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C H A P T E R 2

Differentiation in Several Variables

2.1 FUNCTIONS OF SEVERAL VARIABLES; GRAPHING SURFACES

1. f : R ' R : x & 2x2 C 1
(a) Domain f D {x∈ R}, Range f D {y ∈ R|y Ú 1}.
(b) No. For instance f�1� D 3 D f�−1�.
(c) No. For instance if y D 0, there is no x such that f�x�D 0.

2. f : R2
' R : �x, y� & 2x2 C 3y2 − 7

(a) Domain g D {�x, y�∈ R2}, Range g D {z∈ R|z Ú −7}.
(b) Let Domain g D {�x, x�∈ R2|x Ú 0}.
(c) Let Codomain g D Range g.

3. Domain f D {�x, y�∈ R2|y Z 0}, Range f D R.
4. Domain f D {�x, y�∈ R2|x C y > 0}, Range f D R.
5. Domain g D R3, Range g D {w∈ R|w Ú 0}.
6. Domain g D {x ∈ R3| ||x|| < 2}, Range g D {y ∈ R|y Ú 1/2}.
7. Domain f D {�x, y�∈ R2|y Z 1}, Range f D {�x, y, z�∈ R3|y Z 0, y2z D �xy − y − 1�2 C �y C 1�2}.
8. If x D �x1, x2, x3�, then f1�x� D x1, f2�x� D x2 C 3, and f3�x� D x3.
9. (a) f�x� D −2x/||x||.

(b) The component functions are

f1�x, y, z� D −2x√
x2 C y2 C z2

, f2�x, y, z� D −2y√
x2 C y2 C z2

, and f3�x, y, z� D −2z√
x2 C y2 C z2

.

10. Here there is nothing to show. Everything is at level 3. This surface is a plane parallel to the xy-plane 3 units
above it so the level set is the entire xy-plane if c D 3 and is the empty set if c Z 3.

11. For c > 0 the level sets are circles centered at the origin of radius
√
c. For c D 0 the level set is just the

origin. There are no values corresponding to c < 0. Note that the curves get closer together, indicating that
we are climbing faster as we head out radially from the origin. The second figure below shows the plot of the
level curves shaded to indicate the height of the level set (lighter is higher). The surface is therefore a paraboloid
symmetric about the z-axis. We show it with and without the surface filled in.
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Section 2.1 Functions of Several Variables; Graphing Surfaces 71

12. This is exactly the same as Exercise 11 except that the paraboloid has been shifted down 9 units so the level
curves begin in the center at c D −9, not c D 0.

13. Again this time for c > 0 the level curves are circles. This time, however, the circles corresponding to the level
sets at height c are of radius c. In other words, they are evenly spaced. We are climbing at a constant rate as we
head out radially, so the surface is a cone.

x

y

z

14. This time the level curves are ellipses. The sections as we cut in the direction x is constant or y is constant are
still parabolas.

x y

z

15. The graphs xy D c are hyperbolas (unless c D 0 in which case it is the union of the two axes). When x and y
are both positive the height of the level curves are positive and so the hyperboloid is increasing as we head away
from the origin radially in either the first or third quadrant. When x and y are of different signs, the heights of
the level curves are negative and so the hyperboloid is decreasing as we head out radially in either the second or
fourth quadrant.
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72 Chapter 2 Differentiation in Several Variables
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16. This is exactly the same as Exercise 17 except that the image has been reflected about the plane y D x.
17. We have a problem when y D 0. When k < 0, the section by x D k looks like the hyperbola in the figure on the

left, when k > 0, the section looks like the hyperbola in the figure on the right:

You can see that as y ' 0 from either side, along a line where x is constant and not 0, the z values won’t
match up. We are going to get a tear down the line y D 0. The level sets look like:
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Notice that you can see that tear on the right center part of the above graph. The solid black and solid white
areas which are on either side of the x-axis point to the behavior around the tear.
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Section 2.1 Functions of Several Variables; Graphing Surfaces 73

Graph each side of the x-axis and you will see the following piece of the surface:
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Our final surface is what you get when you try to glue two of those together:

18. The surface is a plane. Level sets for which f�x, y� D c are lines c D 3 − 2x − y or y D −2x C �3 − c�.
Level sets are pictured below on the left. The surface is pictured below on the right.
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19. Here we are looking at the graph of z D |x|. For c > 0, level sets for z D c will be the lines x D ; c. For c D 0
the level set is the y-axis. The graph is like a folded plane.
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74 Chapter 2 Differentiation in Several Variables

Note: In Problems 20–23 the level curves are shown along with the contour shading so you get an idea at what height
to hang the curves. You should be able to figure out the orientation of the surface from the contour plot.

20. Figures below:
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21. Figures below:
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22. Figures below: (note only a portion of the surface has been sketched so that you get a better idea of what’s
going on)
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23. Figures below:
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24. (a) We solve the equation PV D kT for T , obtaining T D f�P, V� D �1/k�PV. This is the same as we
considered in Exercise 15. See the figures for Exercise 15 for the general shape of the level curves.

(b) Here V D g�P, T� D kT

P
. This is the same as the cases we considered in Exercises 16 and 17. We will get a

“torn” surface similar to the one shown in Exercise 17. The level curve V D c is the line through the origin:
P D �k/c�T .

25. (a) The surface z D x2 is graphed below left and z D y2 below right.

x

yz

x

y
z

(b) Consider first the surface z D f�x� by considering the curve in the uv -plane given by v D f�u�. The
intersection of the surface with planes of the form y D c will look the same as the curve in the uv -plane
for any value of y. This helps us see that if we “drag” this curve in each direction along the y-axis, the trail
will trace out the surface. Similarly, but along the x-axis for surfaces of the form z D f�y�. The lack of
dependence on x is our clue.

(c) The graph of the surface y D x2 is shown below. It’s what we would expect from parts (b) and (a).

x

yz

 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



�

�

“runall” — 2005/8/1 — 12:14 — page 76 — #7
�

�

�

�

�

�

76 Chapter 2 Differentiation in Several Variables

26. See the solution to Exercise 17 and the note in Exercise 16.
27. They can’t intersect—even though they may sometimes appear to. Say that two different level curves f�x, y� D c1

and f�x, y� D c2 where c1 Z c2 intersect at some point (a, b). Then f�a, b� would have assigned to it two
non-equal values. This can’t happen for a function (it’s our vertical line test). On the other hand, if the limit as
you approach (a, b) along different paths is different, those level curves may appear to intersect at (a, b) no matter
how good the resolution on your contour plot.

28. The level surfaces are planes x − 2y C 3z D c.
29. The level surfaces at level w D c are elliptic paraboloids.
30. The level surfaces at level w D c are nested spheres of radius

√
c centered at the origin.

31. The level surfaces at level w D c are nested ellipsoids.
32. The level surfaces are of the form y�x − z� D c. If c D 0 we get the union of the xz -plane and the plane x D z.

If c Z 0 we get the hyperbola in the xy-plane y D c/x; this generates the solution surfaces when translated by
m�1, 0,−1�.

33. (a) These are cylinders with the z-axis being the axis of the cylinder. For the surface at level w D c, the radius
of the cylinder is

√
c.

(b) This is related to Exercise 25. A level surface at w D c will be the surface generated by building a cylinder
on the curve h�x, y� D c in the z D 0 plane. You are dragging the curve both directions along the z-axis so
that all cross sections for z D c1 look identical.

(c) Same thing in the y direction.
(d) If you said “same thing in the x direction,” read the problem again. You are solving equations that look like

h�x� D c. For each xi that solves this equation, you have no dependency on y or z so the level set looks
like a plane in R3 parallel to the yz -plane of the form x D xi.

34. (a) F is, of course, not uniquely determined. But if we let F�x, y, z� D x2 C xy − xz − 2, then the surface
is the level set F�x, y, z� D 0.

(b) x2 C xy − xz D 2 is equivalent to z D x
2 C xy − 2

x
D f�x, y�.

35. The ellipsoid is pictured below left. To see why you couldn’t express the surface as one function z D f�x, y�,
look for example at the intersection of the ellipsoid and the plane y D 0 pictured below on the right.
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You can see that for −2 < x < 2 there correspond two values of z. We could express the top portion of the
ellipsoid as f�x, y� D

√
1 − �x2/4 C y2/9� and the bottom portion as g�x, y� D −

√
1 − �x2/4 C y2/9�.
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Section 2.1 Functions of Several Variables; Graphing Surfaces 77

36. The figure is a hyperbolic paraboloid shown below left.
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37. The only difference here is that z is squared. Here we get a cone with axis of symmetry the x-axis. The figure is
shown above right.

38. This is Exercise 36 with the roles of x, y and z permuted and a change in the constants. The figure is shown
below left.
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39. This is “cone” where the cross sections are ellipses, not circles. The figure is shown above right.
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78 Chapter 2 Differentiation in Several Variables

40. We see the figure is a hyperboloid. It is shown below left.
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41. This is a hyperboloid of two sheets. It is shown above right.
42. Here we have the parabola z D y2 C 2 translated arbitrarily in the x direction. This is what we call a cylinder

over the parabola z D y2 C 2.
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Note: Except that your students have to complete the square first, these are similar to Exercises 36–42 above. You may
want them to be more explicit in reporting the translation as that’s sometimes hard to pick up from a diagram.

43. This is the equation of an elliptic cone with vertex at �1,−1,−3�. The graph is shown below left.

x

y

z

x

y

z

 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



�

�

“runall” — 2005/8/1 — 12:14 — page 79 — #10
�

�

�

�

�

�

Section 2.2 Limits 79

44. Here we have an elliptic paraboloid. The graph is shown above right.
45. This is the equation of an ellipsoid 4�x C 1�2 C y2 C z2 D 4. The graph is shown below left.
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46. This is the equation of a hyperboloid of one sheet 4�x C 1�2 C �y − 2�2 − 4z2 D 4. The graph is shown
above right.

47. This is similar to Exercise 44. The equation is equivalent to z − 1 D �x − 3�2 C 2y2.
48. Here we get 9x2 C 4�y − 1�2 − 36�z C 4�2 D 684 which is similar to Exercise 46.

2.2 LIMITS

Note: In Exercises 1–6, the rule of thumb is that a set is closed if it contains all of its boundary points.

1. This is an annulus which doesn’t include its inner or outer boundary and so is open.
2. This is an annulus which includes all of its boundary points and so is closed.
3. This is an annulus which includes its inner boundary but not its outer boundary and so it is neither open nor

closed.
4. This is a hollowed out sphere which includes its boundary points and so is closed.
5. This may be a bit harder to see. This is the union of an infinite open strip in the plane �−1 < x < 1� and a

closed line in the plane �x D 2� and so is neither open nor closed.
6. This is the open infinite cylinder in R3 and so is open. You could follow up on this by asking about {�x, y, z�∈

R3|1 … x2 C y2
… 4}.

