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Chapter 1

Introduction

1.1. The mean annual rainfall in Boston is approximately 1050 mm , and the mean annual evapo-
transpiration is in the range of 380 – 630 mm (USGS). On the basis of rainfall, this indicates
a subhumid climate. The mean annual rainfall in Santa Fe is approximately 360 mm and
the mean annual evapotranspiration is < 380 mm . On the basis of rainfall, this indicates
an arid climate.
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Chapter 2

Flow in Closed Conduits

2.1. D1 = 0.1 m, D2 = 0.15 m, V1 = 2 m/s, and

A1 =
π

4
D2

1 =
π

4
(0.1)2 = 0.007854 m2

A2 =
π

4
D2

2 =
π

4
(0.15)2 = 0.01767 m2

Volumetric flow rate, Q, is given by

Q = A1V1 = (0.007854)(2) = 0.0157 m3/s

According to continuity,
A1V1 = A2V2 = Q

Therefore
V2 =

Q

A2
=

0.0157
0.01767

= 0.889 m/s

At 20◦C, the density of water, ρ, is 998 kg/m3, and the mass flow rate, ṁ, is given by

ṁ = ρQ = (998)(0.0157) = 15.7 kg/s

2.2. From the given data: D1 = 200 mm, D2 = 100 mm, V1 = 1 m/s, and

A1 =
π

4
D2

1 =
π

4
(0.2)2 = 0.0314 m2

A2 =
π

4
D2

2 =
π

4
(0.1)2 = 0.00785 m2

The flowrate, Q1, in the 200-mm pipe is given by

Q1 = A1V1 = (0.0314)(1) = 0.0314 m3/s

and hence the flowrate, Q2, in the 100-mm pipe is

Q2 =
Q1

2
=

0.0314
2

= 0.0157 m3/s

The average velocity, V2, in the 100-mm pipe is

V2 =
Q2

A2
=

0.0157
0.00785

= 2 m/s
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2.3. The velocity distribution in the pipe is

v(r) = Vo

[
1−

(
r

R

)2
]

(1)

and the average velocity, V̄ , is defined as

V̄ =
1
A

∫

A
V dA (2)

where
A = πR2 and dA = 2πrdr (3)

Combining Equations 1 to 3 yields

V̄ =
1

πR2

∫ R

0
Vo

[
1−

(
r

R

)2
]

2πrdr

=
2Vo

R2

[∫ R

0
rdr −

∫ R

0

r3

R2
dr

]

=
2Vo

R2

[
R2

2
− R4

4R2

]

=
2Vo

R2

R2

4

=
Vo

2

The flowrate, Q, is therefore given by

Q = AV̄ =
πR2Vo

2

2.4.

β =
1

AV̄ 2

∫

A
v2 dA

=
4

πR2V 2
o

∫ R

0
V 2

o

[
1− 2r2

R2
+

r4

R4

]
2πrdr

=
8

R2

[∫ R

0
rdr −

∫ R

0

2r3

R2
dr +

∫ R

0

r5

R4
dr

]

=
8

R2

[
R2

2
− R4

2R2
+

R6

6R4

]

=
4
3

4
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2.5. D = 0.2 m, Q = 0.06 m3/s, L = 100 m, p1 = 500 kPa, p2 = 400 kPa, γ = 9.79 kN/m3.

R =
D

4
=

0.2
4

= 0.05 m

∆h =
p1

γ
− p2

γ

=
500− 400

9.79
= 10.2 m

τo =
γR∆h

L
=

(9.79× 103)(0.05)(10.2)
100

= 49.9 N/m2

A =
πD2

4
=

π(0.2)2

4
= 0.0314 m2

V =
Q

A
=

0.06
0.0314

= 1.91 m/s

f =
8τo

ρV 2
=

8(49.9)
(998)(1.91)2

= 0.11

2.6. T = 20◦C, V = 2 m/s, D = 0.25 m, horizontal pipe, ductile iron. For ductile iron pipe, ks =
0.26 mm, and

ks

D
=

0.26
250

= 0.00104

Re =
ρV D

µ
=

(998.2)(2)(0.25)
(1.002× 10−3)

