TEST BANK

C]

СН	APTER 2	NAME	NAME				
TES	ST FORM A	CLASS	_SCORE_	GRADE			
1.	Determine the intervals on which the function is: a) increasing, b) decreasing, and c) constant.	y	x	ANSWERS 1. <u>a)</u>			
2.	Graph the function $f(x) = x^2 - 4$. Estimate the intervals on which the function is increasing or decreasing and estimate any relative maxima or minima.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 x	2. <u>See graph.</u>			
3.	The length of a rectangular parking width. If the parking lot is <i>w</i> feet w function of the width.						
4.	Graph $f(x) = \begin{cases} -2x, \text{ for } x < -2, \\ -x^2, \text{ for } -2 \le x \le 2, \\ 5, \text{ for } x > 2. \end{cases}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4. <u>See graph.</u>			
5.	For the function in Exercise 4, find	$f\left(-\frac{3}{4}\right), f(4), \text{ and } f(-\frac{3}{4})$		5			

NAME_____

TEST FORM A

1

_	ANSWERS	Given that $f(x) = x^2 - 3x + 2$ and $g(x) = \sqrt{4-x}$, find each of the following if it exists.			
			(f+g)(3)	7.	(f-g)(4)
			(fg)(-5)		(f / g)(2)
		For	f(x) = 2x + 1 and $g(x) = -1$	$=\sqrt{x}$	$\overline{-3}$, find each of the following.
			The domain of f		
		12.	The domain of $f + g$	13.	The domain of $f - g$
		14.	The domain of <i>fg</i>	15.	The domain of f/g
13.		16.	(f+g)(x)	17.	(f-g)(x)
14.		18.	(fg)(x)	19.	(f/g)(x)
15.					
16.			-		implify the different quotient.
17.		20.	$f(x) = \frac{2}{3}x - 8$	21.	$f(x) = 6 - x^2$
18.		Giv	en that $f(x) = x^2 + 2$, g	(x) =	$2x-5$, and $h(x) = 3x^2 + 4x - 2$, find
19.			n of the following.		
20.		22.	$(f \circ g)(1)$	23.	$(g \circ h)(-3)$
21.		24.	$(h \circ f)(2)$	25.	$(g \circ g)(x)$
22.					
23.			$f(x) = \sqrt{x+2}$ and $g(x)$		
24.		26.	Find $(f \circ g)(x)$ and $(g$	∘ f)(.	x).
25.		27.	Find the domain of $(f \circ$	⊳g)(x	(c) and $(g \circ f)(x)$.
26.					
27.					

62

NAME_____

TEST FORM A

28.	Find $f(x)$ and $g(x)$ such that $h(x) = (f \circ g)(x) = \sqrt[3]{3x+1}$.	ANSWERS
29.	Determine whether the graph of $y = \frac{3x}{x^2 - 4}$ is symmetric with respect to the <i>x</i> -axis, the <i>y</i> -axis, and/or the origin.	28. 29.
30.	Test whether the function $f(x) = 5x - x^3$ is even, odd, or neither even nor odd. Show your work.	30. 31.
31.	Write an equation for a function that has the shape of $y = x^2$, but shifted right 5 units and down 3 units.	32
32.	Write an equation for a function that has the shape of $y = x^2$, but shifted left 2 units and up 4 units.	33. See graph.
33.	The graph of a function $y = f(x)$ is shown below. No formula for <i>f</i> is given. Make a graph of $y = f(-x)$.	34 35
34.	Find an equation of variation in which <i>y</i> varies inversely as <i>x</i> , and $y = 18$ when $x = 5$.	36.
35.	Find an equation of variation in which <i>y</i> varies directly as <i>x</i> , and $y = 0.8$ when $x = 5$.	
36.	Find an equation of variation where <i>y</i> varies jointly as <i>x</i> and <i>z</i> and inversely as the square of <i>w</i> , and $y = 20$ when $x = 0.5$, $z = 4$, and $w = 5$.	37
37.	The volume of a 6-in. tall cone varies directly as the square of the radius. The volume is 14.1 in^3 when the radius is 1.5 in. Find the volume when the radius is 3 in.	

