

Lar_AT_8e_Ch02

Student:

\qquad

1. Write the slope-intercept form of the equation of the line through the given point perpendicular to the given line.
point: $(-7,-8) \quad$ line: $-9 x-45 y=9$

$$
y=\frac{1}{9} x-\frac{65}{9}
$$

A.

$$
y=5 x-\frac{43}{5}
$$

B.

$$
y=5 x+27
$$

C.

$$
y=-9 x+55
$$

D.

$$
y=-\frac{1}{5} x-\frac{47}{5}
$$

E.
2. Gretel's Computer Repair Store purchases a network server for $\$ 1145$. The machine has a useful life of 5 years after which time another one will have to be purchased. Assume depreciation of the machine is linear. Write a linear equation giving the value V of the network server during the 5 years it will be in use.

$$
V=-\frac{1}{229} t-1145
$$

A.
B. $V=229 t-1145$

$$
V=-\frac{1}{229} t+5
$$

C.

$$
V=\frac{1}{229} t+5
$$

D.
E. $V=-229 t+1145$
3. Does the table describe a function?

Input value	2001	2002	2003	2004	2005
Output value	30	60	30	50	40

A. no
B. yes
4. Does the table describe a function?

Input value	10	30	10	20	40
Output value	2001	2002	2003	2004	2005

A. yes
B. no
5. Does the table describe a function?

Input value	1	3	4	3	1
Output value	-12	-7	0	7	12

A. yes
B. no
6. Does the table describe a function?

Input value	-4	-2	0	2	4
Output value	7	7	7	7	7

A. no
B. yes
7. Which set of ordered pairs represents a function from P to Q ?
$P=\{5,10,15,20\} \quad Q=\{-3,-1,1\}$
$\{(5,1),(15,-1),(5,-3),(15,1)\}$
A.
$\{(15,-3),(15,-1),(15,1)\}$
B.
C. $\{(5,-3),(10,-1),(10,1),(15,-1),(20,-3)\}$
$\{(15,-1),(10,-3),(5,-1),(10,1),(15,-3)\}$
D.

$$
\{(10,-1),(15,1),(20,-1)\}
$$

E.
8. Which equation does not represent y as a function of x ?
$2 x=-9 y$
A.
$-4 y=-9$
B.
C. $6 x^{2}+7 y=-2$
$-9 x+7 y=-9$
D.
E. $-5 y^{2}+7 x=3$
9. Which equation does not represent y as a function of x ?
A. $y=\sqrt{8+x}$
$y=\left|-8+9 x^{2}\right|$
B.
$x=-6 y+5$
C.
D. $x=-1$
E. $y=7 x+9$
10. Evaluate the function at the specified value of the independent variable and simplify.
$q(y)=-6 y-5$
$q(0.2)$
A. 3.8
$-1.2 y+30$
B.
$0.2 y+5$
C.
$0.2 y-5$
D.
E. -6.2
11. Evaluate the function at the specified value of the independent variable and simplify.
$g(w)= \begin{cases}2 w, & w \leq-1 \\ 2 w^{2}+2 w, & -1 \leq w \leq 1 \\ 2 w^{3}+2 w^{2}, & w>1\end{cases}$
$g\left(\frac{1}{4}\right)$
$\frac{1}{5}$
A.
$\frac{1}{2}$
B.
$\frac{5}{32}$
C.
$\frac{1}{16}$
D.
$\frac{5}{8}$
E.
12. Find all real values of x such that $f(x)=0$.
$f(x)=\frac{-6 x-9}{2}$
$-\frac{3}{2}$
A.
$-\frac{3}{4}$
B.
$\pm \frac{3}{2}$
C.
$\frac{3}{2}$
D.
$\pm \frac{3}{4}$
E.
13. Find all real values of x such that $f(x)=0$.
$f(x)=81 x^{2}-49$
$\pm \frac{9}{7}$
A.
$\pm \frac{7}{9}$
B.
$-\frac{49}{81}$
C.
$\frac{7}{9}$
D.
$\pm \frac{49}{81}$
E.
14. Find the value(s) of x for which $f(x)=g(x)$.
$f(x)=x^{2}+7 x+33$

$$
g(x)=-6 x-9
$$

A. $-6,-7$
B. 6,7
$33,7,-\frac{3}{2}$
C.
$33,26,-\frac{3}{2}$
D.

$$
-40,-\frac{3}{2}
$$

E.
15. Find the domain of the function.
$q(s)=\frac{8 s}{s-6}$
A. $s=6, s=0$
B. $s=6$
C. all real numbers $s \neq 6, s \neq 0$
D. all real numbers
E. all real numbers $s \neq 6$
16. A rectangle is bounded by the x-axis and the semicircle $y=\sqrt{4-x^{2}}$ (see figure). Write the area A of the rectangle as a function of x and determine the domain of the function.
$y=\sqrt{4-x^{2}}$

A. $A(x)=2|x| \sqrt{4-x^{2}}, \quad-2 \leq x \leq 2$
B. $A(x)=2 x \sqrt{4-x^{2}}, \quad-2 \leq x \leq 2$
C. $A(x)=x \sqrt{4-x^{2}}, \quad x \geq 0$
D. $A(x)=2 x \sqrt{4-x^{2}}, \quad x \geq 0$
E. $A(x)=|x| \sqrt{4-x^{2}}$, all real numbers
17. Find the difference quotient and simplify your answer.
$f(y)=-4 y^{2}+6 y, \frac{f(1+h)-f(1)}{h}, h \neq 0$
A. $-2-4 h$
$6-4 y+\frac{12}{y}$
B.
C. $6-4 h$
$-2-4 y+\frac{12}{y}$
D.
E. $8+h$
18. Use the graph of the function to find the domain and range of f.

