TEST BANK

TEST FORM A

NAME \qquad
CLASS__SCORE \qquad GRADE \qquad

1. Determine the intervals on which the function is:
a) increasing,
b) decreasing, and
c) constant.

2. The length of a rectangular parking lot is 40 ft more than the width. If the parking lot is w feet wide, express its area as a function of the width.
3. Graph

$$
f(x)=\left\{\begin{array}{l}
-2 x, \text { for } x<-2 \\
-x^{2}, \text { for }-2 \leq x \leq 2, \\
5, \text { for } x>2
\end{array}\right.
$$

4. See graph.
5. \qquad
\qquad
5. For the function in Exercise 4, find $f\left(-\frac{3}{4}\right), f(4)$, and $f(-5)$.

ANSWERS

1. a)
b)
\qquad
2. Graph the function $f(x)=x^{2}-4$. Estimate the intervals on which the function is increasing or decreasing and estimate any relative maxima or minima.
3. See graph.
\qquad
\qquad
\qquad
4.

\qquad
\qquad
TEST FORM A

ANSWERS

6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
15. \qquad
16. \qquad
17. \qquad
18. \qquad
19. \qquad
20. \qquad
21. \qquad
22. \qquad
23. \qquad
24. \qquad
25. \qquad
26. \qquad
27. \qquad

Given that $f(x)=x^{2}-3 x+2$ and $g(x)=\sqrt{4-x}$, find each of the following if it exists.
6. $(f+g)(3)$
7. $(f-g)(4)$
8. $(f g)(-5)$
9. $(f / g)(2)$

For $f(x)=2 x+1$ and $g(x)=\sqrt{x-3}$, find each of the following.
10. The domain of f 11. The domain of g
12. The domain of $f+g$
13. The domain of $f-g$
14. The domain of $f g$
15. The domain of f / g
16. $(f+g)(x)$
17. $(f-g)(x)$
18. $(f g)(x)$
19. $(f / g)(x)$

For each function, construct and simplify the different quotient.
20. $f(x)=\frac{2}{3} x-8$
21. $f(x)=6-x^{2}$

Given that $f(x)=x^{2}+2, g(x)=2 x-5$, and $h(x)=3 x^{2}+4 x-2$, find each of the following.
22. $(f \circ g)(1)$
23. $(g \circ h)(-3)$
24. $(h \circ f)(2)$
25. $(g \circ g)(x)$

For $f(x)=\sqrt{x+2}$ and $g(x)=x-8$:
26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.

TEST FORM A

28. Find $f(x)$ and $g(x)$ such that $h(x)=(f \circ g)(x)=\sqrt[3]{3 x+1}$.
29. Determine whether the graph of $y=\frac{3 x}{x^{2}-4}$ is symmetric with respect to the x-axis, the y-axis, and/or the origin.
30. Test whether the function $f(x)=5 x-x^{3}$ is even, odd, or neither even nor odd. Show your work.
31. Write an equation for a function that has the shape of $y=x^{2}$, but shifted right 5 units and down 3 units.
32. Write an equation for a function that has the shape of $y=x^{2}$, but shifted left 2 units and up 4 units.
33. The graph of a function $y=f(x)$ is shown below. No formula for f is given. Make a graph of $y=f(-x)$.

34. Find an equation of variation in which y varies inversely as x, and $y=18$ when $x=5$.
35. Find an equation of variation in which y varies directly as x, and $y=0.8$ when $x=5$.
36. Find an equation of variation where y varies jointly as x and z and inversely as the square of w, and $y=20$ when $x=0.5, z=4$, and $w=5$.
37. The volume of a $6-\mathrm{in}$. tall cone varies directly as the square of the radius. The volume is $14.1 \mathrm{in}^{3}$ when the radius is 1.5 in . Find the volume when the radius is 3 in .

ANSWERS
28. \qquad
29. \qquad
30. \qquad
31. \qquad
32. \qquad
33. See graph.
34. \qquad
35. \qquad
36. \qquad
37. \qquad

TEST FORM A

ANSWERS

38. \qquad
39. The graph of the function f is shown to the right.

Which of the following represents the graph of $g(x)=-f(x)+2$?
A.
B.

C.

D.