NAME

TEST FORM A

NAME

3

-2 -3 -4

-1

2

1

-5 -4 -3 -2

TEST FORM B

CLASS SO

SCORE GRADE

1. a)

c)

ANSWERS

<u>b)</u>

2. See graph.

3. ____

- 1. Determine the intervals on which the function is:
 - a) increasing,
 - b) decreasing, and
 - c) constant.
- 2. Graph the function f(x) = 5 |x|. Estimate the intervals on which the function is increasing or decreasing and estimate any relative maxima or minima.

- 3. The length of a rectangular picture frame is 10.5 in. greater than the width. If the picture frame is *w* feet wide, express its area as a function of the width.
- 4. Graph $f(x) = \begin{cases} \sqrt{x+5}, \text{ for } x < -1, \\ x^2, \text{ for } -1 \le x \le 2, \\ -|x|, \text{ for } x > 2. \end{cases}$ 4. See graph. 4. See graph. 5. For the function in Exercise 4, find $f(-4), f(\frac{1}{2}), \text{ and } f(6).$

NAME_____

TEST FORM B

ANSWERS	Given that $f(x) = x^2 + 2$. following if it exists.	$x + 4$ and $g(x) = \sqrt{9 - x}$, find each of the
6	_	
7	6. $(f+g)(5)$	7. $(f-g)(8)$
8	8. $(fg)(-7)$	9. $(f/g)(0)$
9	For $f(x) = x^2$ and $g(x) = x^2$	$=\sqrt{2x}$, find each of the following.
10	10. The domain of f	11. The domain of g
11	12. The domain of f +	g 13. The domain of $f - g$
12	14. The domain of <i>fg</i>	15. The domain of f/g
13	16. $(f+g)(x)$	17 (f - q)(r)
14	10. $(f + g)(x)$	17. (j - g)(x)
15	18. (fg)(x)	19. $(f/g)(x)$
16	For each function, constru	uct and simplify the different quotient.
17	20. f(x) = 3x - 2	21. $f(x) = 5x^2 + 2$
18	Given that $f(x) = 4 - x^2$, $g(x) = \frac{1}{2}x + 2$, and $h(x) = x^2 + 6x - 3$, find
19	each of the following.	2
20	22. $(f \circ g)(2)$	23. $(g \circ h)(4)$
21	24. $(h \circ f)(-1)$	25. $(g \circ g)(x)$
22	24. $(n \circ f)(-1)$	$23. (g \circ g)(x)$
23	For $f(x) = 3x - 2$ and $g(x) = 3x - 2$	$(x) = \sqrt{x}$:
24	26. Find $(f \circ g)(x)$ and	$(g \circ f)(x).$
25	27. Find the domain of	$(f \circ g)(x)$ and $(g \circ f)(x)$.
26		
27		

66

NAME_____

TEST FORM B

28.	Find $f(x)$ and $g(x)$ such that $h(x) = (f \circ g)(x) = \frac{5}{2x+1}$.	ANSWERS 28
29.	Determine whether the graph of $y = x^4 - 2x^2$ is symmetric with respect to the <i>x</i> -axis, the <i>y</i> -axis, and/or the origin.	29
30.	Test whether the function $f(x) = \frac{x^2}{x-1}$ is even, odd, or neither even nor odd. Show your work.	30. 31.
31.	Write an equation for a function that has the shape of $y = x $, but shifted right 4 units and up 2 units.	32
32.	Write an equation for a function that has the shape of $y = x $, but shifted left 3 units and down 1 unit.	33. <u>See graph.</u>
33.	The graph of a function $y = f(x)$ is shown below. No formula for <i>f</i> is given. Make a graph of $y = f(x-1)$.	
	$\begin{array}{c} y \\ y \\ z \\$	34 35
34.	Find an equation of variation in which <i>y</i> varies inversely as <i>x</i> , and $y = 24$ when $x = 3$.	36
35.	Find an equation of variation in which <i>y</i> varies directly as <i>x</i> , and $y = 14$ when $x = 6$.	
36.	Find an equation of variation where y varies jointly as the square of x and the square of z and inversely as w, and $y = 50$ when $x = 2, z = 3$, and $w = 10$.	37
37.	The current <i>I</i> in an electrical conductor varies inversely as the resistance <i>R</i> of the conductor. Suppose <i>I</i> is 0.2 ampere when the resistance is 200 ohms. Find the current when the resistance is 250 cm	

