TEST BANK

ALGEBRA AND TRIGONOMETRY

GRAPHS & MODELS

BITTINGER | BEECHER | ELLENBOGEN | PENNA

NAME

TEST FORM A

CLASS SCO

SCORE____GRADE____

- 1. Determine the intervals on which the function is:
 - a) increasing,
 - b) decreasing, and
 - c) constant.

2. Graph the function $f(x) = x^2 - 4$. Estimate the intervals on which the function is increasing or decreasing and estimate any relative maxima or minima.

-5 -4 -3 -2 -1

-2 -3 1 2 3 4 5

- 3. Use a graphing calculator to find the intervals on which the function $f(x) = x^3 4x$ is increasing or decreasing and find any relative maxima or minima.
- 4. The length of a rectangular parking lot is 40 ft more than the width. If the parking lot is *w* feet wide, express its area as a function of the width.
- 5. Graph

$$f(x) = \begin{cases} -2x, \text{ for } x < -2, \\ -x^2, \text{ for } -2 \le x \le 2, \\ 5, \text{ for } x > 2. \end{cases}$$

ANSWERS 1. a) b) _____ c) 2. See graph. 3. 4. _____ 5. See graph. 6.

NAME_____

TEST FORM A

ANSWERS	Given that $f(x) = x^2 - 3x + 1$ and $g(x) = \sqrt{4 - x}$, find each of the following if it exists.
7	7. $(f+g)(3)$ 8. $(f/g)(4)$
8 9.	For $f(x) = 2x + 1$ and $g(x) = \sqrt{x-3}$, find each of the following.
10	9. The domain of f 10. The domain of g
10	11. The domain of $f + g$ 12. The domain of f/g
11	13. $(f-g)(x)$ 14. $(fg)(x)$
12	For each function, construct and simplify the different quotient.
13	15. $f(x) = \frac{2}{2}x - 8$ 16. $f(x) = 6 - x^2$
14	3
15	Given that $f(x) = x^2 + 2$ and $g(x) = 2x - 5$, find each of the following.
16	17. $(f \circ g)(1)$ 18. $(g \circ f)(-3)$
17	For $f(x) = \sqrt{x+2}$ and $g(x) = x-8$:
18	19. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
19	20. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.
20	21. Find $f(x)$ and $g(x)$ such that $h(x) = (f \circ g)(x) = \sqrt[3]{3x+1}$.
21	22. Determine whether the graph of $y = \frac{3x}{2}$ is symmetric with
22	$x^2 - 4$ respect to the x-axis, the y-axis, and/or the origin.
23	23. Test algebraically whether the function $f(x) = 5x - x^3$ is even, odd, or neither even nor odd. Show your work.

NAME

TEST FORM A

- 24. Write an equation for a function that has the shape of $y = x^2$, but shifted right 5 units and down 3 units.
- 25. The graph of a function y = f(x) is shown below. No formula for *f* is given. Make a graph of y = f(-x).

- 26. Find an equation of variation in which y varies inversely as x, and y = 18 when x = 5.
- 27. Find an equation of variation in which y varies directly as x, and y = 0.8 when x = 5.
- 28. Find an equation of variation where y varies jointly as x and z and inversely as the square of w, and y = 20 when x = 0.5, z = 4, and w = 5.
- 29. The volume of a 6-in. tall cone varies directly as the square of the radius. The volume is 14.1 in³ when the radius is 1.5 in. Find the volume when the radius is 3 in.

ANSWERS 24
25. <u>See graph.</u>
26
27
28
29

NAME_____

TEST FORM A

NAME

CLASS

TEST FORM B 1. Determine the intervals on which the function is: a) increasing,

- b) decreasing, and
- c) constant.