39. If $(-3,6)$ is a point in the graph of $y=f(x)$, what point do you know is on the graph of $y=f(x+3)$?

TEST FORM B

NAME \qquad CLASS SCORE \qquad GRADE \qquad

1. Determine the intervals on which the function is:
a) increasing,
b) decreasing, and
c) constant.

2. Graph the function $f(x)=5-|x|$.

Estimate the intervals on which the function is increasing or decreasing and estimate any relative maxima or minima.

3. The length of a rectangular picture frame is 10.5 in. greater than the width. If the picture frame is w feet wide, express its area as a function of the width.
4. Graph

$$
f(x)=\left\{\begin{array}{l}
\sqrt{x+5}, \text { for } x<-1, \\
x^{2}, \text { for }-1 \leq x \leq 2, \\
-|x|, \text { for } x>2
\end{array}\right.
$$

4. See graph.
5. \qquad
\qquad
5. For the function in Exercise 4, find $f(-4), f\left(\frac{1}{2}\right)$, and $f(6)$.

ANSWERS

1. a)
b)
\qquad
2. See graph.
\qquad
\qquad
\qquad
3.

\qquad
TEST FORM B

ANSWERS

6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
15. \qquad
16. \qquad
17. \qquad
18. \qquad
19. \qquad
20. \qquad
21. \qquad
22. \qquad
23. \qquad
24. \qquad
25. \qquad
26. \qquad
27. \qquad

Given that $f(x)=x^{2}+2 x+4$ and $g(x)=\sqrt{9-x}$, find each of the following if it exists.
6. $(f+g)(5)$
7. $(f-g)(8)$
8. $(f g)(-7)$
9. $(f / g)(0)$

For $f(x)=x^{2}$ and $g(x)=\sqrt{2 x}$, find each of the following.
10. The domain of f
11. The domain of g
12. The domain of $f+g$
13. The domain of $f-g$
14. The domain of $f g$
15. The domain of f / g
16. $(f+g)(x)$
17. $(f-g)(x)$
18. $(f g)(x)$
19. $(f / g)(x)$

For each function, construct and simplify the different quotient.
20. $f(x)=3 x-2$ 21. $f(x)=5 x^{2}+2$

Given that $f(x)=4-x^{2}, g(x)=\frac{1}{2} x+2$, and $h(x)=x^{2}+6 x-3$, find each of the following.
22. $(f \circ g)(2)$
23. $(g \circ h)(4)$
24. $(h \circ f)(-1)$
25. $(g \circ g)(x)$

For $f(x)=3 x-2$ and $g(x)=\sqrt{x}$:
26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.
\qquad

TEST FORM B

28. Find $f(x)$ and $g(x)$ such that $h(x)=(f \circ g)(x)=\frac{5}{2 x+1}$.
29. Determine whether the graph of $y=x^{4}-2 x^{2}$ is symmetric with respect to the x-axis, the y-axis, and/or the origin.
30. Test whether the function $f(x)=\frac{x^{2}}{x-1}$ is even, odd, or neither even nor odd. Show your work.
31. Write an equation for a function that has the shape of $y=|x|$, but shifted right 4 units and up 2 units.
32. Write an equation for a function that has the shape of $y=|x|$, but shifted left 3 units and down 1 unit.
33. The graph of a function $y=f(x)$ is shown below. No formula for f is given. Make a graph of $y=f(x-1)$.

34. Find an equation of variation in which y varies inversely as x, and $y=24$ when $x=3$.
35. Find an equation of variation in which y varies directly as x, and $y=14$ when $x=6$.
36. Find an equation of variation where y varies jointly as the square of x and the square of z and inversely as w, and $y=50$ when $x=2, z=3$, and $w=10$.
37. The current I in an electrical conductor varies inversely as the resistance R of the conductor. Suppose I is 0.2 ampere when the resistance is 200 ohms. Find the current when the resistance is 250 ohms.

TEST FORM B

ANSWERS

38. \qquad
39. The graph of the function f is shown to the right.

Which of the following represents the graph of $g(x)=-2 f(x)-3$?
A.
B.

C.
D.

39. If $(4,-6)$ is a point in the graph of $y=f(x)$, what point do you know is on the graph of $y=f(-2 x)$?

TEST FORM C

NAME \qquad
CLASS__SCORE \qquad GRADE \qquad

1. Determine the intervals on which the function is:
a) increasing,
b) decreasing, and
c) constant.

2. Graph the function $f(x)=3-x^{2}$. Estimate the intervals on which the function is increasing or decreasing and estimate any relative maxima or minima.