= 4.981× 105

From the Moody diagram:
f = 0.0202 (pipe is smooth)

Using the Colebrook equation,

1√
f

= −2 log
(

ks/D

3.7
+

2.51
Re
√

f

)

Substituting for ks/D and Re gives

1√
f

= −2 log
(

0.00104
3.7

+
2.51

4.981× 105
√

f

)

By trial and error leads to
f = 0.0204

Using the Jain equation,

1√
f

= −2 log
[
ks/D

3.7
+

5.74
Re0.9

]

= −2 log
[
0.00104

3.7
+

5.74
(4.981× 105)0.9

]

which leads to
f = 0.0205

5
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The head loss, hf , over 100 m of pipeline is given by

hf = f
L

D

V 2

2g
= 0.0204

100
0.25

(2)2

2(9.81)
= 1.66 m

Therefore the pressure drop, ∆p, is given by

∆p = γhf = (9.79)(1.66) = 16.3 kPa

If the pipe is 1 m lower at the downstream end, f would not change, but the pressure drop,
∆p, would then be given by

∆p = γ(hf − 1.0) = 9.79(1.66− 1) = 6.46 kPa

2.7. The Colebrook equation is given by

1√
f

= −2 log
(

k/D

3.7
+

2.51
Re
√

f

)

Inverting and squaring this equation gives

f =
0.25

{log[(ks/D)/3.7 + 2.51/(Re
√

f)]}2

This equation is “slightly more convenient” than the Colebrook formula since it is quasi-
explicit in f , whereas the Colebrook formula gives 1/

√
f .

2.8. The Colebrook equation is preferable since it provides greater accuracy than interpolating
from the Moody diagram.

2.9. D = 0.5 m, p1 = 600 kPa, Q = 0.50 m3/s, z1 = 120 m, z2 = 100 m, γ = 9.79 kN/m3, L =
1000 m, ks (ductile iron) = 0.26 mm,

A =
π

4
D2 =

π

4
(0.5)2 = 0.1963 m2

V =
Q

A
=

0.50
0.1963

= 2.55 m/s

Using the Colebrook equation,

1√
f

= −2 log
(

ks/D

3.7
+

2.51
Re
√

f

)

where ks/D = 0.26/500 = 0.00052, and at 20◦C

Re =
ρV D

µ
=

(998)(2.55)(0.5)
1.00× 10−3

= 1.27× 106

Substituting ks/D and Re into the Colebrook equation gives

1√
f

= −2 log
(

0.00052
3.7

+
2.51

1.27× 106
√

f

)
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which leads to
f = 0.0172

Applying the energy equation

p1

γ
+

V 2
1

2g
+ z1 =

p2

γ
+

V 2
2

2g
+ z2 + hf

Since V1 = V2, and hf is given by the Darcy-Weisbach equation, then the energy equation
can be written as

p1

γ
+ z1 =

p2

γ
+ z2 + f

L

D

V 2

2g

Substituting known values leads to

600
9.79

+ 120 =
p2

9.79
+ 100 + 0.0172

1000
0.5

(2.55)2

2(9.81)

which gives
p2 = 684 kPa

If p is the (static) pressure at the top of a 30 m high building, then

p = p2 − 30γ
= 684− 30(9.79)
= 390 kPa

This (static) water pressure is adequate for service.

2.10. The head loss, hf , in the pipe is estimated by

hf =
(

pmain

γ
+ zmain

)
−

(
poutlet

γ
+ zoutlet

)

where pmain = 400 kPa, zmain = 0 m, poutlet = 0 kPa, and zoutlet = 2.0 m. Therefore,

hf =
(

400
9.79

+ 0
)
− (0 + 2.0) = 38.9 m

Also, since D = 25 mm, L = 20 m, ks = 0.15 mm (from Table 2.1), ν = 1.00 × 10−6 m2/s
(at 20◦C), the Swamee-Jain equation (Equation 2.43) yields,

Q = −0.965D2

√
gDhf

L
ln


ks/D

3.7
+

1.774ν

D
√

gDhf/L




= −0.965(0.025)2
√

(9.81)(0.025)(38.9)
20

ln

[
0.15/25

3.7
+

1.774(1.00× 10−6)
(0.025)