Note: As pointed out in the text, the most common and convincing way to prove that a limit of a function with domain in
R2 doesn’t exist is to show that you get two different answers when you follow two different paths. After doing Exercises
7–18 students may get in the habit of thinking that it is sufficient to check a few straight paths. Exercise 23 should make
them think twice.

7. There’s no trick to taking this limit. Just let �x, y, z�' �0, 0, 0� and x2 C 2xy C yz C z3 C 2 ' 2.
8. We can see that lim

�x,y�'�0,0�

|y|√
x2Cy2

doesn’t exist by looking at the limit along the paths x D 0 and y D 0. On

the one hand

lim
�0,y�'�0,0�

|y|√
x2 C y2

D |y|√
y2

D 1 while lim
�x,0�'�0,0�

|y|√
x2 C y2

D 0√
x2

D 0.

9. Again, the limit does not exist.

lim
�x,y�'�0,0�

�x C y�2

x2 C y2
D lim
�x,y�'�0,0�

x2 C 2xy C y2

x2 C y2
D 1 C lim

�x,y�'�0,0�

2xy

x2 C y2
.

When x D y,
1 C lim

�x,y�'�0,0�

2xy

x2 C y2
D 1 C lim

x'0

2x2

x2 C x2
D 1 C 1 D 2.
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80 Chapter 2 Differentiation in Several Variables

When x D 0,

1 C lim
�0,y�'�0,0�

2xy

x2 C y2
D 1 C lim

y'0

0
y2

D 1.

10. Here nothing goes wrong so we can evaluate the limit by substituting in the expression.

lim
�x,y�'�0,0�

exey

x C y C 2
D e0e0

0 C 0 C 2
D 1

2
.

11. No limit exists.

lim
�x,y�'�0,0�

2x2 C y2

x2 C y2
D 1 C lim

�x,y�'�0,0�

x2

x2 C y2
.

We reason, as above, that if x D y then the limit is 3/2, but if y D 0 the limit is 2.
12. Here we can evaluate the function at the limit point and find that

lim
�x,y�'�−1,2�

2x2 C y2

x2 C y2
D 6

5
.

13. Just as with limits in first semester Calculus, this is begging to be simplified.

lim
�x,y�'�0,0�

x2 C 2xy C y2

x C y
D lim
�x,y�'�0,0�

�x C y�2

x C y
D lim
�x,y�'�0,0�

�x C y� D 0.

14. This is the same as the limit in Exercise 9 (once we simplified it). The limit does not exist.
15. This, too, is begging to be simplified.

lim
�x,y�'�0,0�

x4 − y4

x2 C y2
D lim
�x,y�'�0,0�

�x2 − y2��x2 C y2�

x2 C y2
D lim
�x,y�'�0,0�

�x2 − y2� D 0.

16. This is the same as the limit in Exercise 11 (once we simplified it). The limit does not exist.
17. This is another standard trick from first year Calculus.

lim
�x,y�'�0,0�,xZy

x2 − xy√
x − √

y
D lim
�x,y�'�0,0�,xZy

x�x − y�√
x − √

y
D lim
�x,y�'�0,0�,xZy

x�
√
x C √

y��
√
x − √

y�
√
x − √

y

D lim
�x,y�'�0,0�,xZy

x�
√
x C √

y� D 0.

18. You can see that you would get different values depending on the path you took to �x, y� D �2, 0�. If you
followed the path �2, y� ' �2, 0� the limit would be −1. If you followed the path �x, 0� ' �2, 0� the limit
would be 1. So the limit doesn’t exist.

19. The function is continuous so the limit is f�0,
√
π, 1� D e0 cosπ − 0 D −1.

20. As in Exercise 18, you get different values depending on the path you choose. Look, for example, at paths along
the three axes. Along �x, 0, 0� ' �0, 0, 0� the limit is 2, along �0, y, 0� ' �0, 0, 0� the limit is 3 and along
�0, 0, z�' �0, 0, 0� the limit is 1. We can see that no limit can exist.

21. Again the limit doesn’t exist because the value would differ on different paths. If you followed a path �t, t, t�'

�0, 0, 0� the limit would be 1/3. If you followed the path �x, 0, 0�' �0, 0, 0� the limit would be 0.
22. (a) We know from single-variable calculus (either using l’Hôpital’s rule or the direct geometric argument) that

lim
θ'0

sin θ
θ

D 1.

(b) lim
�x,y�'�0,0�

sin�xCy�
xCy D lim

θ'0

sin θ
θ

D 1.

(c) lim
�x,y�'�0,0�

sin�xy�

xy
D lim
θ'0

sin θ
θ

D 1.
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Note: Exercise 23 is a classic and cool problem. You may wish to set it up in class before assigning it. Write the function
on the board and ask the students to evaluate the limit or explain why the limit fails to exist. For those who get it right,
this is wonderful. For those who get it wrong, they are now in a position to appreciate the subtlety of the problem.

23. Our goal is to evaluate lim�x,y�'�0,0�
x4y4

�x2 C y4�3
or explain why the limit fails to exist. We divide the answer

into parts to make it easier to follow—there are no corresponding parts (a)–(d) in the text.
(a) If you evaluate the limit along the lines x D 0 and y D 0 the limit is 0. We might be tempted to guess that

lim�x,y�'�0,0� f �x, y� D 0 but as we saw in Exercise 14, we could get a limit of 0 along the paths x D 0
and y D 0 but perhaps not along x D y.

(b) So now let’s follow the line y D mx into the origin and see where f heads off to.

lim
�x,y�'�0,0�,yDmx

x4y4

�x2 C y4�3
D lim
x'0

x4�mx�4

�x2 C �mx�4�3

D lim
x'0

m4x8

�x2�1 C m4x2��3

D m4 lim
x'0

x8

�x6��1 C m4x2�3

D m4 lim
x'0

x2

�1 C m4x2�3
D 0.

This means then if we head into the origin along any straight line the limit of f is 0. Here is the point of this
problem: If we head into the origin in any constant direction, the limit of f is 0 and yet lim�x,y�'�0,0� f �x, y�
does not exist!

(c) For the limit to exist f must approach the same number no matter what path we choose to take to the origin.
So let’s approach along the parabola x D y2.

lim
�x,y�'�0,0�,xDy2

x4y4

�x2 C y4�3
D lim
y'0

�y2�4y4

��y2�2 C y4�3

D lim
y'0

y12

�2y4�3

D lim
y'0

y12

8y12
D 1

8
.

(d) So we get different answers for lim�x,y�'�0,0�
x4y4

�x2 C y4�3
depending on what path we follow into the origin.

So the limit does not exist.

Note—In Exercises 24–27 your students may find better visual information by using a contour plot than a three-
dimensional plot.

24. Below see two graphs of the function. The three dimensional plot makes it seem as if there are mountains and
valleys quite close to the origin. The contour plot helps you see from the diagonal lines that meet at the origin
that the limit doesn’t exist.
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-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Analytically, f is equivalent to 1 C �x2 C 2xy�/�3x2 C 5y2�. Head in toward the origin on a path where
x D y and the limit is 13/8. Head in toward the origin on a path where x D 0 and the limit is 1. Head in toward
the origin on a path where y D 0 and the limit is 11/3. So the limit doesn’t exist.

25. Below see two graphs of the function. You actually get most of the picture from the three dimensional graph—
except that it looks as if things are joined smoothly. The contour plot shows the dramatic problems near the origin.
Particularly if you look along the vertical line x D 0 you’ll see that the limit does not exist at the origin.

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Analytically, look at the path x D 0. Here we’re looking at the graph of z D −1/y. The limits as we approach
from positive and negative y values is ;q so no limit exists.

26. In the three-dimensional graph below you can see that the extreme behavior calms down near the origin. This is
confirmed in the contour plot. From the graphs it appears that the limit exists at the origin.

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4
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Before exploring this one analytically, consider the graph g�x, t� D xt/�x2 C t2� Its contour plot is shown
below.

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

So really the problem we are considering is the same with t D y5. We’re not looking along a path that shows
us enough. Let’s look at the limit for our original function f as we approach the origin. Along a path where
x D 0 or y D 0 the limit is 0. Along a path where x D y5 the limit is 1/2. This is a good place to encourage your
students to be careful drawing conclusions from even very good graphs.

27. You’d think we would have learned our lesson from Exercise 26. On the other hand, it sure looks as if things are
calming down near the origin. Sure sin 1/y oscillates madly between −1 and 1 but x seems to dampen it. We’ll
boldly assert that the limit exists at the origin.

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Actually, the discussion above leads us to the truth. The product of a bounded function and one going to 0
goes to 0. The limit exists and is 0.

28.

lim
�x,y�'�0,0�

x2y

x2 C y2
D lim
r'0

r2 cos2 θ · r sin θ
r2

D lim
r'0
r sin θ cos2 θ D 0

29.

lim
�x,y�'�0,0�

x2

x2 C y2
D lim
r'0

r2 cos2 θ

r2
D lim
r'0

cos2 θ D cos2 θ

Limit does not exist as the result depends on θ.
30.

lim
�x,y�'�0,0�

x2 C xy C y2

x2 C y2
D lim
r'0

r2 C �r cos θ�r sin θ

r2
D lim
r'0
�1 C cos θ sin θ� D 1 C cos θ sin θ.

Thus the limit does not exist.
31.

lim
�x,y,z�'�0,0,0�

xyz

x2 C y2 C z2
D lim
ρ'0

�ρ sinϕ cos θ��ρ sinϕ sin θ��ρ cosϕ�

ρ2

D lim
ρ'0
ρ sin2 ϕ cosϕ cos θ sin θ D 0
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32.

lim
�x,y,z�'�0,0,0�

x2 C y2√
x2 C y2 C z2

D lim
ρ'0

ρ2 sin2 ϕ cos2 θ C ρ2 sin2 ϕ sin2 θ

ρ
D lim
ρ'0
ρ sin2 ϕ D 0

33.

lim
�x,y,z�'�0,0,0�

xz

x2 C y2 C z2
D lim
ρ'0

ρ2 sinϕ cosϕ cos θ

ρ2
D lim
ρ'0

sinϕ cosϕ cos θ D sinϕ cosϕ cos θ

The Limit does not exist.

In Exercises 34–41: as the rules on continuity show, if the components are continuous and we put the functions together
by adding, subtracting, multiplying, or composing, then the result is continuous. It should be clear to the students what
points need checking.

34. This is a polynomial and is continuous everywhere.
35. This too is a polynomial and is continuous everywhere.

To make the point about composition, you may want to assign Exercises 36 and 37 together.