NAME

TEST FORM B

С

CH	APTER 2	NAME		
TES	ST FORM C	CLASS	_SCORE_	GRADE
1.	Determine the intervals on which the function is: a) increasing, b) decreasing, and c) constant.	y 5 4 3 2 1 -5 - 4 - 3 - 2 - 1 -2 -3 -3 -5 -5 -5 -3 -5	1 	ANSWERS <u>a)</u> <u>b)</u> <u>c)</u>
2.	Graph the function $f(x) = 3 - x^2$. Estimate the intervals on which the function is increasing or decreasing and estimate any relative maxima or minima.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x	2. <u>See graph.</u>
3.	The length of a rectangular table cl If the table cloth is w feet wide, exp function of the width.		vidth.	
4.	Graph $f(x) = \begin{cases} x , \text{ for } x < -2, \\ x^2, \text{ for } -2 \le x \le 1, \\ -3x, \text{ for } x > 1. \end{cases}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x	4. <u>See graph.</u>
5.	For the function in Exercise 4, find	$f(-5), f(\frac{1}{2}), \text{ and } f(4)$).	

NAME_____

TEST FORM C

6. 6. $(f+g)(-3)$ 7. $(f-g)(12)$ 8. $(fg)(-4)$ 9. $(f/g)(5)$ 9. 8. $(fg)(-4)$ 9. $(f/g)(5)$ 9. 10. For $f(x) = -2x + 4$ and $g(x) = \frac{1}{x}$, find each of the following. 10. The domain of f 11. The domain of g 11. 10. The domain of $f + g$ 13. The domain of $f - g$ 13. 14. The domain of fg 15. The domain of g/f 14. The domain of fg 15. The domain of g/f 15. 16. $(f+g)(x)$ 17. $(f-g)(x)$ 15. 18. $(fg)(x)$ 19. $(f/g)(x)$ 16. $fx) = 4 - \frac{1}{2}x$ 21. $f(x) = x^3 - x$ 18. Given that $f(x) = x^2 - 2x + 1$, $g(x) = 2x + 3$, and $h(x) = x^2 - 4$, find each of the following. 20. $f(x) = 4 - \frac{1}{2}x$ 21. $f(x) = x^3 - x$ 18. 22. $(f \circ g)(-1)$ 23. $(g \circ h)(4)$ 21. 22. $(f \circ g)(-1)$ 23. $(g \circ h)(4)$ 23. For $f(x) = x^2$ and $g(x) = x - 3$: 24. 26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$. 25. 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.		ANSWERS	Given that $f(x) = x^2 + 2x - 8$ and $g(x) = \sqrt{x+4}$, find each of the following if it exists.			
7.	6.			-		
9. For $f(x) = -2x + 4$ and $g(x) = \frac{1}{x}$, find each of the following. 10. 10. 11. 10. The domain of f 11. 11. The domain of f 12. 12. The domain of $f + g$ 13. 14. The domain of fg 15. 16. $(f + g)(x)$ 16. $(f - g)(x)$ 17. $(f - g)(x)$ 18. $(fg)(x)$ 19. For each function, construct and simplify the different quotient. 20. $f(x) = 4 - \frac{1}{2}x$ 21. $f(x) = x^3 - x$ 18. Given that $f(x) = x^2 - 2x + 1$, $g(x) = 2x + 3$, and $h(x) = x^2 - 4$, find each of the following. 20. $22.$ $(f \circ g)(-1)$ 23. $(g \circ h)(4)$ 21. $24.$ $(h \circ f)(1)$ $25.$ $(g \circ g)(x)$ 23. For $f(x) = x^2$ and $g(x) = x - 3$: $24.$ 24. 26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$. $27.$ Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.	7.		6.	(f+g)(-3)	7.	(f-g)(12)
10.	8.		8.	(fg)(-4)	9.	(f / g)(5)