√
(9.81)(0.025)(38.9)/20

]

= 0.00265 m3/s = 2.65 L/s

The faucet can therefore be expected to deliver 2.65 L/s when fully open.
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2.11. Step 1: Assume f = 0.020

Step 2: Since Q = 0.3 m3/s, L = 40 m, and hf = 45 m, then

D = 5

√√√√
[

8LQ2

hfgπ2

]
f = 5

√[
8(40)(0.3)2

(45)(9.81)π2

]
(0.020) = 0.168 m

Step 3: Since ν = 1.00 × 10−6 m2/s (at 20◦C), then

Re =
[
4Q

πν

]
1
D

=
[

4(0.3)
π(1.00× 10−6)

]
1

0.168
= 2.27× 106

Step 4: Since ks = 0.15 mm (from Table 2.1), then

ks

D
=

1.5× 10−4

0.168
= 0.000893

Step 5: Using the Colebrook equation (Equation 2.35) gives

1√
f

= −2 log
(

ks/D

3.7
+

2.51
Re
√

f

)
= −2 log

(
0.000893

3.7
+

2.51
2.27× 106

√
f

)

which leads to
f = 0.0192

Step 6: f = 0.0192 differs from the assumed f (= 0.020), so repeat the procedure with f =
0.0192.

Step 2: For f = 0.0192, D = 0.166 m

Step 3: For D = 0.166, Re = 2.30 × 106

Step 4: For D = 0.166, ks/D = 0.000904

Step 5: f = 0.0193

Step 6: f = 0.0193 differs from the assumed f (= 0.0192), so repeat the procedure with f =
0.0193.

Step 2: For f = 0.0193, D = 0.166 m

Step 3: For D = 0.166, Re = 2.30 × 106

Step 4: For D = 0.166, ks/D = 0.000904

Step 5: f = 0.0193

Step 6: This is the same value of f as originally assumed. Therefore, f can be taken as 0.0193,
and D = 166 mm .

8
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2.12. Since ks = 0.15 mm, L = 40 m, Q = 0.3 m3/s, hf = 45 m, ν = 1.00 × 10−6 m2/s, the
Swamee-Jain equation gives

D = 0.66


k1.25

s

(
LQ2

ghf

)4.75

+ νQ9.4

(
L

ghf

)5.2



0.04

= 0.66



(0.00015)1.25

[
(40)(0.3)2

(9.81)(45)

]4.75

+ (1.00× 10−6)(0.3)9.4
[

40
(9.81)(45)

]5.2




0.04

= 0.171 m = 171 mm

The calculated pipe diameter (171 mm) is about 3% higher than calculated by the Colebrook
equation (166 mm).

2.13. The kinetic energy correction factor, α, is defined by
∫

A
ρ
v3

2
dA = αρ

V 3

2
A

or

α =
∫
A v3dA

V 3A
(1)

Using the velocity distribution in Problem 2.3 gives
∫

A
v3dA =

∫ R

0
V 3

o

[
1−

(
r

R

)2
]3

2πr dr

= 2πV 3
o

∫ R

0

[
1− 3

(
r

R

)2

+ 3
(

r

R

)4

−
(

r

R

)6
]

r dr

= 2πV 3
o

∫ R

0

[
r − 3r3

R2
+

3r5

R4
− r7

R6

]
dr

= 2πV 3
o

[
r2

2
− 3r4

4R2
+

r6

2R4
− r8

8R6

]R

0

= 2πR2V 3
o

[
1
2
− 3

4
+

1
2
− 1

8

]

=
πR2V 3

o

4
(2)

The average velocity, V , was calculated in Problem 2.3 as

V =
Vo

2
hence

V 3A =
(

Vo

2

)3

πR2 =
πR2V 3

o

8
(3)

Combining Equations 1 to 3 gives

α =
πR2V 3

o /4
πR2V 3

o /8
= 2

9
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2.14. The kinetic energy correction factor, α, is defined by

α =
∫
A v3dA

V 3A
(1)

Using the given velocity distribution gives

∫

A
v3dA =

∫ R

0
V 3

o

(
1− r

R

)3/7

2πr dr

= 2πV 3
o

∫ R

0

(
1− r

R

)3/7

r dr (2)