3. The length of a rectangular table cloth is 2 ft more than the width. If the table cloth is w feet wide, express the perimeter as a function of the width.
4. Graph

$$
f(x)=\left\{\begin{array}{l}
|x|, \text { for } x<-2, \\
x^{2}, \text { for }-2 \leq x \leq 1, \\
-3 x, \text { for } x>1
\end{array}\right.
$$

5. For the function in Exercise 4, find $f(-5), f\left(\frac{1}{2}\right)$, and $f(4)$.

ANSWERS

1. a)
b)
c)
2. See graph.
\qquad
\qquad
\qquad
3. \qquad
4. See graph.
5. \qquad
\qquad

TEST FORM C

ANSWERS

6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad 16. $(f+g)(x)$
15. $(f-g)(x)$
16. $(f g)(x)$
17. $(f / g)(x)$

For each function, construct and simplify the different quotient.
20. $f(x)=4-\frac{1}{2} x$
21. $f(x)=x^{3}-x$

Given that $f(x)=x^{2}-2 x+1, g(x)=2 x+3$, and $h(x)=x^{2}-4$, find each of the following.
22. $(f \circ g)(-1)$
23. $(g \circ h)(4)$
24. $(h \circ f)(1)$
25. $(g \circ g)(x)$

For $f(x)=x^{2}$ and $g(x)=x-3$:
26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.

TEST FORM C

28. Find $f(x)$ and $g(x)$ such that $h(x)=(f \circ g)(x)=\sqrt{x^{2}+5}$.
29. Determine whether the graph of $y=3 x^{6}-2 x^{4}$ is symmetric with respect to the x-axis, the y-axis, and/or the origin.
30. Test whether the function $f(x)=-3 x+1$ is even, odd, or neither even nor odd. Show your work.
31. Write an equation for a function that has the shape of $y=x^{3}$, but shifted left 4 units and up 6 units.
32. Write an equation for a function that has the shape of $y=x^{3}$, but shifted right 3 units and down 2 units.
33. The graph of a function $y=f(x)$ is shown below. No formula for f is given. Make a graph of $y=f(x-2)$.

34. Find an equation of variation in which y varies inversely as x, and $y=0.6$ when $x=2$.
35. Find an equation of variation in which y varies directly as x, and $y=1.5$ when $x=0.3$.
36. Find an equation of variation where y varies jointly as x and z and inversely as the square root of w, and $y=20$ when $x=5, z=2$, and $w=25$.
37. The intensity I of a light from a light bulb varies inversely as the square of the distance d from the bulb. Suppose I is $60 \mathrm{~W} / \mathrm{m}^{2}$ (watts per square meter) when the distance is 5 m . Find the intensity at 20 m .

TEST FORM C

ANSWERS

38. \qquad
39. The graph of the function f is shown to the right.

Which of the following represents the graph of $g(x)=-f(x)-3$?
A.

C.

B.

D.

39. If $(-6,3)$ is a point in the graph of $y=f(x)$, what point do you know is on the graph of $y=f(-3 x)$?

TEST FORM D

NAME \qquad
CLASS SCORE \qquad GRADE \qquad

1. Determine the intervals on which the function is:
a) increasing,
b) decreasing, and
c) constant.

2. Graph the function $f(x)=|x|+2$.

Estimate the intervals on which the function is increasing or decreasing and estimate any relative maxima or minima.

3. The length of a rectangular board game is $2 \frac{1}{2}$ times the width. If the board game is $w \mathrm{~cm}$ wide, express the perimeter as a function of the width.
4. Graph

$$
f(x)=\left\{\begin{array}{l}
x+2, \text { for } x<-2 \\
x^{2}-3, \text { for }-2 \leq x \leq 2 \\
\sqrt{x}, \text { for } x>2
\end{array}\right.
$$

5. \qquad
5. For the function in Exercise 4, find $f(-3), f\left(\frac{2}{3}\right)$, and $f(4)$.
4. See graph.
3. \qquad
ANSWERS

1. a)
b)
c)
2. See graph.
\qquad
\qquad
\qquad
\qquad
\qquad
TEST FORM D

ANSWERS

6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad 16. $(f+g)(x)$
15. $(f-g)(x)$
16. $(f g)(x)$
17. $(f / g)(x)$

For each function, construct and simplify the different quotient.
20. $f(x)=-6 x+2$
21. $f(x)=2 x^{2}+6$

Given that $f(x)=2 x+1, g(x)=\sqrt{x+3}$, and $h(x)=x^{2}-3 x+4$, find each of the following.
22. $(f \circ g)(-2)$
23. $(g \circ h)(6)$
24. $(h \circ f)(3)$
25. $(f \circ f)(x)$

For $f(x)=\sqrt{x-5}$ and $g(x)=x+2$:
26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.