3 2

-2 -3

-5 -4 -3 -2 -1

c) 2. See graph. 1 2 3 4

SCORE GRADE

1. a)

ANSWERS

<u>b)</u>

- 2. Graph the function f(x) = 5 |x|. Estimate the intervals on which the function is increasing or decreasing and estimate any relative maxima or minima.
- 3. Use a graphing calculator to find the intervals on which the function $f(x) = x^3 - 2x^2$ is increasing or decreasing and find any relative maxima or minima.
- The length of a rectangular picture frame is 10.5 in. greater than 4. the width. If the picture frame is w feet wide, express its area as a function of the width.
- 5. Graph $f(x) = \begin{cases} \sqrt{x+5}, \text{ for } x < -1, \\ x^2, \text{ for } -1 \le x \le 2, \\ -|x|, \text{ for } x > 2. \end{cases}$ 2 -5 -4 -3 -2 -1 1 2 3 4 5 -2 -3

4. 5. See graph. 6.

3.

6. For the function in Exercise 5, find f(-4), $f(\frac{1}{2})$, and f(6).

NAME_____

TEST FORM B

ANSWERS	Given that $f(x) = x^2 + 2x + 4$ and $g(x) = \sqrt{9-x}$, find each of the
7	following if it exists.
8.	7. $(f+g)(5)$ 8. $(f/g)(0)$
0	For $f(x) = x^2$ and $g(x) = \sqrt{2x}$, find each of the following.
9	9. The domain of f 10. The domain of g
10	11. The domain of $f + g$ 12. The domain of f/g
11	13. $(f-g)(x)$ 14. $(fg)(x)$
12	For each function, construct and simplify the different quotient.
13	15. $f(x) = 3x - 2$ 16. $f(x) = 5x^2 + 2$
14	Given that $f(x) = 4 - x^2$ and $g(x) = \frac{1}{2}x + 2$, find each of the
15	following.
16	17. $(f \circ g)(2)$ 18. $(g \circ f)(-3)$
17	For $f(x) = 3x - 2$ and $g(x) = \sqrt{x}$:
18	19. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
19	20. Find the domain of $(f \circ g)(x)$ and $(g \circ f)(x)$.
20	21. Find $f(x)$ and $g(x)$ such that $h(x) = (f \circ g)(x) = \frac{5}{2x+1}$.
21. 22.	22. Determine whether the graph of $y = x^4 - 2x^2$ is symmetric with respect to the <i>x</i> -axis, the <i>y</i> -axis, and/or the origin.
23	23. Test algebraically whether the function $f(x) = \frac{x^2}{x-1}$ is even, odd, or neither even nor odd. Show your work.

NAME

TEST FORM B

- 24. Write an equation for a function that has the shape of y = |x|, but shifted right 4 units and up 2 units.
- 25. The graph of a function y = f(x) is shown below. No formula for *f* is given. Make a graph of y = f(x-1).

- 26. Find an equation of variation in which y varies inversely as x, and y = 24 when x = 3.
- 27. Find an equation of variation in which y varies directly as x, and y = 14 when x = 6.
- 28. Find an equation of variation where y varies jointly as the square of x and the square of z and inversely as w, and y = 50 when x = 2, z = 3, and w = 10.
- 29. The current *I* in an electrical conductor varies inversely as the resistance *R* of the conductor. Suppose *I* is 0.2 ampere when the resistance is 200 ohms. Find the current when the resistance is 250 ohms.

ANSWERS 24
25. <u>See graph.</u>
26
27
28
29

NAME_____

TEST FORM B

NAME

TEST FORM C

CLASS SCORE

SCORE____GRADE____

ANSWERS

b)

2. See graph.

3.

1. a)

c)

- 1. Determine the intervals on which the function is:
 - a) increasing,
 - b) decreasing, and
 - c) constant.

2. Graph the function $f(x) = 3 - x^2$. Estimate the intervals on which the function is increasing or decreasing and estimate any relative maxima or minima.