To facilitate integration, let
x = 1− r

R
(3)

which gives

r = R(1− x) (4)
dr = −R dx (5)

Combining Equations 2 to 5 gives
∫

A
v3dA = 2πV 3

o

∫ 1

0
x3/7R(1− x)(−R)dx

= 2πR2V 3
o

∫ 1

0
x3/7(1− x)dx = 2πR2V 3

o

∫ 1

0
(x3/7 − x10/7)dx

= 2πR2V 3
o

[
7
10

x10/7 − 7
17

x17/7
]1

0

= 0.576πR2V 3
o (6)

The average velocity, V , is given by (using the same substitution as above)

V =
1
A

∫

A
v dA

=
1

πR2

∫ R

0
Vo

(
1− r

R

)1/7

2πr dr =
2Vo

R2

∫ 0

1
x1/7R(1− x)(−R)dx

= 2Vo

∫ 1

0
(x1/7 − x8/7)dx = 2Vo

[
7
8
x8/7 − 7

15
x15/7

]1

0

= 0.817Vo (7)

Using this result,
V 3A = (0.817Vo)3πR2 = 0.545πR2V 3

o (8)

Combining Equations 1, 6, and 8 gives

α =
0.576πR2V 3

o

0.545πR2V 3
o

= 1.06

10
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The momentum correction factor, β, is defined by

β =
∫
A v2dA

AV 2
(9)

In this case,
AV 2 = πR2(0.817Vo)2 = 0.667πR2V 2

o (10)

and
∫

A
v2dA =

∫ R

0
V 2

o

(
1− r

R

)2/7

2πr dr

= 2πV 2
o

∫ 0

1
x2/7R(1− x)(−R)dx = 2πR2V 2

o

∫ 1

0
(x2/7 − x9/7)dx

= 2πR2V 2
o

[
7
9
x9/7 − 7

16
x16/7

]1

0
= 0.681πR2V 2

o (11)

Combining Equations 9 to 11 gives

β =
0.681πR2V 2

o

0.667πR2V 2
o

= 1.02

2.15. The kinetic energy correction factor, α, is defined by

α =
∫
A v3dA

V 3A
(1)

Using the velocity distribution given by Equation 2.75 gives
∫

A
v3dA =

∫ R

0
V 3

o

(
1− r

R

)3/n

2πr dr

= 2πV 3
o

∫ R

0

(
1− r

R

)3/n

r dr (2)

Let
x = 1− r

R
(3)

which gives

r = R(1− x) (4)
dr = −R dx (5)

Combining Equations 2 to 5 gives
∫

A
v3dA = 2πV 3

o

∫ 1

0
x3/nR(1− x)(−R)dx

= 2πR2V 3
o

∫ 1

0
x3/n(1− x)dx = 2πR2V 3

o

∫ 1

0
(x3/n − x3+n/n)dx

= 2πR2V 3
o

[
n

3 + n
x3+n/n − n

3 + 2n
x3+2n/n

]1

0

=
2n2

(3 + n)(3 + 2n)
πR2V 3

o (6)

11
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The average velocity, V , is given by

V =
1
A

∫

A
v dA

=
1

πR2

∫ R

0
Vo

(
1− r

R

)1/n

2πr dr =
2Vo

R2

∫ 0

1
x1/nR(1− x)(−R)dx

= 2Vo

∫ 1

0
(x1/n − x1+n/n)dx = 2Vo

[
n

1 + n
x1+n/n − n

1 + 2n
x1+2n/n

]1

0

=

[
2n2

(1 + n)(1 + 2n)

]
Vo (7)

Using this result,

V 3A =

[
2n2

(1 + n)(1 + 2n)

]3

V 3
o πR2 =

8n6

(1 + n)3(1 + 2n)3
πR2V 3

o (8)

Combining Equations 1, 6, and 8 gives

α =
2n2

(3+n)(3+2n)πR2V 3
o

8n6

(1+n)3(1+2n)3
πR2V 3

o

=
(1 + n)3(1 + 2n)3

4n4(3 + n)(3 + 2n)

Putting n = 7 gives α = 1.06 , the same result obtained in Problem 2.14.