36. The only place we could get into trouble is where the denominator is 0, but x2 C 1 Z 0 so g is always continuous.
37. Here we are composing a continuous function (cos) with the continuous function g from Exercise 22, so the

composition is continuous.
38. You can even rewrite the function as �cos x�2 − 2�sin xy�2 so that it is clear that this is just the composition of

continuous functions.
39. The only place we need to check is the origin. We need to show that the limit of f as we approach (0, 0) is 0. If

we add and subtract y2 to the numerator we find that:

lim
�x,y�'�0,0�

x2 − y2

x2 C y2
D 1 − 2 lim

�x,y�'�0,0�

y2

x2 C y2
.

In Exercise 16 we showed that this limit doesn’t exist (in this case you get two different answers if you follow
the paths y D 0 and y D x) and so f is not continuous at (0, 0).

40. As in Exercise 39, the only point we need to check is the origin.

lim
�x,y�'�0,0�

x3 C x2 C xy2 C y2

x2 C y2
D lim
�x,y�'�0,0�

�x2 C y2��x C 1�

x2 C y2
D lim
�x,y�'�0,0�

�x C 1� D 1.

The good news is that the limit exists, the bad news is that

lim
�x,y�'�0,0�

g�x, y� D 1 Z 2 D g�0, 0�,

so g is not continuous at the origin.
41. A vector-valued function is continuous if each of its component functions is continuous. Each clearly is, so F is

continuous.
42. Notice that when �x, y� Z 0,

x3 C xy2 C 2x2 C 2y2

x2 C y2
D �x

2 C y2��x C 2�

x2 C y2
D x C 2.

So c D 2 and the function g�x, y� is seen to be equivalent to x C 2.
43. Here you can view f as being a function R3

' R; then f�x1, x2, x3� D 2x1 − 3x2 C x3 which is linear in
x1, x2, and x3 and therefore continuous.

44. This is equivalent to f�x, y, z� D �−5y, 5x − 6z, 6y�. Since each of the component functions from R3
' R is

continuous, so is f.

We make students do at least a few of the following because “it’s good for them.” Exercise 45 is a review of how they
looked at limits in first semester Calculus—it prepares them for Exercise 46. Exercise 47 is a generalization of Exercise 46.

45. Here f�x� D 2x − 3.
(a) If |x − 5| < δ, then |f�x� − 7| D |�2x − 3� − 7| D |2x − 10| D 2|x − 5| < 2δ.
(b) For any ε > 0, if 0 < |x − 5| < ε/2, then |f�x� − 7| < ε. This means that limx'5 f�x� D 7.

 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



�

�

“runall” — 2005/8/1 — 12:14 — page 85 — #16
�

�

�

�

�

�

Section 2.2 Limits 85

46. Now the function is f�x, y� D 2x − 10y C 3.
(a) Really we’re just arguing that the hypotenuse of a right triangle is at least as long as either leg.

δ > ||�x, y� − �5, 1�|| D
√
�x − 5�2 C �y − 1�2

Ú

√
�x − 5�2 D |x − 5|.

And
δ > ||�x, y� − �5, 1�|| D

√
�x − 5�2 C �y − 1�2

Ú

√
�y − 1�2 D |y − 1|.

(b) First:

|f�x, y� − 3| D |2x − 10y C 3 − 3| D |2x − 10y| D |2�x − 5� − 10�y − 1�|.

(c) By the triangle inequality

|2�x − 5� − 10�y − 1�| … |2�x − 5�| C |10�y − 1�| D 2|x − 5| C 10|y − 1|.

But we are assuming that ||�x, y� − �5, 1�|| < δ and from part (a) we know that this implies that |x − 5| < δ
and |y − 1| < δ, so

2|x − 5| C 10|y − 1| < 2δ C 10δ D 12δ.

(d) We put these together to obtain: For any ε > 0, if 0 < ||�x, y� − �5, 1�|| < ε/12, then |f�x, y� − 3| < ε.
In other words,

lim
�x,y�'�5,1�

f �x, y� D 3.

47. This is just a generalization of Exercise 46. We can use the same steps outlined there:
(a)

δ > ||�x, y� − �x0, y0�|| D
√
�x − x0�2 C �y − y0�2

Ú

√
�x − x0�2 D |x − x0|.

And
δ > ||�x, y� − �x0, y0�|| D

√
�x − x0�2 C �y − y0�2

Ú

√
�y − y0�2 D |y − y0|.

(b) Assume that ||�x, y� − �x0, y0�|| < δ, then follow the steps in part (b) of Exercise 46:

|f�x, y� − �Ax0 C By0 C C�| D |Ax C By C C − �Ax0 C By0 C C�|

D |A�x − x0� C B�y − y0�| … |A�x − x0�| C |B�y − y0�|

D |A||x − x0| C |B||y − y0| < |A|δ C |B|δ D �|A| C |B|�δ.

(c) Now we’re ready to put this together: For any ε > 0, if 0 < ||�x, y� − �x0, y0�|| < ε/�|A| C |B|�, then
|f�x, y� − �Ax0 C By0 C C�| < ε. In other words,

lim
�x,y�'�x0,y0�

f �x, y� D Ax0 C By0 C C.

48. (a) This is really what we just showed in Exercise 47 with x0 D 0 and y0 D 0.

||�x, y�|| D
√
x2 C y2

Ú

√
x2 D |x|.

And
||�x, y�|| D

√
x2 C y2

Ú

√
y2 D |y|.

(b) We follow the hint given in the text: |x3 C y3| … |x3| C |y3| D |x|3 C |y|3. But by part (a), |x| … ||�x, y�|| D√
x2 C y2, and |y| … ||�x, y�|| D

√
x2 C y2. Therefore,

|x3 C y3| … |x|3 C |y|3 … 2�
√
x2 C y2�3 D 2�x2 C y2�3/2.
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(c) If 0 < ||�x, y�|| < δ then by part (b),∣∣∣∣∣x3 C y3

x2 C y2

∣∣∣∣∣ …

∣∣∣∣∣ 2�x2 C y2�3/2

x2 C y2

∣∣∣∣∣ D 2
√
x2 C y2 D 2||�x, y�|| < 2δ.

(d) First we know by part (c) that
x3 C y3

x2 C y2
can be made to be arbitrarily close to 0 by choosing (x, y) close

enough to the origin. This means that the limit is 0.
Assemble the pieces: For any ε > 0, if 0 < ||�x, y�|| < ε/2, then |f�x, y�| < ε. This shows that

lim
�x,y�'�0,0�

x3 C y3

x2 C y2
D 0.

49. (a) 0 … �a C b�2 D a2 C 2ab C b2, so −2ab … a2 C b2. Also 0 … �a − b�2 D a2 − 2ab C b2, so
2ab … a2 C b2. We combine these two results to get: 2|ab| … a2 C b2.

(b) If ||�x, y�|| < δ, then we’ll use part (a) to rewrite |xy| in the following calculation:∣∣∣∣∣xy (x2 − y2

x2 C y2
)

∣∣∣∣∣ D |xy|�|x2 − y2|�
x2 C y2

…

�1/2��x2 C y2�|x2 − y2|
x2 C y2

D ( 1
2

) |x2 − y2|.

We can apply part (a) again with a D x C y and b D x − y so that

|�x C y��x − y�| …

�x C y�2 C �x − y�2

2
D x2 C y2.

Noting that x2 C y2 D ||�x, y�||2 D δ2, we have:∣∣∣∣∣xy (x2 − y2

x2 C y2
)

∣∣∣∣∣ … ( 1
2

) |x2 − y2| D δ
2

2
.

(c) As in Exercise 48, the limit has to be 0 because we can make f as small as we want by choosing (x, y) close
enough to the origin.

We summarize the above as: For any ε > 0, if 0 < ||�x, y�|| <
√

2ε, then |f�x, y�| < ε. This shows
that

lim
�x,y�'�0,0�

∣∣∣∣∣xy (x2 − y2

x2 C y2
)

∣∣∣∣∣ D 0.

2.3 THE DERIVATIVE

The general strategy for Exercises 1–11 is to treat all variables except for the one with respect to which we are differen-
tiating as constants.

1. f�x, y� D xy2 C x2y, so �f/�x D y2 C 2xy, and �f/�y D 2xy C x2.

2. f�x, y� D ex2Cy2
, so �f/�x D 2xex

2Cy2
, and �f/�y D 2yex

2Cy2
.

3. f�x, y� D sin xy C cos xy, so �f/�x D y cos xy − y sin xy, and �f/�y D x cos xy − x sin xy.

4. f�x, y� D x3 − y2

1 C x2 C 3y4
, so

�f

�x
D �1 C x2 C 3y4��3x2� − �x2 − y2��2x�

�1 C x2 C 3y4�2

and
�f

�y
D �1 C x2 C 3y4��−2y� − �x2 − y2��12y3�

�1 C x2 C 3y4�2
.
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5. f�x, y� D x
2 − y2

x2 C y2
, so

�f

�x
D �x

2 C y2��2x� − �x2 − y2��2x�

�x2 C y2�2
D 4xy2

�x2 C y2�2

and
�f

�y
D �x

2 C y2��−2y� − �x2 − y2��2y�

�x2 C y2�2
D −4x2y

�x2 C y2�2
.

6. f�x, y� D ln�x2 C y2�, so
�f

�x
D 1
x2 C y2

�2x� D 2x
x2 C y2

and
�f

�y
D 2y

x2 C y2
.

7. f�x, y� D cos x3y, so
�f

�x
D �− sin x3y��3yx2� D −3x2y sin x3y and

�f

�y
D −x3 sin x3y.

8. F�x, y, z� D xyz, so �F/�x D yz, �F/�y D xz, and �F/�z D xy.

9. F�x, y, z� D
√
x2 C y2 C z2 D �x2 C y2 C z2�1/2. The partials derivatives are:

�F

�x
D 2x

2
√
x2 C y2 C z2

D x√
x2 C y2 C z2

,

�F

�y
D y√
x2 C y2 C z2

and,

�F

�z
D z√
x2 C y2 C z2

.

10. F�x, y, z� D eax cos by C eaz sin bx so

�F

�x
D aeax cos by C beaz cos bx,

�F

�y
D −beax sin by, and

�F

�z
D aeaz sin bx.

11. F�x, y, z� D x C y C z
�1 C x2 C y2 C z2�3/2

Fx�x, y, z� D
�1 C x2 C y2 C z2�3/2 − �x C y C z��3/2��1 C x2 C y2 C z2�1/2�2x�

�1 C x2 C y2 C z2�3

D 1 − 2x2 C y2 C z2 − 3xy − 3xz

�1 C x2 C y2 C z2�5/2

Fy�x, y, z� D 1 C x2 − 2y2 C z2 − 3xy − 3yz

�1 C x2 C y2 C z2�5/2
, and

Fz�x, y, z� D 1 C x2 C y2 − 2z2 − 3xz − 3yz

�1 C x2 C y2 C z2�5/2
.