TEST FORM D

28. Find $f(x)$ and $g(x)$ such that $h(x)=(f \circ g)(x)=\frac{4}{x-6}$.
29. Determine whether the graph of $y=x^{3}-2 x$ is symmetric with respect to the x-axis, the y-axis, and/or the origin.
30. Test whether the function $f(x)=8 x-|x|$ is even, odd, or neither even nor odd. Show your work.
31. Write an equation for a function that has the shape of $y=\sqrt{x}$, but shifted left 5 units and down 3 units.
32. Write an equation for a function that has the shape of $y=\sqrt{x}$, but shifted right 2 units and up 1 unit.
33. The graph of a function $y=f(x)$ is shown below. No formula for f is given. Make a graph of $y=-f(x)$.

34. Find an equation of variation in which y varies inversely as x, and $y=15$ when $x=6$.
35. Find an equation of variation in which y varies directly as x, and $y=0.5$ when $x=1.5$.
36. Find an equation of variation where y varies jointly as x and the square of z and inversely as w, and $y=40$ when $x=100, z=0.1$, and $w=2$.
37. The surface area of a balloon varies directly as the square of its radius. The area is $78.5 \mathrm{~cm}^{2}$ when the radius is 2.5 cm . Find the area when the radius is 3 cm .

ANSWERS
28. \qquad
29. \qquad
30. \qquad
31. \qquad
32. \qquad
33. See graph.
34. \qquad
35. \qquad
36. \qquad
37. \qquad

TEST FORM D

ANSWERS
38. \qquad
38. The graph of the function f is shown to the right.

Which of the following represents the graph of $g(x)=-2 f(x)+3$?
A.

B.

C.

D.

39. If $(-10,10)$ is a point in the graph of $y=f(x)$, what point do you know is on the graph of $y=f\left(\frac{1}{2} x\right)$?

CHAPTER 2
TEST FORM E
CLASS \qquad SCORE \qquad GRADE \qquad

1. Determine on which interval the function is decreasing.

ANSWERS

1. \qquad
2. \qquad
a) $(-5,-3)$
b) $(-3,4)$
c) $(4,1)$
d) $(-3,3)$
3. The width of a rectangular blanket is $\frac{2}{3}$ of the length l. Express the area of the blanket as a function of l.
a) $A(l)=\frac{2}{3} l^{2}$
b) $A(l)=\frac{3}{2} l^{2}$
c) $A(l)=\frac{10}{3} l$
d) $A(l)=\frac{5}{3} l^{2}$
4. \qquad

Use the following function for Exercises 3 and 4.

$$
f(x)=\left\{\begin{array}{l}
2 x^{2}, \text { for } x \leq-1 \\
\sqrt{x+3}, \text { for }-1<x \leq 6 \\
|x-4|, \text { for } x>6
\end{array}\right.
$$

3. Find $f(-1)$.
a) -2
b) $\sqrt{2}$
c) 2
d) 4
4. Find $f(5)$.
a) 1
b) 50
c) $\sqrt{5}$
d) $\sqrt{8}$
5. For $f(x)=x^{2}-3 x-2$ and $g(x)=4 x+1$, find $(f+g)(2)$.
6. \qquad
a) -36
b) 5
c) 17
d) 4
7. For $f(x)=x^{2}-5$ and $g(x)=\sqrt{x}$, find $h(x)=(f g)(x)$.
a) $h(x)=x^{2}-5+\sqrt{x}$
b) $h(x)=x-5$
c) $h(x)=x^{2} \sqrt{x}-5 \sqrt{x}$
d) $h(x)=\sqrt{x^{2}-5}$
8. \qquad
9. \qquad
\qquad
TEST FORM E