A. domain: all real numbers

$$
(-\infty,-2) \cup(-1, \infty)
$$

range:

$$
(-\infty,-2) \cup(-2, \infty)
$$

B. domain:

$$
(-\infty,-2) \cup(-1, \infty)
$$

range:

$$
(-\infty,-2) \cup(-1, \infty)
$$

C. domain:

$$
(-\infty,-2) \cup(-2, \infty)
$$

range:
D. domain: all real numbers
range:

$$
(-\infty,-2] \cup[-1, \infty)
$$

E. domain: all real numbers range: all real numbers
19. Use the Vertical Line Test to determine in which of the graphs y is not a function of x.
A. All of the choices (A, B, C, and D) represent functions.

B.

$$
y=x^{2}+2 x-1
$$

C.

D.

E.
20. Find the zeroes of the functions algebraically.
$f(x)=\frac{x^{2}+x-6}{6 x}$

$$
x=-2, x=3, x=\frac{1}{6}
$$

A.
B. $x=2, x=-3$
C. $x=-2, x=3$

$$
x=\frac{1}{6}
$$

D.

$$
x=2, x=-3, x=\frac{1}{6}
$$

E.
21. Find the zeroes of the functions algebraically.
$f(x)=\sqrt{-7 x}-2$

$$
x= \pm \frac{2}{7}
$$

A.
B. no real zeroes

$$
x=-\frac{2}{7}
$$

C.

$$
x= \pm \frac{4}{7}
$$

D.

$$
x=-\frac{4}{7}
$$

E.
22. Use a graphing utility to graph the function and find the zeroes of the function.
$f(x)=-5-\frac{7}{x}$
$x=-\frac{7}{5}$
A.

$$
x=\frac{7}{5}
$$

B.

$$
x=-\frac{5}{7}
$$

C.
D. no real zeroes
$x=\frac{5}{7}$
E.
23. Determine the intervals over which the function is increasing, decreasing, or constant.
$f(x)= \begin{cases}-x^{2} & x<1 \\ x^{2}-2 x+2, & x \geq 1\end{cases}$

increasing on ($-\infty, 0$)
A. decreasing on $(0, \infty)$
increasing on ($-\infty, 0$)
decreasing on $(0,1)$
B. increasing on $(1, \infty)$
decreasing on $(-\infty, 1)$
C. increasing on $(1, \infty)$
increasing on $(-\infty, 1)$
D. decreasing on $(1, \infty)$
decreasing on $(-\infty, 0)$
increasing on $(0,1)$
E. increasing on ($1, \infty$)
24. Use a graphing utility to graph the function and visually determine the intervals over which the function is increasing, decreasing, or constant.
$f(x)=-x^{3}+3 x+1$
increasing on $(-\infty, \infty)$
A.
decreasing on $(-\infty,-1)$
increasing on $(-1,1)$
B. decreasing on $(1, \infty)$
decreasing on $(-\infty, 0)$
C. increasing on $(0, \infty)$
decreasing on $(-\infty, \infty)$
D.
increasing on $(-\infty,-1)$
decreasing on $(-1,1)$
E. increasing on ($1, \infty$)
25. Use a graphing utility to graph the function and approximate (to two decimal places) any relative minimum or relative maximum values.
$f(x)=x^{3}+3 x^{2}+x-4$
A. relative maximum: $(-4.09,-0.18)$ relative minimum: $(-1.91,-1.82)$
B. relative maximum: $(-0.18,-4.09)$ relative minimum: $(-1.82,-1.91)$
C. relative maximum: $(-1.82,-1.91)$
relative minimum: $(-0.18,-4.09)$
D. relative maximum: $(-1.91,-1.82)$
relative minimum: $(-4.09,-0.18)$
E. relative maximum: $(-4.09,-26.29)$
relative minimum: $(-1.91,-1.93)$
26. Graph the function and determine the interval(s) for which $f(x)^{3} 0$.
$f(x)=-x^{2}-4 x$

$(-\infty,-4) \cup(0, \infty)$
A.

B.
C. $[-4,0]$
$\{-4\}$
D.
$(-\infty,-4] \cup[0, \infty)$
E.
27. Determine whether the function is even, odd, or neither.
$f(x)=7 x^{\frac{3}{4}}$
A. neither
B. even
C. odd
28. Write the height h of the rectangle as a function of x.

A. $h(x)=-x^{2}+2 x+4$
B. $h(x)=-2 x^{2}+6 x$
C. $h(x)=-2 x+10$
D. $h(x)=-x^{2}+2 x+5$
E. $h(x)=6 x$

$$
s=-16 t^{2}+v_{0} t+s_{0}
$$

29. Use the position equation to write a function that represents the situation and give the average velocity of the object from time t_{1} to time t_{2}.
An object is thrown upward from a height of 174 feet at a velocity of 1 feet per second.
$t_{1}=1, \quad t_{2}=5$
A. $s=-16 t^{2}+174 t+1$; avg. velocity $=157 \mathrm{ft} / \mathrm{s}$
B. $s=-16 t^{2}+1 t+174$;
avg. velocity $=-16 \mathrm{ft} / \mathrm{s}$
C. $s=-16 t^{2}+174 t+1$;
avg. velocity $=78 \mathrm{ft} / \mathrm{s}$
D. $s=-16 t^{2}+1 t+174$;
E. $s=-16 t^{2}+1 t+174$; avg. velocity $=-380 \mathrm{ft} / \mathrm{s}$
30. Write the linear function f such that it has the indicated values.
$f(3)=-4$,
$f(-8)=2$
$y=\frac{10}{7} x+\frac{29}{5}$
A.
$y=-\frac{11}{6} x+\frac{3}{2}$
B.

$$
y=\frac{6}{11} x-\frac{62}{11}
$$

C.

$$
y=-\frac{6}{11} x-\frac{26}{11}
$$

D.

$$
y=\frac{7}{10} x-\frac{61}{10}
$$

E.
31. Evaluate the function for the indicated values.
$f(x)=4 \llbracket\left[\begin{array}{l} \\ x+8 \\ \rrbracket\end{array}\right.$

$f(5)$

(i)

$$
f(-52.7)
$$

(ii)

$$
f\left(\frac{2}{3}\right)
$$

A. (i) 60
(ii) -168 (iii)
B. (i) 60
(ii) -168
(iii) 44
C. (i) 61
(ii) -172
(iii) 40
D. (i) 61
(ii) -172
(iii) 44
E. (i) 60
(ii) -172
(iii) 40
-
(iii) 40
32. Which function does the graph represent?