12. F�x, y, z� D sin x2y3z4 so this is similar to Exercise 7 above. Fx�x, y, z� D 2xy3z4 cos x2y3z4, Fy�x, y, z� D
3x2y2z4 cos x2y3z4 and Fz�x, y, z� D 4x2y3z3 cos x2y3z4.

13. F�x, y, z� D x3 C yz

�x2 C z2 C 1�
We’ve seen this form a couple of times by now.

Fx�x, y, z� D
�x2 C z2 C 1��3x2� − �x3 C yz��2x�

�x2 C z2 C 1�2
D x

4 C 3x2z2 C 3x2 − 2xyz

�x2 C z2 C 1�2

Fy�x, y, z� D
�x2 C z2 C 1��z� − �x3 C yz��0�

�x2 C z2 C 1�2
D z

x2 C z2 C 1

Fz�x, y, z� D
�x2 C z2 C 1��y� − �x3 C yz��2z�

�x2 C z2 C 1�2
D x

2y − yz2 C y − 2x3z

�x2 C z2 C 1�2
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88 Chapter 2 Differentiation in Several Variables

The gradient of f is the function �fx�x, y, z�, fy�x, y, z�, fz�x, y, z��. In Exercises 14–19 we are evaluating the
gradient at a given point.

14. f�x, y� D x2y C ey/x, so §f�x, y� D �2xy C �−y/x2�ey/x, x2 C �1/x�ey/x�. This means that §f�1, 0� D
�0, 2�.

15. f�x, y� D x − y
x2 C y2 C 1

, so

§f�x, y� D (�x2 C y2 C 1��1� − �x − y��2x�
�x2 C y2 C 1�2

,
�x2 C y2 C 1��−1� − �x − y��2y�

�x2 C y2 C 1�2
)

D (−x2 C y2 C 1 C 2xy

�x2 C y2 C 1�2
,
−x2 C y2 − 1 − 2xy

�x2 C y2 C 1�2
) .

So

§f�2,−1� D (− 6
36
,

0
36

) D (−1
6
, 0) .

16. f�x, y, z� D sin xyz, so §f�x, y, z� D �cos xyz��yz, xz, xy�. This means that

§f�π, 0, π/2� D cos 0�0, π2/2, 0� D �0, π2/2, 0�.

17. f�x, y, z� D xy C y cos z − x sin yz, so §f�x, y, z� D �y − sin yz, x C cos z − xz cos yz,−y sin z −
xy cos yz�. So,

§f�2,−1, π� D �−1 − sin�−π�, 2 C cos�π� − 2�π� cos�−π�, sin�π� C 2 cos�−π��
D �−1, 1 C 2π,−2�.

18. f�x, y� D exy C ln�x − y�, so §f�x, y� D �yexy C 1/�x − y�, xexy − 1/�x − y��. This means that
§f�2, 1� D �e2 C 1, 2e2 − 1�.

19. f�x, y, z� D �x C y�e−z, so §f�x, y, z� D �e−z, e−z,−�x C y�e−z�. So, §f�3,−1, 0� D �1, 1,−2�.

The nth row of the derivative matrix is the gradient of the nth component function.

20. f�x, y� D x

y
,Df�x, y� D [ 1

y
, −x
y2 ]. So Df�3, 2� D [1/2,−3/4].

21. f�x, y, z� D �xyz,
√
x2 C y2 C z2�, so

Df�x, y, z� D

 yz xz xy

x/
√
x2 C y2 C z2 y/

√
x2 C y2 C z2 z/

√
x2 C y2 C z2

 .
This means,

Df�1, 0,−2� D [ 0 −2 0
1/
√

5 0 −2/
√

5 ] .
22. f�t� D �t, cos 2t, sin 5t�, so

Df�t� D


 1
−2 sin 2t
5 cos 5t


 and so Df�0� D


 1

0
5


 .

23. f�x, y, z,w� D �3x − 7y C z, 5x C 2z − 8w, y − 17z C 3w� so

Df�x, y, z,w� D


 3 −7 1 0

5 0 2 −8
0 1 −17 3


 .

Since all of the entries are constant, the matrix doesn’t depend on a.
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24. f�x, y� D �x2y, x C y2, cosπxy�, so

Df�x, y� D


 2xy x2

1 2y
−πy sinπxy −πx sinπxy


 .

This means,

Df�2,−1� D


 −4 4

1 −2
0 0


 .

25. f�s, t� D �s2, st, t2�, so

Df�s, t� D


 2s 0
t s
0 2t


 .

This means,

Df�−1, 1� D


 −2 0

1 −1
0 2


 .

We will appeal to Theorem 3.5 for Exercises 26–28.

26. f�x, y� D xy − 7x8y2 C cos x is differentiable because the two partials fx�x, y� D y − 56x7y2 − sin x and
fy�x, y� D x − 14x8y are continuous.

27. f�x, y, z� D x C y C z
x2 C y2 C z2

is differentiable because the three partials

fx�x, y, z� D
−x2 C y2 C z2 − 2xy − 2xz

�x2 C y2 C z2�2

fy�x, y, z� D
x2 − y2 C z2 − 2xy − 2yz

�x2 C y2 C z2�2

fz�x, y, z� D x
2 C y2 − z2 − 2xz − 2yz

�x2 C y2 C z2�2

are all continuous.

28. f�x, y� D ( xy2

x2 C y4
,
x

y
C y

x
) is differentiable because the partials in the matrix

Df�x, y� D


y6 − x2y2

�x2 C y4�2

2x3y − 2xy5

�x2 C y4�2

1
y
− y

x2

−x
y2

C 1
x


are continuous in the domain of f.

29. (a) The graph of z D x3 − 7xy C ey has continuous partial derivatives at �−1, 0, 0�.
(b) By Theorem 3.3, the equation for the tangent plane is: z D f�−1, 0� C fx�−1, 0��x − �−1�� C

fy�−1, 0��y − 0�. In this case fx�x, y� D 3x2 − 7y so fx�−1, 0� D 3. Also fy�x, y� D −7x C ey and
so fy�−1, 0� D 8. The equation of the plane is z D 3�x C 1� C 8y.

30. Again using Theorem 3.3, the equation for the tangent plane is: z D f�π/3, 1� C fx�π/3, 1��x − π/3� C
fy�π/3, 1��y − 1�. Here z D 4 cos xy, so fx�x, y� D −4y sin xy and fy�x, y� D −4x sin xy. Plugging in we
get z D 2 − 2

√
3�x − π/3� − �2π/

√
3��y − 1�.

31. Again using Theorem 3.3, the equation for the tangent plane is: z D f�0, 1� C fx�0, 1��x� C fy�0, 1��y − 1�.
Here z D exCy cos xy, so fx�x, y� D exCy�cos xy − y sin xy� and fy�x, y� D exCy�cos xy − x sin xy�. Plugging
in we get z D e − ex C e�y − 1� or z D −ex C ey.
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90 Chapter 2 Differentiation in Several Variables

32. First find the two partials fx�x, y� D 2x − 6 and fy�x, y� D 3y2. Then putting the tangent plane equation into the
same form as the plane 4x − 12y C z D 7 gives us z − �2a − 6��x − a� − �3b2��y − b� D a2 − 6a C b3

or z − �2a − 6�x − 3b2y D −a2 − 2b3. So 2a − 6 D −4 so a D 1 and 3b2 D 12 so b D ;2. This
gives two tangent planes. The equation for one is 4x − 12y C z D −17 and the equation for the other is
4x − 12y C z D 15.

33. For f�x1, ... , x4� D 10 − �x2
1 C 3x2

2 C 2x2
3 C x2

4�, we have

§f D �−2x1,−6x2,−4x3,−2x4� so §f�2,−1, 1, 3� D �−4, 12,−4,−6�.

Formula (8) gives that the hyperplane has equation

x5 D −8 C �−4, 12,−4,−6��x1 − 2, x2 C 1, x3 − 1, x4 − 3�

D −8 − 4�x1 − 2� C 12�x2 C 1� − 4�x3 − 1� − 6�x4 − 3�

or
x5 D −4x1 C 12x2 − 4x3 − 6x4 C 34.

34. (a)

fx�2, 3� L

f�1.98, 3� − f�2, 3�
1.98 − 2

D 12.1 − 12
−.02

D .1
−.02

D −5

fy�2, 3� L

f�2, 3.01� − f�2, 3�
3.01 − 3

D 12.2 − 12
0.01

D .2
.01

D 20

Thus, formula (4) of §2.3 would give an approximate equation for the tangent plane as

z D f�2, 3� C fx�2, 3��x − 2� C fy�2, 3��y − 3� L 12 − 5�x − 2� C 20�y − 3�

or
z D −5x C 20y − 8.

(b)

f�1.98, 2.98� L 12 − 5�1.98 − 2� C 20�2.98 − 3� D 12 − 5�−0.02� C 20�−0.02�

D 11.7

Exercises 35–37 have the student investigate the linear approximation h of f near a given point a. We use the formula
in Definition 3.8:

h�x� D f�a� C Df�a��x − a�.

35. Here f�x, y� D exCy so the partials are fx�x, y� D exCy D fy�x, y�.
(a) h�.1,−.1� D f�0, 0� C �e0, e0� · �.1,−.1� D 1.
(b) f�.1,−.1� D e0 D 1. So the approximation is exact.

36. Here f�x, y� D 3 C cosπxy so the partials are fx�x, y� D −πy sinπxy and fy�x, y� D −πx sinπxy.
(a) h�.98, .51� D 3 C cosπ�1��.5� − �π�.5� sin[π�1��.5�], π�1� sin[π�1��.5�]� · �−.02, .01� D 3 −

π�.5, 1� · �−.02, .01� D 3.
(b) f�.98, .51� D 3 C cosπ�.98��.51� L 3.00062832.

37. f�x, y, z� D x2 C xyz C y3z, so the partials are fx�x, y, z� D 2x C yz, fy�x, y, z� D xz C 3y2z, and
fz�x, y, z� D xy C y3.
(a) h�1.01, 1.95, 2.2� D f�1, 2, 2� C �fx�1, 2, 2�, fy�1, 2, 2�, fz�1, 2, 2�� · �.01,−.05, .2� D 21 C

�6, 26, 10� · �.01,−.05, .2� D 21.76.
(b) f�1.01, 1.95, 2.2� D 21.665725.