ANSWERS
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
7. For $f(x)=x^{2}-5$ and $g(x)=\sqrt{x}$, find the domain of f / g.
a) $(-\infty, 0) \cup(0, \infty)$
b) $[0, \infty)$
c) $(-\infty,-\sqrt{5}) \cup(-\sqrt{5}, \sqrt{5}) \cup(\sqrt{5}, \infty)$
d) $(0, \infty)$
8. Construct and simplify the difference quotient for $f(x)=3+5 x$.
a) 5 h
b) 5
c) $3+5 x-5 h$
d) 3
9. Construct and simplify the difference quotient for $f(x)=2 x^{2}-3 x+1$.
a) $4 x+2 h-3$
b) $4 h^{2}-3 h$
c) $2 x+h$
d) $4 x h+2 h^{2}-3 h$
10. For $f(x)=x+4$ and $g(x)=2 x^{2}$, find $h(x)=(g \circ f)(x)$.
a) $h(x)=2 x^{2}+4$
b) $h(x)=2 x^{3}+8 x^{2}$
c) $h(x)=2 x^{2}+16 x+32$
d) $h(x)=2 x^{2}+x+4$
11. For $g(x)=2 x-5$, find $h(x)=(g \circ g)(x)$.
a) $h(x)=4 x-10$
b) $h(x)=4 x^{2}-20 x+25$
c) $h(x)=4 x-5$
d) $h(x)=4 x-15$
12. For $f(x)=\sqrt{x+4}$ and $g(x)=2 x^{2}$, find the domain of $(f \circ g)(x)$.
a) $[0, \infty)$
b) $[-4, \infty)$
c) $(-\infty, \infty)$
d) $[-4,4]$
13. Which of the following functions is symmetric with respect to the y-axis?
a) $f(x)=5-x^{2}$
b) $f(x)=x$
c) $f(x)=5 x^{3}$
d) $f(x)=\sqrt{x}$
14. Which of the following functions is even?
a) $y=16-x^{2}$
b) $y=2 x^{3}$
c) $y=4 x-6$
d) $y=\sqrt{x}$
\qquad

TEST FORM E

15. Write an equation for a function that has the shape of $y=|x|$, but is shifted right 2 units and down 6 units.
a) $f(x)=|x+2|-6$
b) $f(x)=|x-2|+6$
c) $f(x)=|x+2|+6$
d) $f(x)=|x-2|-6$
16. The graph of $y=f(x)$ is given. Which graph below represents the graph of $y=f(x)+3$?
a)

c)
b)

d)

17. \qquad
18. \qquad
19. Find an equation of variation in which y varies directly as x and
20. \qquad $y=15$ and $x=10$.
a) $y=\frac{2}{3} x$
b) $y=\frac{3}{2} x$
c) $y=\frac{150}{x}$
d) $y=6 x$
21. If y varies inversely as x and $y=1.5$ when $x=8$, find y when $x=20$.
a) $\frac{5}{3}$
b) $\frac{15}{4}$
c) $\frac{320}{3}$
d) $\frac{3}{5}$
22. \qquad

CHAPTER 2

NAME \qquad
TEST FORM E

ANSWERS
19. \qquad
20. \qquad
21. \qquad
19. d varies inversely as w and directly as the square of v. If $d=40$ when $w=6$ and $v=2$, find d when $w=9$ and $v=4$.
a) 240
b) $\frac{320}{3}$
c) 15
d) $\frac{40}{3}$
20. The graph of the function f is shown to the right.

Which of the following represents the graph of $g(x)=-f(x)+2$?
a)

c)

b)

d)

21. If $(-1,-4)$ is a point on the graph of $y=f(x)$, what point do you know is on the graph of $y=f\left(\frac{1}{2} x\right)$?
a) $(-1,-2)$
b) $\left(-\frac{1}{2},-4\right)$
c) $(-2,-4)$
d) $\left(-\frac{1}{2},-2\right)$

1. Determine on which interval the function is increasing.

ANSWERS

1. \qquad
2. \qquad
a) $(-2,4)$
b) $(2,3)$
c) $(-3,2)$
d) $(2,5)$
3. The width of a rectangular blanket is 4 less than twice the length l. Express the area of the blanket as a function of l.
a) $A(l)=4 l-2 l^{2}$
b) $A(l)=2 l^{2}-4$
c) $A(l)=3 l-4$
d) $A(l)=2 l^{2}-4 l$
4. \qquad
Use the following function for Exercises 3 and 4.