2.16. p1 = 30 kPa, p2 = 500 kPa, therefore head, hp, added by pump is given by

hp =
p2 − p1

γ
=

500− 30
9.79

= 48.0 m

Power, P , added by pump is given by

P = γQhp = (9.79)(Q)(48.0) = 470 kW per m3/s

2.17. Q = 0.06 m3/s, D = 0.2 m, ks = 0.9 mm (riveted steel), ks/D = 0.9/200 = 0.00450, for 90◦

bend K = 0.3, for the entrance K = 1.0, at 20◦C ρ = 998 kg/m3, and µ = 1.00× 10−3 Pa·s,
therefore

A =
π

4
D2 =

π

4
(0.2)2 = 0.0314 m2

V =
Q

A
=

0.06
0.0314

= 1.91 m/s

Re =
ρV D

µ
=

(998)(1.91)(0.2)
1.00× 10−3

= 3.81× 105

Substituting ks/D and Re into the Colebrook equation gives

1√
f

= −2 log
(

0.00450
3.7

+
2.51

3.81× 105
√

f

)

12
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which leads to
f = 0.0297

Minor head loss, hm, is given by

hm =
∑

K
V 2

2g
= (1.0 + 0.3)

(1.91)2

2(9.81)
= 0.242 m

If friction losses, hf , account for 90% of the total losses, then

hf = f
L

D

V 2

2g
= 9hm

which means that

0.0297
L

0.2
(1.91)2

2(9.81)
= 9(0.242)

Solving for L gives
L = 78.9 m

For pipe lengths shorter than the length calculated in this problem, the word “minor” should
not be used.

2.18. From the given data: z1 = −1.5 m, z2 = 40 m, p1 = 450 kPa,
∑

k = 10.0, Q = 20 L/s = 0.02
m3/s, D = 150 mm (PVC), L = 60 m, T = 20◦C, and p2 = 150 kPa. The combined energy
and Darcy-Weisbach equations give

p1

γ
+

V 2
1

2g
+ z1 + hp =

p2

γ
+

V 2
2

2g
+ z2 +

[
fL

D
+

∑
k

]
V 2

2g
(1)

where
V1 = V2 = V =

Q

A
=

0.02
π(0.15)2

4

= 1.13 m/s (2)

At 20◦C, ν = 1.00× 10−6 m2/s, and

Re =
V D

ν
=

(1.13)(0.15)
1.00× 10−6

= 169500

Since PVC pipe is smooth (ks = 0), the friction factor, f , is given by

1√
f

= −2 log
(

2.51
Re
√

f

)
= −2 log

(
2.51

169500
√

f

)

which yields
f = 0.0162 (3)

Taking γ = 9.79 kN/m3 and combining Equations 1 to 3 yields

450
9.79

+
1.132

2(9.81)
+ (−1.5) + hp =

150
9.79

+
1.132

2(9.81)
+ 40 +

[
(0.0162)(60)

0.15
+ 10

]
1.132

2(9.81)
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which gives
hp = 11.9 m

Since hp > 0, a booster pump is required . The power, P , to be supplied by the pump is
given by

P = γQhp = (9.79)(0.02)(11.9) = 2.3 kW

2.19. Diameter of pipe, D = 0.75 m, area, A given by

A =
π

4
D2 =

π

4
(0.75)2 = 0.442 m2

and velocity, V , in pipe

V =
Q

A
=

1
0.442

= 2.26 m/s

Energy equation between reservoir and A:

7 + hp − hf =
pA

γ
+

V 2
A

2g
+ zA (1)

where pA = 350 kPa, γ = 9.79 kN/m3, VA = 2.26 m/s, zA = 10 m, and

hf =
fL

D

V 2

2g

where f depends on Re and ks/D. At 20◦C, ν = 1.00 × 10−6 m2/s and

Re =
V D

ν
=

(2.26)(0.75)
1.00× 10−6

= 1.70× 106

ks

D
=

0.26
750

= 3.47× 10−4

Using the Jain equation,

1√
f

= −2 log
[
ks/D

3.7
+

5.74
Re0.9

]
= −2 log

[
3.47× 10−4

3.7
+

5.74
(1.70× 106)0.9

]
= 7.93

which leads to
f = 0.0159

The head loss, hf , between the reservoir and A is therefore given by

hf =
fL

D

V 2

2g
=

(0.0159)(1000)
0.75

(2.26)2

2(9.81)
= 5.52 m

Substituting into Equation 1 yields

7 + hp − 5.52 =
350
9.81

+
2.262

2(9.81)
+ 10

which leads to
hp = 44.5 m

14
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(b) Power, P , supplied by the pump is given by