38.
f�x1, x2, ... , xn� D x1 C x2 C · · · C xn√

x2
1 C x2

2 C · · · C x2
n

, so
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fxi�x1, x2, ... , xn� D
√
x2

1 C x2
2 C · · · C x2

n − xi�x1 C x2 C · · · C xn��x2
1 C x2

2 C · · · C x2
n�

−1/2

x2
1 C x2

2 C · · · C x2
n

D x
2
1 C x2

2 C · · · C x2
n − xi�x1 C x2 C · · · C xn�

�x2
1 C x2

2 C · · · C x2
n�

3/2

39. (a) For �x, y� Z �0, 0� we can find a neighborhood that misses the origin. In this neighborhood

f�x, y� D xy2 − x2y C 3x3 − y3

x2 C y2
D x − y C 2x3

x2 C y2
.

We can then easily compute the partials as

fx�x, y� D 1 C 2x4 C 6x2y2

�x2 C y2�2
and fy�x, y� D −1 − 4x3y

�x2 C y2�2
.

(b) Using Definition 3.2 of the partial derivative, if

f�x, y� D

 x − y C 2x3

x2 C y2
if �x, y� Z �0, 0�

0 if �x, y� D �0, 0�
,

then
�f

�x
�0, 0� D lim

h'0

f�h, 0� − f�0, 0�
h

D lim
h'0

3h
h

D 3,

and
�f

�y
�0, 0� D lim

h'0

f�0, h� − f�0, 0�
h

D lim
h'0

−h
h

D −1.

Note: Exercises 40–43 are review exercises for single-variable calculus. The idea is to see that near a point, the tangent
line approximates the curve. This idea will then be extended to a tangent plane and a surface in Exercises 45–49. For
Exercises 40–43 use either the point-slope equation y − f�a� D f ′�a��x − a� or solve for y to get y D f ′�a�x C
f�a� − f ′�a�a.

40. For the tangent line to F�x� D x3 − 2x C 3 at a D 1 F ′�x� D 3x2 − 2 so F ′�1� D 1. The tangent line is
y D x C 1. The graph of F and the tangent line near x D 1 (in this case for .8 … x … 1.2) is shown below left.

41. For the tangent line to F�x� D x C sin x at a D π/4 F ′�x� D 1 C cos x so F ′�π/4� D 1 C
√

2/2. The
tangent line is y D �1 C

√
2/2�x C �π/4 C

√
2/2 − �1 C

√
2/2�π/4�. The graph of F and the tangent

line near x D π/4 is shown above right.
42. For the tangent line rewrite F�x� D x − 3 C 3/�x2 C 1�. F ′�x� D 1 − 6x/�x2 C 1�2 so F ′�0� D 1 and
F�0� D 0. The tangent line is y D x. We can see that by looking at our rewritten version of F . The graph of F
and the tangent line near x D 0 is shown below left.
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92 Chapter 2 Differentiation in Several Variables

43. For the tangent line to F�x� D ln�x2 C 1� at a D −1F ′�x� D 2x/�x2 C 1� so F ′�−1� D −1. The tangent
line is y D −x C ln 2 − 1. The graph of F and the tangent line near x D −1 is shown above right.

44. Looking at the graph below, we can see that there is a cusp at x D 2 (trust me, that’s where the cusp is). You
can also see that the limit of the derivative using points to the left of 2 would not be the same as the derivative
using points to the right of 2 as one set is negative and the other is positive. Finally, the tangent line looks to be
a vertical line. This has no slope and so the derivative wouldn’t exist.

45. (a) For the function f�x, y� D x3 − xy C y2, fx�x, y� D 3x2 − y and fy�x, y� D −x C 2y. So at the point
(2, 1) these become f�2, 1� D 7, fx�2, 1� D 11, and fy�2, 1� D 0. The equation of the tangent plane is
z D 7 C 11�x − 2�.

(b)

(c) The partials are continuous so by Theorem 3.5, f is differentiable.
46. (a) To find the partial derivatives fx�1, 0� and fy�1, 0�, we must look at appropriate partial functions of

f�x, y� D ��x − 1�y�2/3:

f�x, 0� K 0 * fx�1, 0� D 0

f�1, y� K 0 * fy�1, 0� D 0

Since f�1, 0� D 0, the candidate tangent plane has equation z D 0 C 0�x − 1� C 0�y − 0� or z D 0.
(b) A computer graph looks as follows.

0.8
0.9

1
1.1

-0.2

-0.1

0

0.1

0.2

0
0.025
0.05

0.075
0.1

Zooming in closer to the point (1, 0, 0) doesn’t make things appear very different, so it’s tempting to conclude
that f must not be differentiable at (1, 0).

(c) From our calculations in part (a), the linear function h�x, y� D f�1, 0� C fx�1, 0��x − 1� C fy�1, 0��y −
0� D 0. Thus, for �x, y� Z �1, 0� we have

0 …

|f�x, y� − h�x, y�|
||�x, y� − �1, 0�||

D |f�x, y�|√
�x − 1�2 C y2

.
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Now

|f�x, y�| D |x − 1|2/3|y|2/3 … ��x − 1�2 C y2�1/3��x − 1�2 C y2�1/3

D ��x − 1�2 C y2�2/3.

Thus
|f�x, y�|√

�x − 1�2 C y2
…

��x − 1�2 C y2�2/3

��x − 1�2 C y2�1/2
D ��x − 1�2 C y2�1/6.

Since this last expression approaches zero as �x, y�' �1, 0�, we see that f must be differentiable at (1, 0)
by Definition 3.4.

47. (a) For the function f�x, y� D xy

x2 C y2 C 1
, fx�x, y� D −x2y C y3 C y

�x2 C y2 C 1�2
and fy�x, y� D

x3 − xy2 C y
�x2 C y2 C 1�2

. So at the point (0, 0) these become f�0, 0� D 0, fx�0, 0� D 0, and fy�0, 0� D 0. The

equation of the tangent plane is z D 0.
(b) The surface is shown below left. It is shown with the tangent plane below right.

-2
-1

0
1

2

x
-2

-1

0

1

2

y
-0.4
-0.2

0
0.2
0.4

z

-2
-1

0
1

2

x

-2 -1 0 1 2y

-0.4
-0.2

0

0.2

0.4

z

(c) This is the plane that best approximates the surface at that point. But we can see that it’s not a very good
approximation as you move way in any direction other than the two axes lines. Analytically, the reason is
that the partials are continuous in a neighborhood of (0, 0).

48. (a) For the function f�x, y� D sin x cos y, fx�x, y� D cos x cos y and fy�x, y� D − sin x sin y. So at the point
�π/6, 3π/4� these become f�π/6, 3π/4� D −

√
2/4, fx�π/6, 3π/4� D −

√
6/4, and fy�π/6, 3π/4� D

−
√

2/4. The equation of the tangent plane is z D −
√

2/4 −
√

6/4�x − π/6� −
√

2/4�y − 3π/4�.
(b)

-0.5
0

0.5
1

1.5
x 1.5

2

2.5

3

y

-1
-0.5

0
0.5
1

z

(c) Again the partials are continuous in a neighborhood of �π/6, 3π/4� so by Theorem 3.5, f is differentiable
at the point.

49. (a) For the function f�x, y� D x2 sin y C y2 cos x, fx�x, y� D 2x sin y − y2 sin x and fy�x, y� D x2 cos y C
2y cos x. So at the point �π/3, π/4� these become f�π/3, π/4� D π2

√
2/18 C π2/32, fx�π/3, π/4� D

π
√

2/3 − π2
√

3/32, and fy�π/3, π/4� D π2
√

2/18 C π/4. The equation of the tangent plane is z D
�π2

√
2/18 C π2/32� C �π

√
2/3 − π2

√
3/32��x − π/3� C �π2

√
2/18 C π/4��y − π/4�.
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(b)

0
0.5

1
1.5

2

x
0

0.5

1

1.5

2

y

0

2

4

z

(c) The partials are continuous near �π/3, π/4� so by Theorem 3.5, f is differentiable there.
50. (a) Yes g�x, y� D �xy�1/3 is continuous at (0, 0).

(b) �g/�x D �1/3�x−2/3y1/3, and �g/�y D �1/3�x1/3y−2/3.
(c) Unfortunately we can’t just substitute the point (0, 0) in our answers to (b), but using Definition 3.2 of partial

derivatives, we see that the two partials must be 0. In other words we define gx�0, 0� D 0, and gy�0, 0� D 0.
(d) No (choose a path that crosses the x- and y-axes).
(e) You can see this answer if you look along the line y D x. There g�x, x� D x2/3 which has a corner at (0,

0). So there can’t be a tangent plane.
(f) No g isn’t differentiable at (0, 0).

51. If f�x� D Ax D (∑nkD1 a1kxk,∑nkD1 a2kxk, ... ,∑nkD1 amkxk). Let’s look at the entry in row i column j of Df(x).
This will be

�fi
�xj

D �

�xj
( n∑
kD1
aikxk) D aij.

So Df�x� D A.

2.4 PROPERTIES; HIGHER-ORDER PARTIAL DERIVATIVES; NEWTON’S METHOD

In Exercises 1–4 there isn’t much to show ... the students just need to verify that the sum of the derivative is the derivative
of the sum (Proposition 4.1).

1. f�x, y� D xy C cos x, and g�x, y� D sin�xy� C y3, so Df D [y − sin x, x], Dg D [y cos xy, x cos xy C 3y2],
and D�f C g� D [y − sin x C y cos xy, x C x cos xy C 3y2].

2. f�x, y� D �exCy, xey�, and g�x, y� D �ln�xy�, yex�, so

Df D [ exCy exCy

ey xey ] , Dg D [ y

xy

x

xy
yex ex

]
and

D�f + g� D [ exCy C y

xy
exCy C x

xy
ey C yex xey C ex

] .
Note the use of the product rule in Exercise 3 when calculating �g1�x.

3. f�x, y, z� D �x sin y C z, yex − 3x2� and g�x, y, z� D �x3 cos x, xyz�, so

Df D [ sin y x cos y 1
−6x ez yez ] ,Dg D [ 3x2 cos x − x3 sin x 0 0

yz xz xy ] and

D�f + g� D [ sin y C 3x2 cos x − x3 sin x x cos y 1
−6x C yz ez C xz yez C xy ] .
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4. f�x, y, z� D �xyz2, xe−y, y sin xz� and g�x, y, z� D �x − y, x2 C y2 C z2, ln�xz C 2��, so

Df D


 yz2 xz2 2xyz

e−y −xe−y 0
zy cos xz sin xz xy cos xz


 ,Dg D


 1 −1 0

2x 2y 2z
z/�xz C 2� 0 x/�xz C 2�


 and

D�f + g� D


 1 C yz2 −1 C xz2 2xyz

e−y C 2x −xe−y C 2y 2z
zy cos xz C z/�xz C 2� sin xz xy cos xz C x/�xz C 2�


 .