11. 10. The domain of f 11. The domain of g 12. 12. The domain of $f + g$ 13. The domain of $f - g$ 13. 14. The domain of fg 15. The domain of g / f 14. 16. $(f + g)(x)$ 17. $(f - g)(x)$ 15. 18. $(fg)(x)$ 19. $(f / g)(x)$ 16. For each function, construct and simplify the different quotient. 17. 20. $f(x) = 4 - \frac{1}{2}x$ 21. $f(x) = x^3 - x$ 18. Given that $f(x) = x^2 - 2x + 1$, $g(x) = 2x + 3$, and $h(x) = x^2 - 4$, find each of the following. 20. 22. $(f \circ g)(-1)$ 23. $(g \circ h)(4)$ 21. 22. $(f \circ g)(-1)$ 23. $(g \circ g)(x)$ 23. For $f(x) = x^2$ and $g(x) = x - 3$: 24. 26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$. 25. 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.			For	f(x) = -2x + 4 and g(x)	$=\frac{1}{r}$, find each of the following.
11. 12. 12. The domain of $f + g$ 13. The domain of $f - g$ 13. 14. The domain of fg 15. The domain of g / f 14. 16. $(f + g)(x)$ 17. $(f - g)(x)$ 15. 18. $(fg)(x)$ 19. $(f / g)(x)$ 16. For each function, construct and simplify the different quotient. 17. 20. $f(x) = 4 - \frac{1}{2}x$ 21. $f(x) = x^3 - x$ 18. Given that $f(x) = x^2 - 2x + 1$, $g(x) = 2x + 3$, and $h(x) = x^2 - 4$, find each of the following. 20. 22. $(f \circ g)(-1)$ 23. $(g \circ h)(4)$ 21. 24. $(h \circ f)(1)$ 25. $(g \circ g)(x)$ 23. For $f(x) = x^2$ and $g(x) = x - 3$: 24. 26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$. 25. 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.	10.		10		л	
12. 14. The domain of fg 15. The domain of g / f 14. 16. $(f+g)(x)$ 17. $(f-g)(x)$ 15. 18. $(fg)(x)$ 19. $(f/g)(x)$ 16. For each function, construct and simplify the different quotient. 17. 20. $f(x) = 4 - \frac{1}{2}x$ 21. $f(x) = x^3 - x$ 18. Given that $f(x) = x^2 - 2x + 1$, $g(x) = 2x + 3$, and $h(x) = x^2 - 4$, find each of the following. 20. 22. $(f \circ g)(-1)$ 23. $(g \circ h)(4)$ 21. 24. $(h \circ f)(1)$ 25. $(g \circ g)(x)$ 23. For $f(x) = x^2$ and $g(x) = x - 3$: 24. 26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$. 25. 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.	11.		10.	The domain of f	11.	The domain of g
14. 16. $(f+g)(x)$ 17. $(f-g)(x)$ 15. 18. $(fg)(x)$ 19. $(f/g)(x)$ 16. For each function, construct and simplify the different quotient. 17. 20. $f(x) = 4 - \frac{1}{2}x$ 21. $f(x) = x^3 - x$ 18. Given that $f(x) = x^2 - 2x + 1$, $g(x) = 2x + 3$, and $h(x) = x^2 - 4$, find each of the following. 20. 22. $(f \circ g)(-1)$ 23. $(g \circ h)(4)$ 21. 24. $(h \circ f)(1)$ 25. $(g \circ g)(x)$ 23. For $f(x) = x^2$ and $g(x) = x - 3$: 24. 26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$. 25. 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.	12.		12.	The domain of $f + g$	13.	The domain of $f - g$
15. 18. $(fg)(x)$ 19. $(f/g)(x)$ 16. For each function, construct and simplify the different quotient. 17. 20. $f(x) = 4 - \frac{1}{2}x$ 21. $f(x) = x^3 - x$ 18. Given that $f(x) = x^2 - 2x + 1$, $g(x) = 2x + 3$, and $h(x) = x^2 - 4$, find each of the following. 20. 22. $(f \circ g)(-1)$ 23. $(g \circ h)(4)$ 21. 24. $(h \circ f)(1)$ 25. $(g \circ g)(x)$ 23. For $f(x) = x^2$ and $g(x) = x - 3$: 24. 26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$. 25. 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.	13. <u>-</u>		14.	The domain of <i>fg</i>	15.	The domain of g / f