- 3. Use a graphing calculator to find the intervals on which the function $f(x) = x^3 x$ is increasing or decreasing and find any relative maxima or minima.
- 4. The length of a rectangular table cloth is 2 ft more than the width. If the table cloth is *w* feet wide, express the perimeter as a function of the width.
- 5. Graph

$$f(x) = \begin{cases} |x|, \text{ for } x < -2, \\ x^2, \text{ for } -2 \le x \le 1 \\ -3x, \text{ for } x > 1. \end{cases}$$

4. ______ 5. <u>See graph. ____</u> 6. _____

6. For the function in Exercise 5, find f(-5), $f\left(\frac{1}{2}\right)$, and f(4).

NAME_____

TEST FORM C

ANSWERS	Given that $f(x) = x^2 + 2x - following if it exists.$	8 and $g(x) = \sqrt{x+4}$, find each of the
7 8.	7. $(f+g)(-3)$	8. $(g / f)(-4)$
9	For $f(x) = -2x + 4$ and $g(x)$	$f(x) = \frac{1}{x}$, find each of the following.
10	9. The domain of f	10. The domain of g
11	11. The domain of $f + g$	12. The domain of g/f
12	13. $(f-g)(x)$	14. $(fg)(x)$
13.	For each function, construct	and simplify the different quotient.
14	15. $f(x) = 4 - \frac{1}{2}x$	$16. f(x) = x^3 - x$
15	Given that $f(x) = (x-1)^2$ a following.	nd $g(x) = 2x + 3$, find each of the
16 17	17. $(f \circ g)(-1)$	18. $(g \circ f)(4)$
18	For $f(x) = x^2$ and $g(x) = x$ 19. Find $(f \circ g)(x)$ and (g)	(x-3): (x-3)(x).
19	20. Find the domain of $(f$	$(g \circ g)(x)$ and $(g \circ f)(x)$.
20	21. Find $f(x)$ and $g(x)$ su	ch that $h(x) = (f \circ g)(x) = \sqrt{x^2 + 5}$.
22	22. Determine whether the respect to the <i>x</i> -axis, the	a graph of $y = 3x^6 - 2x^4$ is symmetric with the y-axis, and/or the origin.
23	23. Test algebraically whe odd, or neither even no	ther the function $f(x) = -3x + 1$ is even, or odd. Show your work.

NAME

TEST FORM C

- 24. Write an equation for a function that has the shape of $y = x^3$, but shifted left 4 units and up 6 units.
- 25. The graph of a function y = f(x) is shown below. No formula for *f* is given. Make a graph of y = f(x-2).

- 26. Find an equation of variation in which *y* varies inversely as *x*, and y = 0.6 when x = 2.
- 27. Find an equation of variation in which y varies directly as x, and y = 1.5 when x = 0.3.
- 28. Find an equation of variation where y varies jointly as x and z and inversely as the square root of w, and y = 20 when x = 5, z = 2, and w = 25.
- 29. The intensity *I* of a light from a light bulb varies inversely as the square of the distance *d* from the bulb. Suppose *I* is 60 W/m^2 (watts per square meter) when the distance is 5 m. Find the intensity at 20 m.

24.	ANSWERS
25.	See graph.
26.	
27.	
28.	
29.	

NAME____

TEST FORM C

31. If (-6, 3) is a point in the graph of y = f(x), what point do you know is on the graph of y = f(-3x)?

NAME_

SCORE GRADE **TEST FORM D** CLASS 1. Determine the intervals **ANSWERS** on which the function is: 1. a) a) increasing, b) _____ b) decreasing, and c) c) constant. 2 2. Graph the function f(x) = |x| + 2. 2. See graph. Estimate the intervals on which the function is increasing or 3 2 decreasing and estimate any relative maxima or minima. -5 -4 -3 -2 -1 2 3 -2 -3 3. 3. Use a graphing calculator to find the intervals on which the function $f(x) = x^3 + 3x^2$ is increasing or decreasing and find any relative maxima or minima. 4. The length of a rectangular board game is $2\frac{1}{2}$ times the width. If 4. the board game is w cm wide, express the perimeter as a function of the width. 5. Graph $f(x) = \begin{cases} x+2, \text{ for } x < -2, \\ x^2 - 3, \text{ for } -2 \le x \le 2, \\ \sqrt{x}, \text{ for } x > 2. \end{cases}$ 3 5. See graph. 2 -5 -4 -3 -2 -1 -2 -3 -5 6.