A. $g(x)=\llbracket 3 x \rrbracket$

$$
g(x)=\llbracket x+3 \rrbracket
$$

B.
C. $g(x)=3 \llbracket x \rrbracket$
D. $g(x)=\llbracket^{\frac{x}{3}} \rrbracket$
E. $g(x)=\llbracket x-3 \rrbracket$
33. Which graph represents the function?
$g(x)=\llbracket x-1 \rrbracket$

A.

B.

C.

D.

E.
34. Which graph represents the function?
$f(x)= \begin{cases}\frac{x}{4}+4, & x<\frac{1}{2} \\ 4-4 x, & x \geq \frac{1}{2}\end{cases}$
A.

B.

C.

D.

35. Use the graph of $f(x)=|x|$
to write an equation for the function whose graph is shown.

$f(x)=-3|x-1|+2$
A.

$$
f(x)=-3|x+1|+2
$$

B.

$$
f(x)=|-3 x+1|+2
$$

C.

$$
f(x)=-3|x+1|-2
$$

D.

$$
f(x)=|-3 x-1|+2
$$

E.
36. Describe the sequence of transformations from the related common function $f(x)=x^{3}$ to g. $g(x)=4(x-4)^{3}$
A. vertical shift 4 units up; then vertical shrink by a factor of 4
B. horizontal shift 4 units left; then vertical shrink by a factor of 4
C. horizontal shift 4 units right; then vertical stretch by a factor of 4
D. vertical shift 4 units down; then vertical shrink by a factor of 4
E. horizontal shift 4 units left; then vertical stretch by a factor of 4
37. Write an equation for the function that is described by the following characteristics:
the shape of $f(x)=x^{2}$, but moved eight units down, two units to the left, and then reflected in the x-axis
A. $g(x)=2-(x+8)^{2}$
B. $g(x)=-(x+2)^{2}-8$
C. $g(x)=8-(x+2)^{2}$
D. $g(x)=-(x+8)^{2}-2$
E. $g(x)=8-(x-2)^{2}$
38. Write an equation for the function that is described by the following characteristics:
the shape of $f(x)=\llbracket \llbracket_{x} \rrbracket$, but reflected in the y-axis, moved five units down
A. $g(x)=\llbracket-x \rrbracket+5$
B. $g(x)=-\llbracket x-5 \rrbracket$
C. $g(x)=-\llbracket x+5 \rrbracket$
D. $g(x)=\llbracket-x \rrbracket]_{-5}$
E. $g(x)=-\llbracket \llbracket_{x} \rrbracket+5$
39. Find $(f+g)(x)$.
$f(x)=2 x^{2}-2 x+7$
$g(x)=4 x^{2}-2 x+9$
A. $(f+g)(x)=-2 x^{4}-2$
B. $(f+g)(x)=-6 x^{2}+4 x-16$
C. $(f+g)(x)=6 x^{4}-4 x^{2}+16$
D. $(f+g)(x)=-2 x^{2}-2$
E. $(f+g)(x)=6 x^{2}-4 x+16$
40. Find $(f / g)(x)$.
$f(x)=x^{2}+7 x \quad g(x)=-2-x$ $(f / g)(x)=\frac{x^{2}+7 x}{-2-x}, x \neq 0$
A.

$$
(f / g)(x)=\frac{x+7}{-2}, x \neq 0
$$

B.

$$
(f / g)(x)=-\frac{x^{2}}{2}-7, x \neq 0
$$

C.

$$
(f / g)(x)=\frac{x^{2}+7 x}{-2-x}, x \neq-2
$$

D.

$$
(f / g)(x)=\frac{x^{2}+7 x}{-2-x}, x \neq 2
$$

E.
41. Find $(f g)(x)$.
$f(x)=\sqrt{-2 x} \quad g(x)=\sqrt{-9 x-1}$
$(f g)(x)=\sqrt{-11 x-1}$
A.

$$
(f g)(x)=\sqrt{18 x^{2}-1}
$$

B.

$$
(f g)(x)=\sqrt{18 x^{2}+2 x}
$$

C.
D. $(f g)(x)=3 x \sqrt{2}+\sqrt{2 x}$
$(f g)(x)=3 x \sqrt{2+2 x}$
E.
42. Find $(f-g)(x)$.
$f(x)=-\frac{9 x}{7 x-2} \quad g(x)=-\frac{4}{x}$

$$
(f-g)(x)=\frac{-9 x+30}{7 x-2}
$$

A.

$$
(f-g)(x)=\frac{-9 x^{2}+28 x+8}{7 x^{2}-2 x}
$$

B.

$$
(f-g)(x)=\frac{-9 x+4}{6 x-2}
$$

C.

$$
(f-g)(x)=\frac{-9 x^{2}+28 x-8}{7 x^{2}-2 x}
$$

D.

$$
(f-g)(x)=\frac{-9 x+26}{7 x-2}
$$

E.
43. Evaluate the indicated function for $f(x)=x^{2}-7$ and $g(x)=x+3$.
$(f-g)(t+2)$
A. $t^{2}+3 t-2$
B. $t^{2}+3 t-8$
C. $t^{2}+5 t-8$
D. $t^{2}-t-8$
E. $t^{2}+5 t-2$
44. Evaluate the indicated function for $f(x)=x^{2}-3$ and $g(x)=x+7$. ($f g$)(1)
A. 12
B. -32
C. -20
D. -16
E. -30
45. Find ${ }^{g \circ f}$.
$f(x)=x-3$

$$
g(x)=x^{2}
$$

$$
(g \circ f)(x)=x^{2}-6 x+9
$$

A.