15. 18. $(fg)(x)$ 19. $(f/g)(x)$ 16. For each function, construct and simplify the different quotient. 17. 20. $f(x) = 4 - \frac{1}{2}x$ 21. $f(x) = x^3 - x$ 18. Given that $f(x) = x^2 - 2x + 1$, $g(x) = 2x + 3$, and $h(x) = x^2 - 4$, find each of the following. 20. 22. $(f \circ g)(-1)$ 23. $(g \circ h)(4)$ 21. 24. $(h \circ f)(1)$ 25. $(g \circ g)(x)$ 23. For $f(x) = x^2$ and $g(x) = x - 3$: 24. 26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$. 25. 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.	14.		16.	(f+g)(x)	17.	(f-g)(x)
17. 20. $f(x) = 4 - \frac{1}{2}x$ 21. $f(x) = x^3 - x$ 18. Given that $f(x) = x^2 - 2x + 1$, $g(x) = 2x + 3$, and $h(x) = x^2 - 4$, find 19. Given that $f(x) = x^2 - 2x + 1$, $g(x) = 2x + 3$, and $h(x) = x^2 - 4$, find 20. 22. 21. 22. 22. (f $\circ g$)(-1) 23. 24. 24. (h $\circ f$)(1) 25. 26. 26. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$. 26. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.	15. <u> </u>		18.	(fg)(x)	19.	(f/g)(x)
18.	16. <u>-</u>		For	each function, construct a	and si	implify the different quotient.
19. Given that $f(x) = x^2 - 2x + 1$, $g(x) = 2x + 3$, and $h(x) = x^2 - 4$, find each of the following. 20. 22. 21. 22. 22. $(f \circ g)(-1)$ 23. 24. 24. $(h \circ f)(1)$ 25. 26. 26. 27. 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.	17.		20.	$f(x) = 4 - \frac{1}{2}x$	21.	$f(x) = x^3 - x$
19. each of the following. 20. 22. $(f \circ g)(-1)$ 23. $(g \circ h)(4)$ 21. 24. $(h \circ f)(1)$ 25. $(g \circ g)(x)$ 22. 24. $(h \circ f)(1)$ 25. $(g \circ g)(x)$ 23. For $f(x) = x^2$ and $g(x) = x - 3$: 24. 26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$. 25. 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$. 26. 11.	18.		~.	_	,	
20. 22. $(f \circ g)(-1)$ 23. $(g \circ h)(4)$ 21. 24. $(h \circ f)(1)$ 25. $(g \circ g)(x)$ 22. 24. $(h \circ f)(1)$ 25. $(g \circ g)(x)$ 23. For $f(x) = x^2$ and $g(x) = x - 3$: 24. 26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$. 25. 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.	19. <u> </u>				, g(x)	$h(x) = 2x + 3$, and $h(x) = x^2 - 4$, find
21. 22. 22. 24. $(h \circ f)(1)$ 25. $(g \circ g)(x)$ 23. For $f(x) = x^2$ and $g(x) = x - 3$: 24. 26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$. 25. 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$. 26. 27.	20.			_	23	$(g \circ h)(4)$
22. Image: form f(x) = x^2 and g(x) = x - 3: 23. For $f(x) = x^2$ and $g(x) = x - 3:$ 24. 26. 25. 27. 26. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$. 26. 27.	21.			(J 8)(-)		$(8 \cdot r)(1)$
24 26. Find $(f \circ g)(x)$ and $(g \circ f)(x)$. 25 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$. 26 $(g \circ f)(x)$	22. <u>-</u>		24.	$(h \circ f)(1)$	25.	$(g \circ g)(x)$
25 27. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$. 26 $(g \circ f)(x)$	23.					
26	24.		26.	Find $(f \circ g)(x)$ and $(g \circ g)(x)$	• f)(:	x).
	25. <u>-</u>		27.	Find the domain of $(f \circ$	(x g)(x	(c) and $(g \circ f)(x)$.
	26.					
27	27. <u>-</u>					