6. For the function in Exercise 5, find f(-3), $f\left(\frac{2}{3}\right)$, and f(4).

NAME_____

TEST FORM D

ANSWERS	Given that $f(x) = x^2 - 2x + 1$ and $g(x) = \sqrt{x+6}$, find each of the				
7	follo	owing if it exists.			
8	7.	(f+g)(-1)	8.	(g / f)(3)	
9	For	$f(x) = \frac{1}{x^2}$ and $g(x) = x$	+4,	find each of the following.	
10	9.	The domain of f	10.	The domain of <i>g</i>	
11	11.	The domain of $f + g$	12.	The domain of f/g	
12	13.	(f-g)(x)	14.	(fg)(x)	
13.	For e	each function, construct a	and s	implify the different quotient.	
14.	15.	f(x) = -6x + 2	16.	$f(x) = 2x^2 + 6$	
15	Give follo	en that $f(x) = 2x + 1$ and owing.	g(x	$=\sqrt{x+3}$, find each of the	
16	17.	$(f \circ g)(-2)$	18.	$(g \circ f)(6)$	
17	For	$f(x) = \sqrt{x-5}$ and $g(x)$	= x +	-2:	
18	19.	Find $(f \circ g)(x)$ and $(g$	∘ f)(.	x).	
19	20.	Find the domain of $(f \circ$	x)(x	(c) and $(g \circ f)(x)$.	
20	21.	Find $f(x)$ and $g(x)$ su	ch th	at $h(x) = (f \circ g)(x) = \frac{4}{x-6}$.	
21	22.	Determine whether the	granl	h of $y = x^3 - 2x$ is symmetric with	
22		respect to the <i>x</i> -axis, the	e y-az	kis, and/or the origin.	
23	23.	Test algebraically wheth	her tł	the function $f(x) = 8x - x $ is even,	
		odd, or neither even nor	r odd	. Show your work.	

NAME

TEST FORM D

- 24. Write an equation for a function that has the shape of $y = \sqrt{x}$, but shifted left 5 units and down 3 units.
- 25. The graph of a function y = f(x) is shown below. No formula for *f* is given. Make a graph of y = -f(x).

26. Find an equation of variation in which y varies inversely as x, and y = 15 when x = 6.

- 27. Find an equation of variation in which y varies directly as x, and y = 0.5 when x = 1.5.
- 28. Find an equation of variation where y varies jointly as x and the square of z and inversely as w, and y = 40 when x = 100, z = 0.1, and w = 2.
- 29. The surface area of a balloon varies directly as the square of its radius. The area is 78.5 cm^2 when the radius is 2.5 cm. Find the area when the radius is 3 cm.