$$
(g \circ f)(x)=x^{2}-9
$$

B.

$$
(g \circ f)(x)=x^{2}-3 x+9
$$

C.

$$
(g \circ f)(x)=x^{2}-3
$$

D.

$$
(g \circ f)(x)=x^{2}+9
$$

E.
46. Find $f \circ g$.
$f(x)=-2 x+7 \quad g(x)=x+2$
A. $(f \circ g)(x)=-2 x+3$
B. $(f \circ g)(x)=-3 x+5$
$(f \circ g)(x)=-2 x^{2}+3 x+14$
C.
D. $(f \circ g)(x)=-3 x+9$
E. $(f \circ g)(x)=-2 x+9$
47. Find $f^{\circ} g$.
$f(x)=x+5 \quad g(x)=\frac{9}{x^{2}-25}$

$$
(f \circ g)(x)=\frac{9}{x^{2}}
$$

A.
B.

$$
(f \circ g)(x)=\frac{14}{x^{2}-25}
$$

$$
(f \circ g)(x)=\frac{5 x^{2}+4}{x^{2}-25}
$$

C.

$$
(f \circ g)(x)=\frac{9}{x^{2}+10 x}
$$

$$
(f \circ g)(x)=\frac{5 x^{2}-116}{x^{2}-25}
$$

E.
48. Use the graphs of f and g to evaluate the function.

$(f \circ g)(1)$
A. 9
B. -1
C. 0
D. -4
E. -2
49. The monthly cost C of running the machinery in a factory for t hours is given by $C(t)=10 t+450$.
The number of hours t needed to produce x products is given by $t(x)=8 x$.
Find the equation representing the cost C of manufacturing x products.
A. $C(x)=18 x+460$
B. $C(x)=80 x+4500$
C. $C(x)=10 x+458$
D. $C(x)=18 x+450$
E. $C(x)=80 x+450$
50. Find the inverse function of f.
$f(x)=x^{5}+2$
A. $f^{-1}(x)=\sqrt[5]{x}-2$
B. $f^{-1}(x)=\sqrt[5]{x}+2$
C. $f^{-1}(x)=-\sqrt[5]{x}+2$
D. $f^{-1}(x)=-\sqrt[5]{x+2}$
E. $f^{-1}(x)=\sqrt[5]{x-2}$
51. Show algebraically that f and g are inverse functions.

$$
f(x)=9 x-8 \quad g(x)=\frac{x+8}{9}
$$

52. Show algebraically that f and g are inverse functions.
$f(x)=\sqrt{x-4}, x \geq 4 \quad g(x)=x^{2}+4, x \geq 0$
53. Graph the given function.
$f(x)=(x+3)^{2}$

A.

B.

D.

E.

54. Find the inverse function of f.
$f(x)=\frac{2 x+5}{7 x+6}, x \neq-\frac{6}{7}$

$$
f^{-1}(x)=-\frac{7 x+6}{2 x+5}, x \neq-\frac{5}{2}
$$

A.

$$
f^{-1}(x)=\frac{7 x+6}{2 x+5}, x \neq-\frac{5}{2}
$$

B.

$$
f^{-1}(x)=\frac{7 x-2}{-6 x+5}, x \neq-\frac{6}{5}
$$

C.

$$
f^{-1}(x)=\frac{-6 x+5}{7 x-2}, x \neq \frac{2}{7}
$$

D.

$$
f^{-1}(x)=\frac{6 x-5}{7 x-2}, x \neq \frac{2}{7}
$$

E.
55. Determine whether the function has an inverse function. If it does, find the inverse function. $f(x)=x^{2}+6$
A. $f^{-1}(x)=\sqrt{x}+6, x \geq 0$
B. $f^{-1}(x)=\sqrt{x-6}$
C. $f^{-1}(x)=\sqrt{x}-6$
D. No inverse function exists.
E. $f^{-1}(x)=\sqrt{x+6}, x \geq-6$
56. Determine whether the function has an inverse function. If it does, find the inverse function.
$f(x)= \begin{cases}4 x+5, & x<-3 \\ (x+3)^{2}-7, & x \geq-3\end{cases}$
$f^{-1}(x)= \begin{cases}\frac{x-5}{4}, & x<-3 \\ \sqrt{x+7}-3, & x \geq-3\end{cases}$
A.
B. No inverse function exists.

$$
f^{-1}(x)= \begin{cases}\frac{x-5}{4}, & x<-7 \\ \sqrt{x+7}-3, & x \geq-7\end{cases}
$$

C.

$$
f^{-1}(x)= \begin{cases}\frac{x+5}{4}, & x<-7 \\ \sqrt{x+7}-3, & x \geq-7\end{cases}
$$

D.

$$
f^{-1}(x)= \begin{cases}\frac{x-5}{4}, & x<-3 \\ \sqrt{x+4}, & x \geq-3\end{cases}
$$

E.

$$
f(x)=\frac{x}{8}+1
$$

57. Use the functions given by

$$
\text { and } g(x)=x^{3} \text { to find the indicated value. }
$$

$\frac{637}{512}$
A.
B. $3 \sqrt[3]{2}$
C. $2 \sqrt[3]{5-1}$
D. undefined
E. $2 \sqrt[3]{6}$

Lar_AT_8e_Ch02 Key

1. Write the slope-intercept form of the equation of the line through the given point perpendicular to the given line.
point: $(-7,-8)$

$$
\text { line: }-9 x-45 y=9
$$

$$
y=\frac{1}{9} x-\frac{65}{9}
$$

A.