P = γQhp = (9.79)(1)(44.5) = 436 kW

(c) Energy equation between A and B is given by

pA

γ
+

V 2
A

2g
+ zA − hf =

pB

γ
+

V 2
B

2g
+ zB

and since VA = VB,

pB = pA + γ(zA − zB − hf ) = 350 + 9.79(10− 4− 5.52)

= 355 kPa

2.20. From the given data: L = 3 km = 3000 m, Qave = 0.0175 m3/s, and Qpeak = 0.578 m3/s. If
the velocity, Vpeak, during peak flow conditions is 2.5 m/s, then

2.5 =
Qpeak

πD2/4
=

0.578
πD2/4

which gives

D =

√
0.578

π(2.5)/4
= 0.543 m

Rounding to the nearest 25 mm gives

D = 550 mm

with a cross-sectional area, A, given by

A =
π

4
D2 =

π

4
(0.550)2 = 0.238 m2

During average demand conditions, the head, have, at the suburban development is given by

have =
pave

γ
+

V 2
ave

2g
+ zo (1)

where pave = 340 kPa, γ = 9.79 kN/m3, Vave = Qave/A = 0.0175/0.238 = 0.0735 m/s, and zo

= 8.80 m. Substituting into Equation 1 gives

have =
340
9.79

+
0.07352

2(9.81)
+ 8.80 = 43.5 m

For ductile-iron pipe, ks = 0.26 mm, ks/D = 0.26/550 = 4.73×10−4, at 20◦C ν = 1.00×10−6

m2/s, and therefore

Re =
VaveD

ν
=

(0.0735)(0.550)
1.00× 10−6

= 4.04× 104

15
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and the Jain equation gives

1√
fave

= −2 log
[
ks/D

3.7
+

5.74
Re0.9

]
= −2 log

[
4.73× 10−4

3.7
+

5.74
(4.04× 104)0.9

]

and yields
fave = 0.0234

The head loss between the water treatment plant and the suburban development is therefore
given by

hf = f
L

D

V 2

2g
= (0.0234)

3000
0.550

0.07352

2(9.81)
= 0.035 m

Since the head at the water treatment plant is 10.00 m, the pump head, hp, that must be
added is

hp = (43.5 + 0.035)− 10.00 = 33.5 m

and the power requirement, P , is given by

P = γQhp = (9.79)(0.0175)(33.5) = 5.74 kW

During peak demand conditions, the head, hpeak, at the suburban development is given by

hpeak =
ppeak

γ
+

V 2
peak

2g
+ zo (2)

where ppeak = 140 kPa, γ = 9.79 kN/m3, Vpeak = Qpeak/A = 0.578/0.238 = 2.43 m/s, and zo

= 8.80 m. Substituting into Equation 2 gives

hpeak =
140
9.79

+
2.432

2(9.81)
+ 8.80 = 23.4 m

For pipe, ks/D = 4.73× 10−4, and

Re =
VpeakD

ν
=

(2.43)(0.550)
1.00× 10−6

= 1.34× 106

and the Jain equation gives

1√
fpeak

= −2 log
[
ks/D

3.7
+

5.74
Re0.9

]
= −2 log

[
4.73× 10−4

3.7
+

5.74
(1.34× 106)0.9

]

and yields
fpeak = 0.0170

The head loss between the water treatment plant and the suburban development is therefore
given by

hf = f
L

D

V 2

2g
= (0.0170)

3000
0.550

2.432

2(9.81)
= 27.9 m

Since the head at the water treatment plant is 10.00 m, the pump head, hp, that must be
added is

hp = (23.4 + 27.9)− 10.00 = 41.3 m

and the power requirement, P , is given by

P = γQhp = (9.79)(0.578)(41.3) = 234 kW

16
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2.21. The head loss is calculated using Equation 2.80. The hydraulic radius, R, is given by