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.

70

NAME_____

TEST FORM C

28. 29.	Find $f(x)$ and $g(x)$ such that $h(x) = (f \circ g)(x) = \sqrt{x^2 + 5}$. Determine whether the graph of $y = 3x^6 - 2x^4$ is symmetric with	ANSWERS 28.
	respect to the x-axis, the y-axis, and/or the origin.	29
30.	Test whether the function $f(x) = -3x + 1$ is even, odd, or neither even nor odd. Show your work.	30
31.	Write an equation for a function that has the shape of $y = x^3$, but shifted left 4 units and up 6 units.	31
32.	Write an equation for a function that has the shape of $y = x^3$, but shifted right 3 units and down 2 units.	
33.	The graph of a function $y = f(x)$ is shown below. No formula for <i>f</i> is given. Make a graph of $y = f(x-2)$.	33. <u>See graph.</u>
	$\begin{array}{c} y \\ y $	34
34.	Find an equation of variation in which <i>y</i> varies inversely as <i>x</i> , and $y = 0.6$ when $x = 2$.	36
35.	Find an equation of variation in which <i>y</i> varies directly as <i>x</i> , and $y = 1.5$ when $x = 0.3$.	
36.	Find an equation of variation where <i>y</i> varies jointly as <i>x</i> and <i>z</i> and inversely as the square root of <i>w</i> , and $y = 20$ when $x = 5$, $z = 2$, and $w = 25$.	37
37.	The intensity <i>I</i> of a light from a light bulb varies inversely as the square of the distance <i>d</i> from the bulb. Suppose <i>I</i> is 60 W/m^2 (watts per square meter) when the distance is 5 m. Find the intensity at 20 m.	

NAME_____

TEST FORM C

С

СН	APTER 2	NAME	NAME			
TES	ST FORM D	CLASS	CLASSSCOREGRAD			
1.	Determine the intervals on which the function is: a) increasing, b) decreasing, and c) constant.	y 5 4 3 2 -5 - 4 - 3 - 2 - 1 1 2 3 4 -2 -3 4 -2 -3 4 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2 -3 -2 -1 -2 -3 -2 -3 -2 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -3 -2 -3 -3 -3 -2 -3 -3 -2 -3 -3 -2 -3 -3 -2 -3	1.	ANSWERS <u>a) b) </u> c)		
2.	Graph the function $f(x) = x + 2$. Estimate the intervals on which the function is increasing or decreasing and estimate any relative maxima or minima.	y 5 4 3 2 1 1 2 1 1 2 3 4 5 4 3 2 1 1 2 1 1 2 3 4 5 4 3 2 1 1 1 2 3 4 5 4 3 2 1 1 1 2 3 4 5 4 3 2 1 1 1 2 3 4 5 4 3 2 1 1 1 1 2 3 4 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2. 	See graph.		
3.	The length of a rectangular board g	game is $2\frac{1}{2}$ times the wid	th. If			
	the board game is <i>w</i> cm wide, expr of the width.	Z	ction	Saa aranh		
4.	Graph $f(x) = \begin{cases} x+2, \text{ for } x < -2, \\ x^2 - 3, \text{ for } -2 \le x \le 2, \\ \sqrt{x}, \text{ for } x > 2. \end{cases}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x	See graph.		
5.	For the function in Exercise 4, find	$f(-3), f(\frac{2}{3}), \text{ and } f(4)$).			

NAME_____

TEST FORM D

	ANSWERS	Give	n that $f(x) = x^2 - 2x + 1$	and	$g(x) = \sqrt{x+6}$, find each of the
6.		follo	wing if it exists.		
7.		6.	(f+g)(-1)	7.	(f-g)(-2)
8.		8.	(fg)(10)	9.	(g / f)(3)
9.		For	$f(x) = \frac{1}{2}$ and $g(x) = x$	+4,	find each of the following.
10.			\mathcal{A}		
11.		10.	The domain of f	11.	The domain of <i>g</i>
12.		12.	The domain of $f + g$	13.	The domain of $f - g$
13.		14.	The domain of <i>fg</i>	15.	The domain of f / g
14.		16.	(f+g)(x)	17.	(f-g)(x)
15.		18.	(fg)(x)	19.	(f / g)(x)
16.		For e	each function, construct a	and si	implify the different quotient.
17.		20.	f(x) = -6x + 2	21.	$f(x) = 2x^2 + 6$
18.		Give	n that $f(x) = 2x + 1$, $g(x) = 2x + 1$	x) = -	$\sqrt{x+3}$, and $h(x) = x^2 - 3x + 4$, find
19.			of the following.		
20.		22.	$(f \circ g)(-2)$	23.	$(g \circ h)(6)$
21.		24.	$(h \circ f)(3)$	25.	$(f \circ f)(x)$
22.					
			$f(x) = \sqrt{x-5}$ and $g(x)$		
24.		26.	Find $(f \circ g)(x)$ and $(g \circ g)(x)$	∘ f)(:	x).
25.		27.	Find the domain of $(f \circ$	(x g)(x	$(g \circ f)(x)$.
26.					
27.					