$$
y=5 x-\frac{43}{5}
$$

B.

$$
y=5 x+27
$$

C.

$$
y=-9 x+55
$$

D.

$$
y=-\frac{1}{5} x-\frac{47}{5}
$$

E.
2. Gretel's Computer Repair Store purchases a network server for $\$ 1145$. The machine has a useful life of 5 years after which time another one will have to be purchased. Assume depreciation of the machine is linear. Write a linear equation giving the value V of the network server during the 5 years it will be in use.

$$
V=-\frac{1}{229} t-1145
$$

A.
B. $V=229 t-1145$

$$
V=-\frac{1}{229} t+5
$$

C.

$$
V=\frac{1}{229} t+5
$$

D.
$\underline{\text { E. }} V=-229 t+1145$
3. Does the table describe a function?

Input value	2001	2002	2003	2004	2005
Output value	30	60	30	50	40

A. no
B. yes
4. Does the table describe a function?

Input value	10	30	10	20	40
Output value	2001	2002	2003	2004	2005

A. yes
B. no
5. Does the table describe a function?

Input value	1	3	4	3	1
Output value	-12	-7	0	7	12

A. yes
B. no
6. Does the table describe a function?

Input value	-4	-2	0	2	4
Output value	7	7	7	7	7

A. no
B. yes
7. Which set of ordered pairs represents a function from P to Q ?
$P=\{5,10,15,20\} \quad Q=\{-3,-1,1\}$

$$
\{(5,1),(15,-1),(5,-3),(15,1)\}
$$

A.
$\{(15,-3),(15,-1),(15,1)\}$
B.
$\{(5,-3),(10,-1),(10,1),(15,-1),(20,-3)\}$
$\{(15,-1),(10,-3),(5,-1),(10,1),(15,-3)\}$
D. $\{(10,-1),(15,1),(20,-1)\}$
E.
8. Which equation does not represent y as a function of x ?
$2 x=-9 y$
A.

$$
-4 y=-9
$$

B.
C. $6 x^{2}+7 y=-2$
$-9 x+7 y=-9$
D.
E. $-5 y^{2}+7 x=3$
9. Which equation does not represent y as a function of x ?
A. $y=\sqrt{8+x}$
$y=\left|-8+9 x^{2}\right|$
B.
$x=-6 y+5$
D. $x=-1$
E. $y=7 x+9$
10. Evaluate the function at the specified value of the independent variable and simplify.
$q(y)=-6 y-5$
$q(0.2)$
A. 3.8
$-1.2 y+30$
B.
$0.2 y+5$
C.
$0.2 y-5$
D.
E. -6.2
11. Evaluate the function at the specified value of the independent variable and simplify.
$g(w)= \begin{cases}2 w, & w \leq-1 \\ 2 w^{2}+2 w, & -1 \leq w \leq 1 \\ 2 w^{3}+2 w^{2}, & w>1\end{cases}$
$g\left(\frac{1}{4}\right)$
$\frac{1}{5}$
A.
$\frac{1}{2}$
B.
$\frac{5}{32}$
C.
$\frac{1}{16}$
D.
E.
12. Find all real values of x such that $f(x)=0$.
$f(x)=\frac{-6 x-9}{2}$
$-\frac{3}{2}$
A.
$-\frac{3}{4}$
B.
$\pm \frac{3}{2}$
C.
$\frac{3}{2}$
D.
$\pm \frac{3}{4}$
E.
13. Find all real values of x such that $f(x)=0$.
$f(x)=81 x^{2}-49$
$\pm \frac{9}{7}$
A.
$\pm \frac{7}{9}$
B.

$$
-\frac{49}{81}
$$

C.
$\frac{7}{9}$
D.

$$
\pm \frac{49}{81}
$$

E.
14. Find the value(s) of x for which $f(x)=g(x)$.
$f(x)=x^{2}+7 x+33$

$$
g(x)=-6 x-9
$$

A. $-6,-7$
B. 6,7
$33,7,-\frac{3}{2}$
C.
$33,26,-\frac{3}{2}$
D.

$$
-40,-\frac{3}{2}
$$

E.
15. Find the domain of the function.
$q(s)=\frac{8 s}{s-6}$
A. $s=6, s=0$
B. $s=6$
C. all real numbers $s \neq 6, s \neq 0$
D. all real numbers
E. all real numbers $s \neq 6$
16. A rectangle is bounded by the x-axis and the semicircle $y=\sqrt{4-x^{2}}$ (see figure). Write the area A of the rectangle as a function of x and determine the domain of the function.
$y=\sqrt{4-x^{2}}$

A. $A(x)=2|x| \sqrt{4-x^{2}}, \quad-2 \leq x \leq 2$
B. $A(x)=2 x \sqrt{4-x^{2}},-2 \leq x \leq 2$
C. $A(x)=x \sqrt{4-x^{2}}, \quad x \geq 0$
D. $A(x)=2 x \sqrt{4-x^{2}}, \quad x \geq 0$
E. $A(x)=|x| \sqrt{4-x^{2}}$, all real numbers
17. Find the difference quotient and simplify your answer.
$f(y)=-4 y^{2}+6 y, \frac{f(1+h)-f(1)}{h}, h \neq 0$
A. $-2-4 h$
$6-4 y+\frac{12}{y}$
B.
C. $6-4 h$
$-2-4 y+\frac{12}{y}$
D.
E. $8+h$
18. Use the graph of the function to find the domain and range of f.

