = 1520 \text{ cm}^2$	
10)	A rectangle has a parimeter of 80.0 cm. One side has a length of 28.0 cm. What is the	12)
12)	A rectangle has a permitter of out off. One side has a length of 26.0 cm. what is the	12)
	length of the adjacent side?	
	Answer: 12.0 cm	
	• · · ·	

13) The formula for the volume of a cylinder is $V = \pi r^2 h$. If $V = 4520 \text{ m}^3$ and h = 36.0 m, fin d r.

13)

Answer: r = 6.32 m

14) The formula for the area of a triangle is A = 1/2 bh. If b = 3.12 m and A = 82.6 m², find
14) ______
h. Answer: h = 52.9 m

15) _____

15) A rectangular parking lot measures 80.0 m by 75.0 m. If the parking lot needs three sections that each measure 8.00 m by 8.00 m for tree plantings, how much area is left for parking spaces?Answer: A = 5810 m²

- 1) An exponent is a mathematical operation. A subscript is used to define a variable a specific feature or component of a variable.
- 2) A formula is a basic equation, usually expressed in letters and numbers. A working equation is created when the desired variable is isolated on one side of the equation.
- 3) Estimating the expected answer in problem solving can serve as a check to make sure the answer is correct.

4)
$$\frac{F}{a}$$

m = $\frac{F}{a}$
5) $\frac{2s}{vf - v_i}$
6) $\frac{2s}{t}$
 $vf = -v_i$
7) $\frac{PE}{mg}$
8) A = 61.0 cm²
9) h = 5.35 cm
10) 84.7 mm
11) A = 1520 cm²
12) 12.0 cm
13) r = 6.32 m
14) h = 52.9 m
15) A = 5810 m²