Exercises 5–8 are again mainly calculations to convince the students of the formulas given in Proposition 4.2; we hope
that they remember to apply them when confronted with a product or quotient. In Exercises 6 and 7 we notice that we just
get the quotient rule in each component which factors into the quotient rule given in the proposition (and we drop the
argument when convenient and clear).

5. f�x, y� D x2y C y3, g�x, y� D x/y, f�x, y�g�x, y�D x3 C xy2, and
f�x, y�

g�x, y�
D xy2 C y4/x.

So Df D [2xy, x2 C 3y2], and Dg D [1/y,−x/y2],

D�fg� D [3x2 C y2, 2xy]

D �x2y C y3�[1/y,−x/y2] C �x/y�[2xy, x2 C 3y2]

D fD�g� C gD�f�, and

D (f
g

) D [y2 − y4/x2, 2xy C 4y3/x]

D �y/x�[2xy, x2 C 3y2] − �y2/x2��x2y C y3�[1/y,−x/y2]

D gDf − fDg

g2
.

6. f�x, y� D exy, g�x, y� D x sin 2y, f�x, y�g�x, y� D xexy sin 2y, and
f�x, y�

g�x, y�
D exy

x sin 2y
.

So Df D [yexy, xexy], and Dg D [sin 2y, 2x cos 2y],

D�fg� D [sin 2y�exy C xy exy�, x�xexy sin 2y C 2exy cos 2y�]

D exy[sin 2y, 2x cos 2y] C x sin 2y[yexy, xexy]

D fD�g� C gD�f�, and

D (f
g

) D [ xyexy sin 2y − exy sin 2y

x2 sin2 2y
,
x2exy sin 2y − 2xexy cos 2y

x2 sin2 2y
]

D x sin 2y[yexy, xexy] − exy[sin 2y, 2x cos 2y]

x2 sin2 2y

D gDf − fDg

g2
.

7. f�x, y� D 3xy C y5, g�x, y� D x3 − 2xy2, f �x, y�g�x, y� D 3x4y C x3y5 − 6x2y3 − 2xy7, and
f�x, y�

g�x, y�
D

3xy C y5

x3 − 2xy2
. So

Df D [3y, 3x C 5y4], and Dg D [3x2 − 2y2,−4xy],

D�fg� D [12x3y C 3x2y5 − 12xy3 − 2y7, 3x4 C 5x3y4 − 18x2y2 − 14xy6]
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D �3xy C y5�[3x2 − 2y2,−4xy] C �x3 − 2xy2�[3y, 3x C 5y4]

D fD�g� C gD�f�, and

D (f
g

) D [g�x, y�fx�x, y� − f�x, y�gx�x, y�
[g�x, y�]2

,
g�x, y�fy�x, y� − f�x, y�gy�x, y�

[g�x, y�]2
]

D gDf − fDg

g2
.

8. f�x, y, z� D x cos�yz�, g�x, y, z� D x2 C x9y2 C y2z3 C 2, f �x, y�g�x, y�D x3 cos�yz� C x10y2 cos�yz� C
xy2z3 cos�yz� C 2x cos�yz�, and

f�x, y�

g�x, y�
D x cos�yz�

x2 C x9y2 C y2z3 C 2
.

So Df D [cos�yz�,−xz sin�yz�,−xy sin�yz�], and Dg D [2x C 9x8y2, 2x9y C 2yz3, 3y2z2],

D�fg� D

 3x2 cos yz C 10x9y2 cos yz C y2z3 cos yz C 2 cos yz

−x3z sin yz C 2x10y cos yz − x10y2z sin yz C 2xyz3 cos yz − xy2z4 sin yz − 2xz sin yz

−x3y sin yz − x10y3 sin yz C 3xy2z2 cos xy − xy3z3 sin yz − 2xy sin yz


T

D �x cos yz�


 2x C 9x8y2

2x9y C 2yz3

3y2z2


T C �x2 C x9y2 C y2z3 C 2�


 cos yz
−xz sin yz
−xy sin yz


T

D fDg C gDf, and

D (f
g

) D [gfx − fgx
g2

,
gfy − fgy
g2

,
gfz − fgz
g2

]
D gDf − fDg

g2
.

In Exercises 9–17, students should verify that fxy D fyx. The fact that in these problems the derivative with respect
to y of fx is equal to the derivative with respect to x of fy is not trivial. Problem 18 explicitly asks them to examine the
mixed partials.

9. f�x, y� D x3y7 C 3xy2 − 7xy so fx�x, y� D 3x2y7 C 3y2 − 7y and fy�x, y� D 7x3y6 C 6xy − 7x. The
second order partials are:

fxx�x, y� D 6xy7,

fxy�x, y� D fyx�x, y� D 21x2y6 C 6y − 7, and

fyy�x, y� D 42x3y5 C 6x.

10. f�x, y� D cos�xy� so fx�x, y� D −y sin�xy� and fy�x, y� D −x sin�xy�. The second order partials are:

fxx�x, y� D −y2 cos xy,

fxy�x, y� D fyx�x, y� D −xy cos xy − sin xy, and

fyy�x, y� D −x2 cos xy.

11. f�x, y� D ey/x − ye−x so fx�x, y� D −y
x2
ey/x C ye−x and fy�x, y� D 1

x
ey/x − e−x. The second order partials

are:

fxx�x, y� D 2y

x3
ey/x C y2

x4
ey/x − ye−x,
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fxy�x, y� D fyx�x, y� D −1
x2

ey/x − y

x3
ey/x C e−x, and

fyy�x, y� D 1
x2

ey/x.

12. f�x, y� D sin
√
x2 C y2 so

fx�x, y� D
x cos

√
x2 C y2√

x2 C y2
and fy�x, y� D

y cos
√
x2 C y2√

x2 C y2
.

The second order partials are:

fxx�x, y� D

√
x2 C y2 [cos

√
x2 C y2 C �x�−x sin

√
x2Cy2√

x2Cy2 ] − �x cos
√
x2 C y2� x√

x2Cy2

x2 C y2

D y
2 cos

√
x2 C y2 − x2

√
x2 C y2 sin

√
x2 C y2

�x2 C y2�3/2
, and by symmetry

fyy�x, y� D
x2 cos

√
x2 C y2 − y2

√
x2 C y2 sin

√
x2 C y2

�x2 C y2�3/2
, and

fxy�x, y� D fyx�x, y� D
−xy

√
x2 C y2 sin

√
x2 C y2 − xy cos

√
x2 C y2

�x2 C y2�3/2
.

13. f�x, y� D 1
sin2 x C 2ey

so

fx�x, y� D −2 sin x cos x
�sin2 x C 2ey�2

D − sin 2x
�sin2 x C 2ey�2

and fy�x, y� D −2ey

�sin2 x C 2ey�2
.

The second order partials are:

fxx�x, y� D
�sin2 x C 2ey�2�−2 cos 2x� C sin 2x · 2�sin2 x C 2ey� sin 2x

�sin2 x C 2ey�4

D �sin2 x C 2ey��−2 cos 2x� C 2 sin2 2x

�sin2 x C 2ey�3
,

fxy�x, y� D fyx�x, y� D 4ey sin 2x
�sin2 x C 2ey�3

, and

fyy�x, y� D
2ey�2ey − sin2 x�

�sin2 x C 2ey�3
.

14. f�x, y� D ex2Cy2
so fx�x, y� D 2xex

2Cy2
and fy�x, y� D 2yex

2Cy2
. The second order partials are:

fxx�x, y� D 2ex
2Cy2 C 2x · 2xex

2Cy2

D ex
2Cy2
�2 C 4x2�,

fxy�x, y� D fyx�x, y� D 4xyex
2Cy2
, and

fyy�x, y� D ex
2Cy2
�2 C 4y2�.

15. f�x, y, z� D x2yz C xy2z C xyz2 so fx�x, y, z� D 2xyz C y2z C yz2, fy�x, y, z� D x2z C 2xyz C xz2, and
fz�x, y, z� D x2y C xy2 C 2xyz. The second order partials are:

fxx�x, y, z� D 2yz
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fyy�x, y, z� D 2xz

fzz�x, y, z� D 2xy

fxy�x, y, z� D fyx�x, y, z� D 2xz C 2yz C z2

fxz�x, y, z� D fzx�x, y, z� D 2xy C y2 C 2yz

fyz�x, y, z� D fzy�x, y, z� D x2 C 2xy C 2xz

16. f�x, y, z� D exyz so fx�x, y, z� D yzexyz, fy�x, y, z� D xzexyz, and fz�x, y, z� D xyexyz. The second order
partials are:

fxx�x, y, z� D y2z2exyz

fyy�x, y, z� D x2z2exyz

fzz�x, y, z� D x2y2exyz

fxy�x, y, z� D fyx�x, y, z� D zexyz�1 C xyz�

fxz�x, y, z� D fzx�x, y, z� D yexyz�1 C xyz�

fyz�x, y, z� D fzy�x, y, z� D xexyz�1 C xyz�

17. f�x, y, z� D eax sin y C ebx cos z so fx�x, y, z� D aeax sin y C bebx cos z, fy�x, y, z� D eax cos y, and
fz�x, y, z� D −ebx sin z. The second order partials are:

fxx�x, y, z� D a2eax sin y C b2ebx cos z

fyy�x, y, z� D −eax sin y

fzz�x, y, z� D −ebx cos z

fxy�x, y, z� D fyx�x, y, z� D aeax cos y

fxz�x, y, z� D fzx�x, y, z� D −bebx sin z

fyz�x, y, z� D fzy�x, y, z� D 0

18. F�x, y, z� D 2x3y C xz2 C y3z5 − 7xyz so Fx�x, y, z� D 6x2y C z2 − 7yz, Fy�x, y, z� D 2x3 C 3y2z5 − 7xz,
and Fz�x, y, z� D 2xz C 5y3z4 − 7xy.
(a) Fxx�x, y, z� D 12xy, Fyy�x, y, z� D 6yz5, and Fzz�x, y, z� D 20y3z3 C 2x.
(b) Fxy�x, y, z� D 6x2 − 7z D Fyx�x, y, z�, Fxz�x, y, z� D 2z − 7y D Fzx�x, y, z�, and Fyz�x, y, z� D

15y2z4 − 7x D Fzy�x, y, z�.
(c) Fxyx�x, y, z� D 12x D Fxxy�x, y, z�. We knew that these would be equal because they are the mixed partials

of Fx (i.e., �Fx�yx D �Fx�xy).
(d) Fxyz�x, y, z� D −7 D Fyzx�x, y, z�.