A. domain: all real numbers

$$
(-\infty,-2) \cup(-1, \infty)
$$

range:

$$
(-\infty,-2) \cup(-2, \infty)
$$

B. domain:

$$
(-\infty,-2) \cup(-1, \infty)
$$

range:

$$
(-\infty,-2) \cup(-1, \infty)
$$

C. domain:

$$
(-\infty,-2) \cup(-2, \infty)
$$

range:
D. domain: all real numbers
range:

$$
(-\infty,-2] \cup[-1, \infty)
$$

E. domain: all real numbers range: all real numbers
19. Use the Vertical Line Test to determine in which of the graphs y is not a function of x. A. All of the choices (A, B, C, and D) represent functions.

B.

$$
y=x^{2}+2 x-1
$$

C.

D.

E.
20. Find the zeroes of the functions algebraically.
$f(x)=\frac{x^{2}+x-6}{6 x}$
$x=-2, x=3, x=\frac{1}{6}$
A.
B. $x=2, x=-3$
C. $x=-2, x=3$
$x=\frac{1}{6}$
D.

$$
x=2, x=-3, x=\frac{1}{6}
$$

E.
21. Find the zeroes of the functions algebraically.
$f(x)=\sqrt{-7 x}-2$

$$
x= \pm \frac{2}{7}
$$

A.
B. no real zeroes

$$
x=-\frac{2}{7}
$$

C.

$$
x= \pm \frac{4}{7}
$$

D.

$$
x=-\frac{4}{7}
$$

E.
22. Use a graphing utility to graph the function and find the zeroes of the function.
$f(x)=-5-\frac{7}{x}$
$x=-\frac{7}{5}$
A.

$$
x=\frac{7}{5}
$$

B.

$$
x=-\frac{5}{7}
$$

C.
D. no real zeroes
$x=\frac{5}{7}$
E.
23. Determine the intervals over which the function is increasing, decreasing, or constant.
$f(x)= \begin{cases}-x^{2} & x<1 \\ x^{2}-2 x+2, & x \geq 1\end{cases}$

increasing on ($-\infty, 0$)
A. decreasing on $(0, \infty)$
increasing on $(-\infty, 0)$
decreasing on $(0,1)$
B. increasing on $(1, \infty)$
decreasing on $(-\infty, 1)$
C. increasing on ($1, \infty$)
increasing on $(-\infty, 1)$
D. decreasing on $(1, \infty)$
decreasing on $(-\infty, 0)$
increasing on $(0,1)$
E. increasing on ($1, \infty$)
24. Use a graphing utility to graph the function and visually determine the intervals over which the function is increasing, decreasing, or constant.
$f(x)=-x^{3}+3 x+1$
increasing on $(-\infty, \infty)$
A.
decreasing on $(-\infty,-1)$
increasing on $(-1,1)$
B. decreasing on $(1, \infty)$
decreasing on $(-\infty, 0)$
C. increasing on $(0, \infty)$
decreasing on $(-\infty, \infty)$
D.
increasing on $(-\infty,-1)$
decreasing on $(-1,1)$
E. increasing on ($1, \infty$)
25. Use a graphing utility to graph the function and approximate (to two decimal places) any relative minimum or relative maximum values.
$f(x)=x^{3}+3 x^{2}+x-4$
A. relative maximum: $(-4.09,-0.18)$ relative minimum: $(-1.91,-1.82)$
B. relative maximum: $(-0.18,-4.09)$ relative minimum: $(-1.82,-1.91)$
C. relative maximum: $(-1.82,-1.91)$ relative minimum: $(-0.18,-4.09)$
D. relative maximum: $(-1.91,-1.82)$
relative minimum: $(-4.09,-0.18)$
E. relative maximum: $(-4.09,-26.29)$
relative minimum: $(-1.91,-1.93)$
26. Graph the function and determine the interval(s) for which $f(x)^{3} 0$.
$f(x)=-x^{2}-4 x$

$(-\infty,-4) \cup(0, \infty)$
A. $(-4,0)$
B.
C. $\quad[-4,0]$
D.
$(-\infty,-4] \cup[0, \infty)$
E.
27. Determine whether the function is even, odd, or neither.
$f(x)=7 x^{\frac{3}{4}}$
A. neither
B. even
C. odd
28. Write the height h of the rectangle as a function of x.

A. $h(x)=-x^{2}+2 x+4$
B. $h(x)=-2 x^{2}+6 x$
C. $h(x)=-2 x+10$
D. $h(x)=-x^{2}+2 x+5$
E. $h(x)=6 x$

$$
s=-16 t^{2}+v_{0} t+s_{0}
$$

29. Use the position equation to write a function that represents the situation and give the average velocity of the object from time t_{1} to time t_{2}.
An object is thrown upward from a height of 174 feet at a velocity of 1 feet per second.
$t_{1}=1, \quad t_{2}=5$
A. $s=-16 t^{2}+174 t+1$; avg. velocity $=157 \mathrm{ft} / \mathrm{s}$
B. $s=-16 t^{2}+1 t+174$; avg. velocity $=-16 \mathrm{ft} / \mathrm{s}$
C. $s=-16 t^{2}+174 t+1 ;$ avg. velocity $=78 \mathrm{ft} / \mathrm{s}$
D. $s=-16 t^{2}+1 t+174$;
E. $s=-16 t^{2}+1 t+174$; avg. velocity $=-380 \mathrm{ft} / \mathrm{s}$
30. Write the linear function f such that it has the indicated values.
$f(3)=-4, \quad \mathrm{f}(-8)=2$

$$
y=\frac{10}{7} x+\frac{29}{5}
$$

A.

$$
y=-\frac{11}{6} x+\frac{3}{2}
$$

B.

$$
y=\frac{6}{11} x-\frac{62}{11}
$$

C.

$$
y=-\frac{6}{11} x-\frac{26}{11}
$$

D.

$$
y=\frac{7}{10} x-\frac{61}{10}
$$

E.
31. Evaluate the function for the indicated values.
$f(x)=4 \llbracket x+8 \rrbracket+8$
$f(5)$
(i)

$$
f(-52.7)
$$

(ii)
(ii) -168
(ii) -168
(ii) -172
(iii)
A. (i) 60
B. (i) 60
(iii) 44
C. (i) 61
(ii) -172
(iii) 40
D. (i) 61
(ii) -172
(iii) 44
E. (i) 60
(iii) 40
(iii) 40
32. Which function does the graph represent?