24.	ANSWERS
25.	See graph.
26.	
27.	
28.	
29.	

NAME___

TEST FORM D

NAME

CHAITER 2							
TEST FORM E				CLASSSCOREGRADE			
1.	Determine of	h which interval	s the function is y z 1 1 2 3 4 3 2 1 1 2 3 4 5 4 3 2 1 1 2 3 4 5 4 3 2 1 1 2 3 4 5 x x x x x x x x	decreasing.	ANSWERS 1 2	S	
	a) $(-5, -3)$	b) (-3, 4)	c) (4,1)	d) (-3,3)			
2.	Use a graphic of $f(x) = 2x$ a) Relative m b) Relative m c) Relative m d) There are The width of	ng calculator to $x^3 + 3x^2 - 12x$. haximum 20 at x^3 haximum 20	find any relative x = -2; relative n x = -2; relative n x = -2; relative n ema. lanket is $\frac{2}{2}$ of th	maxima or mini ninimum 1 at $x =$ ninimum -7 at $x =$ ninimum 0 at $x =$ ne length <i>l</i> . Express	ima = -7 = 1 = 0 3 ress		
	the area of th a) $A(l) = \frac{2}{3}l^{2}$	be blanket as a for $A(l) = \frac{3}{2}l^2$	unction of <i>l</i> . c) $A(l) = \frac{10}{3}$	<i>d</i>) $A(l) = \frac{5}{3}l^{2}$	4		
Use	the following	function for Exercises $f(x) = \begin{cases} 2x^2, \text{ for } \\ \sqrt{x+3}, \\ x-4 , \text{ for } \end{cases}$	ercises 4 and 5. $x \le -1$, for $-1 < x \le 6$, or $x > 6$.		5		
4.	Find $f(-1)$.			1) 4	5		
F	a) -2	b) √2	c) 2	a) 4			
Э.	Find $f(5)$. a) 1	b) 50	c) $\sqrt{5}$	d) $\sqrt{8}$			
6.	For $f(x) = x$	$x^2 - 3x - 2$ and	g(x) = 4x + 1, fi	nd $(f + g)(2)$.	6		
	a) –36	b) 5	c) 17	d) 4			

NAME_____

TEST FORM E

ANSWERS	7.	For $f(x) = x^2 - 5$ and $g(x)$	$h(x) = \sqrt{x}$, find $h(x) = (fg)(x)$.				
7		a) $h(x) = x^2 - 5 + \sqrt{x}$	b) $h(x) = x - 5$				
		c) $h(x) = x^2 \sqrt{x} - 5\sqrt{x}$	d) $h(x) = \sqrt{x^2 - 5}$				
	8.	For $f(x) = x^2 - 5$ and $g(x)$	$f(x) = \sqrt{x}$, find the domain of f/g .				
8		a) $(-\infty, 0) \cup (0, \infty)$					
		b) $[0, \infty)$					
		c) $(-\infty, -\sqrt{5}) \cup (-\sqrt{5}, \sqrt{5})$ d) $(0, \infty)$	$\cup (\sqrt{5}, \infty)$				
9	9.	Construct and simplify the difference quotient for $f(x) = 3 + 5x$.					
		a) 5 <i>h</i> b) 5	c) $3 + 5x - 5h$ d) 3				
	10.	Construct and simplify the difference quotient for					
10		$f(x) = 2x^2 - 3x + 1.$	2				
		a) $4x + 2h - 3$	b) $4h^2 - 3h$				
		c) $2x + h$	d) $4xh + 2h^2 - 3h$				
11	11.	For $f(x) = x + 4$ and $g(x)$	$= 2x^2, \text{ find } h(x) = (g \circ f)(x).$				
		a) $h(x) = 2x^2 + 4$	b) $h(x) = 2x^3 + 8x^2$				
		c) $h(x) = 2x^2 + 16x + 32$	d) $h(x) = 2x^2 + x + 4$				
12	12.	For $f(x) = \sqrt{x+4}$ and $g(x) = \sqrt{x+4}$	x) = 2 x^2 , find the domain of				
12.		$(f \circ g)(x).$					
		a) $[0, \infty)$ b) $[-4, \infty)$	c) $(-\infty, \infty)$ d) $[-4, 4]$				
13	13.	Which of the following fun y-axis?	actions is symmetric with respect to the				
13.		a) $f(x) = 5 - x^2$	b) $f(x) = x$				
		c) $f(x) = 5x^3$	d) $f(x) = \sqrt{x}$				
14	14.	Which of the following fun	actions is even?				
14		a) $y = 16 - x^2$	b) $y = 2x^3$				
		c) $y = 4x - 6$	d) $y = \sqrt{x}$				
	l						