R =
A

P
=

(2)(1)
2(2 + 1)

= 0.333 m

and the mean velocity, V , is given by

V =
Q

A
=

5
(2)(1)

= 2.5 m/s

At 20◦C, ρ = 998.2 kg/m3, µ = 1.002 × 10−3 N·s/m2, and therefore the Reynolds number,
Re, is given by

Re =
ρV (4R)

ν
=

(998.2)(2.5)(4× 0.333)
1.002× 10−3

= 3.32× 106

A median equivalent sand roughness for concrete can be taken as ks = 1.6 mm (Table 2.1),
and therefore the relative roughness, ks/4R, is given by

ks

4R
=

1.6× 10−3

4(0.333)
= 0.00120

Substituting Re and ks/4R into the Jain equation (Equation 2.38) for the friction factor yields

1√
f

= −2 log
[
ks/4R

3.7
+

5.74
Re0.9

]
= −2 log

[
0.00120

3.7
+

5.74
(3.32× 106)0.9

]
= 6.96

which yields
f = 0.0206

The frictional head loss in the culvert, hf , is therefore given by the Darcy-Weisbach equation
as

hf =
fL

4R

V 2

2g
=

(0.0206)(100)
(4× 0.333)

2.52

2(9.81)
= 0.493 m

2.22. The frictional head loss is calculated using Equation 2.80. The hydraulic radius, R, is given
by

R =
A

P
=

(2)(2)
2(2 + 2)

= 0.500 m

and the mean velocity, V , is given by

V =
Q

A
=

10
(2)(2)

= 2.5 m/s

At 20◦C, ρ = 998 kg/m3, µ = 1.00 × 10−3 N·s/m2, and therefore the Reynolds number, Re,
is given by

Re =
ρV (4R)

µ
=

(998)(2.5)(4× 0.500)
1.00× 10−3

= 4.99× 106

A median equivalent sand roughness for concrete can be taken as ks = 1.6 mm (Table 2.1),
and therefore the relative roughness, ks/4R, is given by

ks

4R
=

1.6× 10−3

4(0.500)
= 0.0008
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Substituting Re and ks/4R into the Jain equation (Equation 2.39) for the friction factor yields

1√
f

= −2 log
[
ks/4R

3.7
+

5.74
Re0.9

]
= −2 log

[
0.0008

3.7
+

5.74
(4.99× 106)0.9

]
= 7.31

which yields
f = 0.0187

The frictional head loss in the culvert, hf , is therefore given by the Darcy-Weisbach equation
as

hf =
fL

4R

V 2

2g
=

(0.0187)(500)
(4× 0.500)

2.52

2(9.81)
= 1.49 m

Applying the energy equation between the upstream and downstream sections (Sections 1
and 2 respectively),

p1

γ
+

V 2
1

2g
+ z1 =

p2

γ
+

V 2
2

2g
+ z2 + hf

which gives
p1

9.79
+

2.52

2(9.81)
+ (0.002)(500) =

p2

9.79
+

2.52

2(9.81)
+ 0 + 1.49

Re-arranging this equation gives

p1 − p2 = 4.80 kPa

2.23. The Hazen-Williams formula is given by

V = 0.849CHR0.63S0.54
f (1)

where
Sf =

hf

L
(2)

Combining Equations 1 and 2, and taking R = D/4 gives

V = 0.849CH

(
D

4

)0.63 (
hf

L

)0.54

which simplifies to

hf = 6.82
L

D1.17

(
V

CH

)1.85

2.24. Comparing the Hazen-Williams and Darcy-Weisbach equations for head loss gives

hf = 6.82
L

D1.17

(
V

CH

)1.85

= f
L

D

V 2

2g

which leads to

f =
134

C1.85
H D0.17

1
V 0.15

For laminar flow, Equation 2.36 gives f ∼ 1/Re ∼ 1/V , and for fully-turbulent flow Equation
2.35 gives f ∼ 1/V 0. Since the Hazen-Williams formula requires that f ∼ 1/V 0.15, this
indicates that the flow must be in the transition regime .
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