A. $g(x)=\llbracket 3 x \rrbracket$
$g(x)=\llbracket x+3 \rrbracket$
B.
C. $g(x)=3 \llbracket x \rrbracket$
D. $g(x)=\llbracket \frac{x}{3} \rrbracket$
E. $\quad g(x)=\llbracket x-3 \rrbracket$
33. Which graph represents the function?
$g(x)=\llbracket x-1 \rrbracket$

A.

B.

C.

D.

34. Which graph represents the function?
$f(x)= \begin{cases}\frac{x}{4}+4, & x<\frac{1}{2} \\ 4-4 x, & x \geq \frac{1}{2}\end{cases}$
A.

B.

C.

D.

E.
35. Use the graph of $f(x)=|x|$
to write an equation for the function whose graph is shown.

$$
f(x)=-3|x-1|+2
$$

A.

$$
f(x)=-3|x+1|+2
$$

B.
$f(x)=|-3 x+1|+2$
C.

$$
f(x)=-3|x+1|-2
$$

D.

$$
f(x)=|-3 x-1|+2
$$

E.
36. Describe the sequence of transformations from the related common function $f(x)=x^{3}$ to g. $g(x)=4(x-4)^{3}$
A. vertical shift 4 units up; then vertical shrink by a factor of 4
B. horizontal shift 4 units left; then vertical shrink by a factor of 4
C. horizontal shift 4 units right; then vertical stretch by a factor of 4
D. vertical shift 4 units down; then vertical shrink by a factor of 4
E. horizontal shift 4 units left; then vertical stretch by a factor of 4
37. Write an equation for the function that is described by the following characteristics:
the shape of $f(x)=x^{2}$, but moved eight units down, two units to the left, and then reflected in the x-axis
A. $g(x)=2-(x+8)^{2}$
B. $g(x)=-(x+2)^{2}-8$
C. $g(x)=8-(x+2)^{2}$
D. $g(x)=-(x+8)^{2}-2$
E. $g(x)=8-(x-2)^{2}$
38. Write an equation for the function that is described by the following characteristics:
the shape of $f(x)=\llbracket \llbracket_{x} \rrbracket$, but reflected in the y-axis, moved five units down
A. $g(x)=\llbracket x \rrbracket+5$
B. $g(x)=-\llbracket x-5 \rrbracket$
C. $g(x)=-\llbracket x+5 \rrbracket$
D. $g(x)=\llbracket[x \rrbracket-5$
E. $g(x)=-\llbracket \mathbb{X}_{x} \rrbracket+5$
39. Find $(f+g)(x)$.
$f(x)=2 x^{2}-2 x+7$
$g(x)=4 x^{2}-2 x+9$
A. $(f+g)(x)=-2 x^{4}-2$
B. $(f+g)(x)=-6 x^{2}+4 x-16$
C. $(f+g)(x)=6 x^{4}-4 x^{2}+16$
D. $(f+g)(x)=-2 x^{2}-2$
E. $(f+g)(x)=6 x^{2}-4 x+16$
40. Find $(f / g)(x)$.
$f(x)=x^{2}+7 x \quad g(x)=-2-x$ $(f / g)(x)=\frac{x^{2}+7 x}{-2-x}, x \neq 0$
A.

$$
(f / g)(x)=\frac{x+7}{-2}, x \neq 0
$$

B.

$$
(f / g)(x)=-\frac{x^{2}}{2}-7, x \neq 0
$$

C.

$$
(f / g)(x)=\frac{x^{2}+7 x}{-2-x}, x \neq-2
$$

D.

$$
(f / g)(x)=\frac{x^{2}+7 x}{-2-x}, x \neq 2
$$

E.
41. Find $(f g)(x)$.
$f(x)=\sqrt{-2 x} \quad g(x)=\sqrt{-9 x-1}$
$(f g)(x)=\sqrt{-11 x-1}$
A.

$$
(f g)(x)=\sqrt{18 x^{2}-1}
$$

B.

$$
(f g)(x)=\sqrt{18 x^{2}+2 x}
$$

C.

$$
(f g)(x)=3 x \sqrt{2}+\sqrt{2 x}
$$

D. $(f g)(x)=3 x \sqrt{2+2 x}$
E.
42. Find $(f-g)(x)$.
$f(x)=-\frac{9 x}{7 x-2} \quad g(x)=-\frac{4}{x}$

$$
(f-g)(x)=\frac{-9 x+30}{7 x-2}
$$

A.

$$
(f-g)(x)=\frac{-9 x^{2}+28 x+8}{7 x^{2}-2 x}
$$

B.

$$
(f-g)(x)=\frac{-9 x+4}{6 x-2}
$$

C.

$$
(f-g)(x)=\frac{-9 x^{2}+28 x-8}{7 x^{2}-2 x}
$$

D.

$$
(f-g)(x)=\frac{-9 x+26}{7 x-2}
$$

E.
43. Evaluate the indicated function for $f(x)=x^{2}-7$ and $g(x)=x+3$.
$(f-g)(t+2)$
A. $t^{2}+3 t-2$
B. $t^{2}+3 t-8$
C. $t^{2}+5 t-8$
D. $t^{2}-t-8$
E. $t^{2}+5 t-2$
44. Evaluate the indicated function for $f(x)=x^{2}-3$ and $g(x)=x+7$. ($f g$)(1)
A. 12
B. -32
C. -20
D. -16
E. -30
45. Find ${ }^{g \circ f}$.
$f(x)=x-3$

$$
g(x)=x^{2}
$$

$$
(g \circ f)(x)=x^{2}-6 x+9
$$

A.