19. We will denote the degree of f by deg(f ) in this solution.
(a) deg�px� D 16, deg�py� D 16, deg�pxx� D 15, deg�pyy� D 15, and deg�pyx� D 15.
(b) deg�px� D 3, deg�py� D 3, deg�pxx� D 2, deg�pyy� is undefined, and deg�pyx� D 2.
(c) This is difficult because the term of highest degree can switch during the process of taking a derivative. For

example consider f�x, y� D xy2 C x3y. Take the derivative with respect to y and the degree has decreased
by one as we would expect: fy�x, y� D 2xy C x3 so deg�fy� D 3. Now take another derivative with respect
to y: fyy�x, y� D 2x and so the degree is now one.
For a polynomial f�x1, x2, ... , xn� which has degree d D d1 C d2 C · · · C dn because of a term
cxd1

1 x
d2
x ... x

dn
n , �kf /�xi1 ... �xik has degree d–k if xj occurs at most dj times in the partial derivative—

otherwise we must look for the highest degree of any other surviving terms. If no terms survive, (i.e.,
�kf /�xi1 ... �xik D 0) then the degree is undefined.

Exercises 20 and 21 have the students verify that certain functions are solutions to the given differential equations.
When the students studied exponential equations in first semester calculus they may have seen that f�x� D cekx solves
the differential equation y′ D ky. Here is a nice way to introduce the idea of a partial differential equation.
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20. (a) For the first function, f�x, y, z� D x2 C y2 − 2z2, fx�x, y, z� D 2x, fy�x, y, z� D 2y, and fx�x, y, z� D
−4z.

This means that fxx�x, y, z� D 2, fyy�x, y, z� D 2, and fzz�x, y, z� D −4. We see that fxx C fyy C fzz D
0 and conclude that f is harmonic.

For the second function, f�x, y, z� D x2 − y2 C z2, fx�x, y, z� D 2x, fy�x, y, z� D −2y, and
fz�x, y, z� D 2z.

This means that fxx�x, y, z� D 2, fyy�x, y, z� D −2, and fzz�x, y, z� D 2. We see that fxx C fyy C fzz Z 0
and conclude that f is not harmonic.

(b) One possible example is f�x1, x2, ... , xn� D x2
1 − x2

2 C 3x3 C 4x4 C 5x5 C · · · C nxn.

Here fxixi D


2 if i D 1,

−2 if i D 2,
0 if i > 2.

and we see that ∑niD1 fxixi D 0 so f is harmonic.

21. (a) To show that T�x, t� D e−kt cos x satisfies the differential equation kTxx D Tt we calculate the derivatives:

Tx�x, t� D −e−kt sin x

Txx�x, t� D −e−kt cos x

Tt�x, t� D −ke−kt cos x

so kTxx D Tt .
For t0 D 0 and t0 D 1 the graphs are:

-6 -4 -2 2 4 6
x

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1
z

-6 -4 -2 2 4 6
x

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1
z

For t0 D 10 the graph is further damped. The graph of the surface z D T�x, t� is:

0

10

-5

0

5

x
-1

0

1

T

1

t

(b) To show that T�x, y, t� D e−kt�cos x C cos y� satisfies the differential equation k�Txx C Tyy� D Tt we
calculate the derivatives:

Tx�x, y, t� D −e−kt sin x

Txx�x, y, t� D −e−kt cos x

Ty�x, y, t� D −e−kt sin y
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Tyy�x, y, t� D −e−kt cos y

Tt�x, y, t� D −ke−kt�cos x C cos y�

so k�Txx C Tyy� D Tt .
The graphs of the surfaces given by z D T�x, y, t0� for t0 D 0, 1, and 10 are:

-5

0

5
x -5

0

5

y

0z

-5

0

5
x -5

0

5

y

0z

-5

0

5
x -5

0

5

y

0z

(c) Finally, to show that T�x, y, z, t� D e−kt�cos x C cos y C cos z� satisfies the differential equation k�Txx C
Tyy C Txx� D Tt we calculate the derivatives:

Tx�x, y, z, t� D −e−kt sin x

Txx�x, y, z, t� D −e−kt cos x

Ty�x, y, z, t� D −e−kt sin y

Tyy�x, y, z, t� D −e−kt cos y

Tz�x, y, z, t� D −e−kt sin z

Tzz�x, y, z, t� D −e−kt cos z

Tt�x, y, z, t� D −ke−kt�cos x C cos y C cos z�

so k�Txx C Tyy C Tzz� D Tt .
22. (a) For �x, y� Z �0, 0�, compute the partial derivatives:

fx�x, y� D y (x2 − y2

x2 C y2
) C xy ( [x2 C y2]�2x� − [x2 − y2]�2x�

�x2 C y2�2
)
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D y�x
2 − y2��x2 C y2� C xy�4xy2�

�x2 C y2�2

D y�x
4 C 4x2y2 − y4�

�x2 C y2�2
and similarly

fy�x, y� D
x�x4 − 4x2y2 − y4�

�x2 C y2�2

(b) We use part (a):

fx�0, y� D
y�−y4�

�y2�2

D −y for y Z 0, and

fy�x, 0� D x for x Z 0.

(c) From part (b), fxy�0, y� D −1 while fyx�x, 0� D 1 and fx�0, y� and fy�x, 0� are continuous at the origin
so you can conclude that fxy�0, 0� D −1 while fyx�0, 0� D 1. Why aren’t the mixed partials equal? The
answer is that the second partials are not continuous at the origin. We can see this by calculating

fxy�x, y� D x
6 C 9x4y2 − 9x2y4 − y6

�x2 C y2�3
.

Therefore fxy�x, 0� D 1 and

fxy�0, y� D −1.

Hence lim
�x,y�'�0,0�

fxy�x, y� does not exist.

In other words, fxy is not continuous at the origin.
23. An equation of a plane in the form z D f�x, y� is z D Ax C By C C. Here zx D A, zy D B and the second

derivatives are all 0. The partial differential equation for minimal surfaces is therefore trivially satisfied and a
plane is seen to be a minimal surface.

24. (a) Here’s an image of Scherk’s surface.

(b) In this case z D ln�cos x/ cos y�. So zx D − tan x, zy D tan y, zxy D 0, zxx D − sec2 x, and zyy D sec2 y. So

�1 C z2y�zxx C �1 C z2x�zyy D �1 C tan2 y��− sec2 x� C �1 C tan2 x��sec2 y�

D − sec2 x sec2 y C sec2 x sec2 y D 0.

This agrees with the right side of the equation as zxy D 0.
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25. (a) Here’s an image of the helicoid:

-2
-1

0
1

2

x

-2
-1

0
1

2

y

-2

0

2

z

(b) There’s no reason not to think of this surface as z D x tan y. Then zx D tan y, zy D x sec2 y, zxx D 0, zxy D
sec2 y, and zyy D 2 tan y sec2 y. So

�1 C z2y�zxx C �1 C z2x�zyy D �1 C x2 sec4 y��0� C �1 C tan2 y��2 tan y sec2 y�

D �sec2 y��2 tan y sec2 y� D 2�tan y��x sec2 y��sec2 y�

D 2zxzyzxy

26. Let L denote limk'q xk . Then limk'q xk−1 D L and taking limits in (6), we have

L D L − [Df�L�]−1f�L�.

Hence [Df�L�]−1f�L� D 0. Now multiply by Df�L� on the left to obtain Df�L��[Df�L�]−1f�L�� D
Df�L�0 D 0 3 Inf�L� D 0 3 f�L� D 0.

27. (a) k xk yk

0 −1 1
1 −1.3 1.7
2 −1.2653846 1.55588235
3 −1.2649112 1.54920772
4 −1.2649111 1.54919334
5 −1.2649111 1.54919334

This table suggests that xk ' �−1.2649111, 1.54919334� L �−
√

8/5,
√

12/5�.
(b) k xk yk

0 1 −1
1 1.3 −1.7
2 1.26538462 −1.558824
3 1.2649115 −1.5492077
4 1.26491106 −1.5491933
5 1.26491106 −1.5491933

Here xk ' �
√

8/5,−
√

12/5� it seems.
k xk yk

0 −1 −1
1 −1.3 −1.7
2 −1.2653846 −1.555824
3 −1.2649112 −1.5492077
4 −1.2649111 −1.5491933
5 −1.2649111 −1.5491933

Here xk ' �−
√

8/5,−
√

12/5�.
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(c) The results don’t seem too strange; each initial vector is in a different quadrant and the limit is an intersection
point in the same quadrant.

28. (a) k xk yk

0 1.4 10
1 54.7 −317.452
2 28.0832917 −75583.381
3 14.8412307 −9364.2812
4 8.35050251 −1128.3294
5 5.34861164 −119.96986
6 4.2264792 −4.8602841
7 4.00886454 4.73583325
8 4.0001468 4.99959722
9 4 5

10 4 5
(b) k xk yk

0 1.3 10
1 −105.35 641.7815
2 −52.041661 606283.635
3 −25.420779 75622.9747
4 −12.17662 9372.7823
5 −5.6848239 1132.95037
6 −2.6823677 124.108919
7 −1.5599306 8.94078154
8 −1.3422068 −0.6614827
9 −1.333348 −0.9255223

10 −1.3333333 −0.9259259
11 −1.3333333 −0.9259259

(c) (1.3, 10) is a good deal closer to (4, 5) than it is to (−1.3333333, −0.9259259).
(d) It seems surprising that, beginning with x0 D �1.3, 10�, we found the limit we did, especially when x0 D

�1.4, 10� causes things to converge to (4, 5). This suggests that, when there are multiple solutions, it can be
difficult to know to which solution the initial vector will converge.

29. Formula (6) says xkC1 D xk − [Df�xk�]−1f�xk�. But if xk solves (2) exactly, then f�xk� D 0. Thus xkC1 D
xk − [Df�xk�]−10 D xk . By the same argument xk D xkC2 D xkC3 D · · ·

30. Df�x, y� D [ fx fy
gx gy

]. By Exercise 36 of §1.6, [Df�x, y�]−1 D 1
fxgy−fygx

[ gy −fy
−gx fx

]. If we evaluate at

�xk−1, yk−1� and calculate, we find that formula (6) tells us that

[ xkyk ] D [ xk−1
yk−1

] − 1
fxgy − fygx

[ gy −fy
−gx fx

] [ fg ]︸ ︷︷ ︸
all evaluated at �xk−1,yk−1�

.

Expanding and taking entries we obtain the desired formulas.