$$
f(x)=\left\{\begin{array}{l}
x^{2}+1, \text { for } x \leq-3 \\
|x-6|, \text { for }-3<x \leq 1 \\
\sqrt{3 x}, \text { for } x>1
\end{array}\right.
$$

3. Find $f(-1)$.
a) 2
b) 0
c) 7
d) 5
4. Find $f(2)$.
a) 5
b) $\sqrt{6}$
c) 1
d) 4
5. For $f(x)=x^{2}+4 x-5$ and $g(x)=-3 x+2$, find $(f+g)(-1)$.
6.
7. \qquad
a) -3
b) -5
c) -9
d) -40
8. For $f(x)=3 x-4$ and $g(x)=\sqrt{x}$, find $h(x)=(f g)(x)$.
a) $h(x)=3 x-4+\sqrt{x}$
b) $h(x)=\sqrt{x}(3 x-4)$
c) $h(x)=3 \sqrt{x}-4$
d) $h(x)=\sqrt{3 x-4}$

\qquad
TEST FORM F

ANSWERS
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
7. For $f(x)=x^{2}-4$ and $g(x)=\sqrt{3-x}$, find the domain of g / f.
a) $(-\infty, 3)$
b) $(-\infty, 3]$
c) $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$
d) $(-\infty,-2) \cup(-2,2) \cup(2,3]$
8. Construct and simplify the difference quotient for $f(x)=-7 x+3$.
a) 3
b) -7
c) $-7 h$
d) $3-7 x-7 h$
9. Construct and simplify the difference quotient for $f(x)=2 x^{2}-x$.
a) $2 h^{2}+h-4 x h$
b) $-4 x+2 h+1$
c) $4 x+2 h-1$
d) $4 x+2 h-1-\frac{2 x}{h}$
10. For $f(x)=2 x$ and $g(x)=x^{2}$, find $h(x)=(g \circ f)(x)$.
a) $h(x)=2 x^{2}$
b) $h(x)=x^{2}+2 x$
c) $h(x)=2 x^{3}$
d) $h(x)=4 x^{2}$
11. For $g(x)=8-3 x$, find $h(x)=(g \circ g)(x)$.
a) $h(x)=9 x-16$
b) $h(x)=9 x^{2}-48 x+64$
c) $h(x)=16-6 x$
d) $h(x)=9 x-24$
12. For $f(x)=\frac{1}{4-x}$ and $g(x)=x^{2}$, find the domain of $(f \circ g)(x)$.
a) $(-\infty, 4) \cup(4, \infty)$
b) $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$
c) $(-\infty, 2) \cup(2, \infty)$
d) $(-\infty, 16) \cup(16, \infty)$
13. Which of the following is symmetric with respect to the origin?
a) $y=(x-4)^{2}$
b) $x=y^{2}$
c) $y=-|x|-2$
d) $y=x-x^{3}$
14. Which of the following functions is even?
a) $f(x)=2 x+8$
b) $f(x)=\sqrt{4-x^{2}}$
c) $f(x)=x^{2}+x$
d) $f(x)=\sqrt[4]{x}$

TEST FORM F

15. Write an equation for a function that has the shape of $y=x^{2}$, but is shifted left 3 units and up 4 units.
a) $f(x)=(x+3)^{2}+4$
b) $f(x)=(x-3)^{2}+4$
c) $f(x)=(x-3)^{2}-4$
d) $f(x)=(x+3)^{2}-4$
16. The graph of $y=f(x)$ is given. Which graph below represents the graph of $y=f(x)-1$?

a)

c)

b)

d)

17. Find an equation of variation in which y varies directly as x and $y=0.5$ and $x=4$.
18.
19. \qquad
a) $y=\frac{1}{8} x$
b) $y=2 x$
c) $y=8 x$
d) $y=\frac{2}{x}$
20. If y varies inversely as x and $y=4$ when $x=0.2$, find y when $x=8$.
a) 160
b) 10
c) 0.1
d) 0.4
\qquad

TEST FORM F

ANSWERS
19. \qquad
20. \qquad
21. \qquad
b)

d)

21. If $(-4,2)$ is a point on the graph of $y=f(x)$, what point do you know is on the graph of $y=3 f(x)$?
a) $(-4,6)$
b) $(-12,2)$
c) $(-12,6)$
d) $(-4,5)$