NAME_____

TEST FORM D

28.	Find $f(x)$ and $g(x)$ such that $h(x) = (f \circ g)(x) = \frac{4}{x-6}$.	ANSWERS 28
29.	Determine whether the graph of $y = x^3 - 2x$ is symmetric with respect to the <i>x</i> -axis, the <i>y</i> -axis, and/or the origin.	29
20		30
30.	Test whether the function $f(x) = 8x - x $ is even, odd, or neither even nor odd. Show your work.	31
31.	Write an equation for a function that has the shape of $y = \sqrt{x}$, but shifted left 5 units and down 3 units.	32
32.	Write an equation for a function that has the shape of $y = \sqrt{x}$, but shifted right 2 units and up 1 unit.	33. See graph.
33.	The graph of a function $y = f(x)$ is shown below. No formula for <i>f</i> is given. Make a graph of $y = -f(x)$.	55. <u>See graph.</u>
		34
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35
34.	Find an equation of variation in which <i>y</i> varies inversely as <i>x</i> , and $y = 15$ when $x = 6$.	36
35.	Find an equation of variation in which <i>y</i> varies directly as <i>x</i> , and $y = 0.5$ when $x = 1.5$.	
36.	Find an equation of variation where <i>y</i> varies jointly as <i>x</i> and the square of <i>z</i> and inversely as <i>w</i> , and $y = 40$ when $x = 100$, $z = 0.1$, and $w = 2$.	37
37.	The surface area of a balloon varies directly as the square of its radius. The area is 78.5 cm^2 when the radius is 2.5 cm. Find the area when the radius is 3 cm.	

NAME_____

TEST FORM D

CHAPTER 2				NAME			
TES	ST FORM E			CLASSS	GCOREGRADE		
1.	Determine or	which interv	val the function is y_1	decreasing.	ANSWERS 1		
	a) (-5, -3)	b) (-3, 4)	c) (4, 1)	d) (-3,3)	2		
2.	the area of th	e blanket as a	blanket is $\frac{2}{3}$ of the function of <i>l</i> . l^2 c) $A(l) = \frac{10}{3}$				
Use 3.		$(x) = \begin{cases} 2x^2, \text{ f}\\ \sqrt{x+2}\\ x-4 , \end{cases}$	Exercises 3 and 4. For $x \le -1$, $\overline{3}$, for $-1 < x \le 6$, for $x > 6$.	d) 4	4		
4.	Find $f(5)$.		c) $\sqrt{5}$				
5.			d $g(x) = 4x + 1$, fi		5		
6.	a) $h(x) = x^2$	$x^2 - 5$ and $g(x)$ $-5 + \sqrt{x}$	c) 17 x) = \sqrt{x} , find $h(x)$ b) $h(x) = x - d$ d) $h(x) = \sqrt{x}$	- 5	6		

NAME_____

TEST FORM E

ANSWERS 7	7.	7. For $f(x) = x^2 - 5$ and $g(x) = \sqrt{x}$, find the domain of f / g . a) $(-\infty, 0) \cup (0, \infty)$ b) $[0, \infty)$ c) $(-\infty, -\sqrt{5}) \cup (-\sqrt{5}, \sqrt{5}) \cup (\sqrt{5}, \infty)$ d) $(0, \infty)$					
8	8.	Construct and simplify the a) 5 <i>h</i> b) 5	difference quotient for $f(x) = 3 + 5x$. c) $3 + 5x - 5h$ d) 3				
9	9.	Construct and simplify the $f(x) = 2x^2 - 3x + 1$. a) $4x + 2h - 3$ c) $2x + h$					
10	10.	For $f(x) = x + 4$ and $g(x)$ a) $h(x) = 2x^2 + 4$ c) $h(x) = 2x^2 + 16x + 32$	b) $h(x) = 2x^3 + 8x^2$				
11	11.	· · ·	x) = $(g \circ g)(x)$. b) $h(x) = 4x^2 - 20x + 25$ d) $h(x) = 4x - 15$				
12	12.	For $f(x) = \sqrt{x+4}$ and $g(x) = 2x^2$, find the domain of $(f \circ g)(x)$. a) $[0, \infty)$ b) $[-4, \infty)$ c) $(-\infty, \infty)$ d) $[-4, 4]$					
13	13.	y-axis? a) $f(x) = 5 - x^2$	ctions is symmetric with respect to the b) $f(x) = x$ d) $f(x) = \sqrt{x}$				
14		· ·	ctions is even? b) $y = 2x^3$ d) $y = \sqrt{x}$				