$$
(g \circ f)(x)=x^{2}-9
$$

B.

$$
(g \circ f)(x)=x^{2}-3 x+9
$$

C.

$$
(g \circ f)(x)=x^{2}-3
$$

D.

$$
(g \circ f)(x)=x^{2}+9
$$

E.
46. Find $f \circ g$.
$f(x)=-2 x+7 \quad g(x)=x+2$
$(f \circ g)(x)=-2 x+3$
A. B. $(f \circ g)(x)=-3 x+5$

$$
(f \circ g)(x)=-2 x^{2}+3 x+14
$$

C.
D. $(f \circ g)(x)=-3 x+9$
E. $(f \circ g)(x)=-2 x+9$
47. Find $f \circ g$.
$f(x)=x+5 \quad g(x)=\frac{9}{x^{2}-25}$

$$
(f \circ g)(x)=\frac{9}{x^{2}}
$$

A.
B.

$$
(f \circ g)(x)=\frac{14}{x^{2}-25}
$$

$$
(f \circ g)(x)=\frac{5 x^{2}+4}{x^{2}-25}
$$

C.

$$
(f \circ g)(x)=\frac{9}{x^{2}+10 x}
$$

$$
(f \circ g)(x)=\frac{5 x^{2}-116}{x^{2}-25}
$$

E.
48. Use the graphs of f and g to evaluate the function.

$(f \circ g)(1)$
A. 9
B. -1
C. 0
D. -4
E. -2
49. The monthly cost C of running the machinery in a factory for t hours is given by $C(t)=10 t+450$.
The number of hours t needed to produce x products is given by $t(x)=8 x$.
Find the equation representing the cost C of manufacturing x products.
A. $C(x)=18 x+460$
B. $C(x)=80 x+4500$
C. $C(x)=10 x+458$
D. $C(x)=18 x+450$
E. $C(x)=80 x+450$
50. Find the inverse function of f.
$f(x)=x^{5}+2$
A. $f^{-1}(x)=\sqrt[5]{x}-2$
B. $f^{-1}(x)=\sqrt[5]{x}+2$
C. $f^{-1}(x)=-\sqrt[5]{x}+2$
D. $f^{-1}(x)=-\sqrt[5]{x+2}$
E. $f^{-1}(x)=\sqrt[5]{x-2}$
51. Show algebraically that f and g are inverse functions.
$f(x)=9 x-8 \quad g(x)=\frac{x+8}{9}$
$f(g(x))=f\left(\frac{x+8}{9}\right)=9\left(\frac{x+8}{9}\right)-8=x+8-8=x$
$g(f(x))=g(9 x-8)=\frac{9 x-8+8}{9}=\frac{9 x}{9}=x$
52. Show algebraically that f and g are inverse functions.
$f(x)=\sqrt{x-4}, x \geq 4 \quad g(x)=x^{2}+4, x \geq 0$
$f(g(x))=f\left(x^{2}+4\right)=\sqrt{\left(x^{2}+4\right)-4}=\sqrt{x^{2}}=x$
$g(f(x))=g(\sqrt{x-4})=(\sqrt{x-4})^{2}+4=x-4+4=x$
53. Graph the given function.
$f(x)=(x+3)^{2}$

A.

B.

C.

D.

E.

54. Find the inverse function of f.
$f(x)=\frac{2 x+5}{7 x+6}, x \neq-\frac{6}{7}$

$$
f^{-1}(x)=-\frac{7 x+6}{2 x+5}, x \neq-\frac{5}{2}
$$

A.

$$
f^{-1}(x)=\frac{7 x+6}{2 x+5}, x \neq-\frac{5}{2}
$$

B.

$$
f^{-1}(x)=\frac{7 x-2}{-6 x+5}, x \neq-\frac{6}{5}
$$

C.

$$
f^{-1}(x)=\frac{-6 x+5}{7 x-2}, x \neq \frac{2}{7}
$$

D.

$$
f^{-1}(x)=\frac{6 x-5}{7 x-2}, x \neq \frac{2}{7}
$$

E.
55. Determine whether the function has an inverse function. If it does, find the inverse function.
$f(x)=x^{2}+6$
A. $f^{-1}(x)=\sqrt{x}+6, x \geq 0$
B. $f^{-1}(x)=\sqrt{x-6}$
C. $f^{-1}(x)=\sqrt{x}-6$
D. No inverse function exists.
E. $f^{-1}(x)=\sqrt{x+6}, x \geq-6$
56. Determine whether the function has an inverse function. If it does, find the inverse function.
$f(x)= \begin{cases}4 x+5, & x<-3 \\ (x+3)^{2}-7, & x \geq-3\end{cases}$

$$
f^{-1}(x)= \begin{cases}\frac{x-5}{4}, & x<-3 \\ \sqrt{x+7}-3, & x \geq-3\end{cases}
$$

A.
B. No inverse function exists.

$$
f^{-1}(x)= \begin{cases}\frac{x-5}{4}, & x<-7 \\ \sqrt{x+7}-3, & x \geq-7\end{cases}
$$

C.

$$
f^{-1}(x)= \begin{cases}\frac{x+5}{4}, & x<-7 \\ \sqrt{x+7}-3, & x \geq-7\end{cases}
$$

D.

$$
f^{-1}(x)= \begin{cases}\frac{x-5}{4}, & x<-3 \\ \sqrt{x+4}, & x \geq-3\end{cases}
$$

E.

$$
f(x)=\frac{x}{8}+1
$$

57. Use the functions given by

$$
\text { and } g(x)=x^{3} \text { to find the indicated value. }
$$

$\frac{637}{512}$
A.
B. $3 \sqrt[3]{2}$
C. $2 \sqrt[3]{5-1}$
D. undefined
E. $2 \sqrt[3]{6}$