NAME

TEST FORM E

NAME

TEST FORM E

NAME_

SCORE GRADE **TEST FORM F** CLASS 1. Determine on which intervals the function is increasing. **ANSWERS** 1. 4 -5 -4 -3 -2 -1 -2 -3 2. a) (-2, 4) b) (2, 3)c) (-3, 2)d) (2, 5)2. Use a graphing calculator to find any relative maxima or minima of $f(x) = x^3 - 6x^2$. a) Relative maximum 0 at x = 0; relative minimum 4 at x = -323. _____ b) Relative maximum 0 at x = 0; relative minimum -32 at x = 4c) Relative maximum 32 at x = 4; relative minimum 0 at x = 0d) There are no relative extrema. 3. The width of a rectangular blanket is 4 less than twice of the length *l*. Express the area of the blanket as a function of *l*. b) $A(l) = 2l^2 - 4$ a) $A(l) = 4l - 2l^2$ d) $A(l) = 2l^2 - 4l$ c) A(l) = 3l - 44. Use the following function for Exercises 4 and 5. $f(x) = \begin{cases} x^2 + 1, \text{ for } x \le -3, \\ |x - 6|, \text{ for } -3 < x \le 1, \\ \sqrt{3x}, \text{ for } x > 1. \end{cases}$ 5. 4. Find f(-1). a) 2 b) 0 c) 7 d) 5 5. Find f(2). b) $\sqrt{6}$ a) 5 c) 1 d) 4 6. For $f(x) = x^2 + 4x - 5$ and g(x) = -3x + 2, find (f + g)(-1). 6. a) -3 b) -5 c) -9 d) -40

NAME_____

TEST FORM F

ANSWERS 7	7.	For $f(x) =$ a) $h(x) = 3$. c) $h(x) = 3$.	3x-4 and $g(x)x-4+\sqrt{x}\sqrt{x}-4$	$= \sqrt{x} \text{, find } h(x) =$ b) $h(x) = \sqrt{x}(x)$ d) $h(x) = \sqrt{3x}(x)$	$= (fg)(x).$ $\frac{(3x-4)}{x-4}$
8	8.	For $f(x) =$ a) $(-\infty, 3)$ b) $(-\infty, 3]$ c) $(-\infty, -2)$ d) $(-\infty, -2)$	$(x^2 - 4 \text{ and } g(x))$ $(x^2) \cup (-2, 2) \cup (2, 2) \cup (-2, 2) \cup (2, 2))$	$\infty = \sqrt{3 - x}$, find the ∞	e domain of <i>g/f</i> .
9	9.	Construct a a) 3	nd simplify the d b) –7	lifference quotien c) $-7h$	t for $f(x) = -7x + 3$. d) $3 - 7x - 7h$
10	10.	Construct a $f(x) = 2x^2$ a) $2h^2 + h^2$ c) $4x + 2h^2$	and simplify the d x - x. -4xh -1	lifference quotien b) $-4x + 2h - 4h - 1h$ d) $4x + 2h - 1h$	t for +1 $-\frac{2x}{h}$
11	11.	For $f(x) =$ a) $h(x) = 2$ c) $h(x) = 2$	$2x \text{ and } g(x) = x$ x^{2} x^{3}	h^{2} , find $h(x) = (g$ b) $h(x) = x^{2} - d$ d) $h(x) = 4x^{2}$	(f)(x). + 2x
12	12.	For $f(x) =$ a) $(-\infty, 4)$ c) $(-\infty, 2)$	$\frac{1}{4-x} \text{ and } g(x)$ $\cup (4, \infty)$ $\cup (2, \infty)$	$= x^{2}, \text{ find the dom}$ b) $(-\infty, -2)(0)$ d) $(-\infty, 16)(-\infty)$	main of $(f \circ g)(x)$. $\cup (-2, 2) \cup (2, \infty)$ $\cup (16, \infty)$
13	13.	Which of the asymptotic product product of the asymptotic product of	he following is sy 4) ² - 2	with respect to the definition of the definitio	pect to the origin?
14	14.	Which of the asymptotic function $f(x) = 2$ c) $f(x) = x$	the following function $2x + 8$ $x^2 + x$	ctions is even? b) $f(x) = \sqrt{4}$ d) $f(x) = \sqrt[4]{x}$	$\overline{-x^2}$

NAME_

TEST FORM F

NAME_____

TEST FORM F