NAME

TEST FORM E

NAME

TEST FORM E

CHAPTER 2 NAME **TEST FORM F** CLASS SCORE GRADE Determine on which interval the function is increasing. 1. **ANSWERS** 5 1. 4 -5 -4 -3 -2 -1 -2 -3 -4 2. a) (-2, 4)c) (-3, 2)b) (2, 3) d) (2, 5)2. The width of a rectangular blanket is 4 less than twice the length *l*. Express the area of the blanket as a function of *l*. b) $A(l) = 2l^2 - 4$ a) $A(l) = 4l - 2l^2$ d) $A(l) = 2l^2 - 4l$ 3. _____ c) A(l) = 3l - 4Use the following function for Exercises 3 and 4. $f(x) = \begin{cases} x^2 + 1, \text{ for } x \le -3, \\ |x - 6|, \text{ for } -3 < x \le 1, \\ \sqrt{3x}, \text{ for } x > 1. \end{cases}$ 4. 3. Find f(-1). b) 0 a) 2 c) 7 d) 5 4. Find f(2). c) 1 b) $\sqrt{6}$ a) 5 d) 4 5. For $f(x) = x^2 + 4x - 5$ and g(x) = -3x + 2, find (f + g)(-1). 5. b) –5 a) –3 c) –9 d) -40 6. For f(x) = 3x - 4 and $g(x) = \sqrt{x}$, find h(x) = (fg)(x). a) $h(x) = 3x - 4 + \sqrt{x}$ b) $h(x) = \sqrt{x}(3x - 4)$ c) $h(x) = 3\sqrt{x} - 4$ d) $h(x) = \sqrt{3x - 4}$ 6.

NAME_____

TEST FORM F

ANSWERS 7	7.	For $f(x) = x^2 - 4$ and $g(x) = \sqrt{3 - x}$, find the domain of g/f . a) $(-\infty, 3)$ b) $(-\infty, 3]$ c) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ d) $(-\infty, -2) \cup (-2, 2) \cup (2, 3]$					
8	8.				t for $f(x) = -7x + 3$.		
9	9.	Construct and $f(x) = 2x^2 - a$ a) $2h^2 + h - a$	d simplify the dif x . 4 <i>xh</i>	c) $-7h$ d) $3 - 7x - 7h$ difference quotient for b) $-4x + 2h + 1$ 2x			
10	10.	c) $4x + 2h - 1$ For $f(x) = 2x^{2}$ a) $h(x) = 2x^{2}$ c) $h(x) = 2x^{3}$	x and $g(x) = x^2$	d) $4x + 2h - 1$, find $h(x) = (g$ b) $h(x) = x^{2} + d$ d) $h(x) = 4x^{2}$	$(\circ f)(x).$		
11	11.	For $g(x) = 8$ a) $h(x) = 9x$	-3x, find $h(x)-16-6x$	= $(g \circ g)(x)$. b) $h(x) = 9x^2$			
12	12.	For $f(x) = \frac{1}{4-x}$ and $g(x) = x^2$, find the domain of $(f \circ g)(x)$ a) $(-\infty, 4) \cup (4, \infty)$ b) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$ c) $(-\infty, 2) \cup (2, \infty)$ d) $(-\infty, 16) \cup (16, \infty)$		∪(-2,2)∪(2,∞)			
13	13.	Which of the a) $y = (x - 4)$ c) $y = - x - 2$	r^{2}	is symmetric with respect to the origin? b) $x = y^2$ d) $y = x - x^3$			
14	14.	Which of the a) $f(x) = 2x$ c) $f(x) = x^2$		tions is even? b) $f(x) = \sqrt{4}$ d) $f(x) = \sqrt[4]{x}$			

NAME

TEST FORM F

NAME

TEST FORM F