31. DF�x, y� D [4y cos�xy� C 3x2, 4x cos�xy� C 3y2], so we want to solve { 4y cos xy C 3x2 D 0
4x cos xy C 3y2 D 0

. Using the

result of Exercise 30, we have

xk D

6y2
k−1 cos�xk−1yk−1� C xk−1�6�x3

k−1 C 3y3
k−1� sin�xk−1yk−1�−

xk−1yk−1�9 C 8 sin 2xk−1yk−1��

2�2 − 9xk−1yk−1 C 2 cos�2xk−1yk−1� C 6�x3
k−1 C y3

k−1� sin�xk−1yk−1�−
4xk−1yk−1 sin�2xk−1yk−1��

yk D

6x2
k−1 cos�xk−1yk−1� C yk−1�6�3x3

k−1 C y3
k−1� sin�xk−1yk−1�−

xk−1yk−1�9 C 8 sin�2xk−1yk−1���

2�2 − 9xk−1yk−1 C 2 cos�2xk−1yk−1� C 6�x3
k−1 C y3

k−1� sin�xk−1yk−1�

−4xk−1yk−1 sin�2xk−1yk−1��
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(This was obtained using Mathematica to simplify.)
Using initial vector �x0, y0� D �−1,−1� and iterating the formulas above we find

k xk yk

0 −1 −1
1 −0.9206484 −0.9206484
2 −0.9073724 −0.9073724
3 −0.9070156 −0.9070156
4 −0.9070154 −0.9070154
5 −0.9070154 −0.9070154 ( Here’s the approximate root.

32. (a) Here we’re trying to solve the system


x2 C y2 C z2 D 4
x2 C y2 D 1
4y2 C z2 D 4.

Hence we define f�x, y, z� D �x2 C y2 C

z2 − 4, x2 C y2 − 1, 4y2 C z2 − 4�.

Thus Df�x, y, z� D


 2x 2y 2z

2x 2y 0
0 8y 2z


. It follows (see Exercise 37 of §1.6) that

[Df�x, y, z�]−1 D



1
8x

3
8x

− 1
8x

− 1
8y

1
8y

1
8y

1
2z

− 1
2z

0

 .

Thus


 xkyk
zk


 D


 xk−1
yk−1
zk−1


 − [Df�xk−1, yk−1, zk−1�]−1

 x
2
k−1 C y2

k−1 C z2k−1 − 4

x2
k−1 C y2

k−1 − 1

4y2
k−1 C z2k−1 − 4

.

This simplifies to give

xk D xk−1

2
C 3

8xk−1

yk D yk−1

2
C 1

8yk−1

zk D zk−1

2
C 3

2zk−1

Newton’s method with x0 D �1, 1, 1� gives the following set of results
k xk yk zk

0 1 1 1
1 0.875 0.625 2
2 0.86607143 0.5125 1.75
3 0.86602541 0.50015244 1.73214286
4 0.8660254 0.50000002 1.73205081
5 0.8660254 0.5 1.73205081
6 0.8660254 0.5 1.73205081

With x0 D �1,−1, 1�, we find
k xk yk zk

0 1 −1 1
1 0.875 −0.625 2
2 0.86607143 −0.5125 1.75
3 0.86602541 −0.5001524 1.73214286
4 0.8660254 −0.5 1.73205081
5 0.8660254 −0.5 1.73205081
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(b) We solve


x2 C y2 C z2 D 4
x2 C y2 D 1
4y2 C z2 D 4

by hand. First insert the second equation into the first: 1 C z2 D 4 3 z D

;

√
3. Use this in the third equation 4y2 C 3 D 4 3 y D ;

1
2

.

Now use this in the second equation: x2 C 1
4
D 1 3 x D ;

√
3

2
.

So we have 8 solutions:

(√3
2
,

1
2
,
√

3) , (−√
3

2
,

1
2
,
√

3) , (−√
3

2
,−1

2
,
√

3) , (√3
2
,−1

2
,
√

3)
(√3

2
,

1
2
,−

√
3) , (−√

3
2
,

1
2
,−

√
3) , (−√

3
2
,−1

2
,−

√
3) , (√3

2
,−1

2
,−

√
3)

We found two of them above.

2.5 THE CHAIN RULE

In Exercises 1–3 students see that if you have a composite function you can take the derivative either by substituting or
by using the chain rule.

1. f�x, y, z� D x2 − y3 C xyz, x D 6t C 7, y D sin 2t, and z D t2.

Substitution:

f�x�t�, y�t�, z�t��D �6t C 7�2 − �sin 2t�3 C �6t C 7��sin 2t��t2�

D �6t C 7�2 − �sin 2t�3 C �6t3 C 7t2��sin 2t� and so

df

dt
D 2�6t C 7�6 − 3�sin 2t�2�2 cos 2t� C �18t2 C 14t� sin 2t C �6t3 C 7t2��2 cos 2t�

Chain Rule:

df

dt
D �f

�x

dx

dt
C �f

�y

dy

dt
C �f

�z

dz

dt

D �2x C yz��6� C �−3y2 C xz��2 cos 2t� C �xy��2t�

D [2�6t C 7� C �sin 2t��t2�]�6� C [−3 sin2 2t C �6t C 7�t2]�2 cos 2t� C [�6t C 7� sin 2t]�2t�

2. f�x, y� D sin�xy�, x D s C t, and y D s2 C t2.
(a) f�x�t�, y�t��D sin�x�t�y�t�� D sin[�s C t��s2 C t2�].

�f

�s
D cos[�s C t��s2 C t2�][�s2 C t2� C �s C t��2s�]

�f

�t
D cos[�s C t��s2 C t2�][�s2 C t2� C �s C t��2t�]

(b)
�f

�s
D �f

�x

�x

�s
C �f

�y

�y

�s

D y cos�xy� C x cos�xy�2s

D cos[�s C t��s2 C t2�][�s2 C t2� C �s C t��2s�] and

�f

�t
D �f

�x

�x

�t
C �f

�y

�y

�t
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106 Chapter 2 Differentiation in Several Variables

D y cos�xy� C x cos�xy�2t

D cos[�s C t��s2 C t2�][�s2 C t2� C �s C t��2t�]

3. (a) We want

dP

dt
D �P

�x

dx

dt
C �P

�y

dy

dt
C �P

�z

dz

dt

D 12xz

y
�−2 sin t� − 6x2z

y2
�2 cos t� C 6x2

y
�3�

D 12�2 cos t��3t�

2 sin t
�−2 sin t� − 6�4 cos2 t�3t

4 sin2 t
�2 cos t� C 6�4 cos2 t�

2 sin t
�3�

D −72t cos t − 36t
cos3 t

sin2 t
C 36 cos2 t

sin t
.

Therefore,

dP

dt

∣∣∣∣
tDπ/4

D �36 − 27π�√
2

.

(b) P�x�t�, y�t�, z�t��D 6�2 cos t�2�3t�
2 sin t

D 36t cos2 t

sin t
, so

dP

dt
D sin t�36 cos2 t − 36t · 2 cos t sin t� − 36t cos2 t�cos t�

sin2 t
.

Therefore,

dP

dt

∣∣∣∣
tDπ/4

D �36 − 27π�√
2

.

(c) Using differentials,

P L ( dP

dt

∣∣∣∣
tDπ/4

) �dt� D ( 36 − 27π√
2

) �.01� L −.34523.

So (writing P as a function of t),

P�π/4 C .01� L P�π/4� C P L

9π√
2
− .34523 L 19.6477.

4. We are thinking of z D z�s, t� D [x�s, t�]2 C [y�s, t�]3. So

�z

�t
�2, 1� D �z

�x

∣∣∣∣
�2,1�

· �x

�t

∣∣∣∣
�2,1�

C �z

�y

∣∣∣∣∣
�2,1�

· �y

�t

∣∣∣∣
�2,1�

D 2x|�2,1� · s|�2,1� C 0 D 8.

5. Here V D LWH, so

dV

dt
D �V

�L

dL

dt
C �V

�W

dW

dt
C �V

�H

dH

dt

D WH ( dL

dt
) C LH ( dW

dt
) C LW ( dH

dt
)

D 5 · 4�.75� C 7 · 4�.5� C 7 · 5�−1�

D −6 in3/min.

Since
dV

dt
< 0, the volume of the dough is decreasing at this instant.
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6. Let the length of the butter be y and the length of an edge of the cross section be x. Then the volume V D x2y.
The rate at which the volume is changing is

dV

dt
D 2xy

dx

dt
C x2 dy

dt
D 2�1.5��6��−.125� C �1.5�2�−.25� D −2.8125 in3/min.

7. Note that in 6 months:

x D 1 C .6 − cosπ D 2.6

y D 200 C 12 sinπ D 200

The chain rule gives

dP

dt

∣∣∣∣
tD6

D �P

�x

∣∣∣∣ xD2.6
yD200

dx

dt

∣∣∣∣
tD6

C �P

�y

∣∣∣∣∣ xD2.6
yD200

dy

dt

∣∣∣∣
tD6

D 10�0.1x C 10�−
1
2 �0.1�|xD2.6 (0.1 − π

6
sin
πt

6
)∣∣∣∣
tD6

− 4y−
2
3 |yD200 (2 sin

πt

6
C 2πt

6
cos
πt

6
)∣∣∣∣
tD6

D �10.26�−
1
2 �0.1� − 4�200−

2
3 ��−2π�

D 0.031219527 C 0.734885812 D 0.766105339 units/month (demand in rising slightly).

8. (a) The chain rule gives

d

dt
�BMI� D ��BMI�

�w

dw

dt
C ��BMI�

�h

dh

dt

D 10,000
h2

dw

dt
− 20,000 w

h3

dh

dt

On the child’s 10th birthday: w D 33 kg, h D 140 cm,

dw

dt
D 0.4,

dh

dt
D 0.6.

So

d�BMI�

dt
D 10,000

1402
�0.4� − 20,000 · 33

1403
�0.6�

L 0.0598 points/month.

(b) The rate we found in part (a) is greater than the typical rate by about 49%. I’d monitor the situation monthly
so that it doesn’t persist for too long, but I wouldn’t be very concerned, since the current BMI is roughly
16.84, which is quite low.

9. Since x D er cos θ and y D er sin θ we can write

�z

�r
D ( �z

�x
) ( �x

�r
) C ( �z

�y
) ( �y

�r
) D ( �z

�x
) �er cos θ� C ( �z

�y
) �er sin θ�.

Similarly,

�z

�θ
D ( �z

�x
) ( �x

�θ
) C ( �z

�y
) ( �y

�θ
) D ( �z

�x
) �−er sin θ� C ( �z

�y
) �er cos θ�.

Therefore,

( �z

�r
)2

C ( �z

�θ
)2

D e2r [�cos2 θ C sin2 θ�( �z

�x
)2
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108 Chapter 2 Differentiation in Several Variables

C�cos2 θ C sin2 θ� ( �z

�y
)2

C �2 cos θ sin θ − 2 cos θ sin θ�( �z

�x
) ( �z

�y
)




D e2r


( �z

�x
)2

C ( �z

�y
)2


 .

The result follows.

Exercises 10–13 are fun exercises. You may want to stress that we are showing that the partial differential equations
are true without even knowing the “outside” function.

10. We’ll start by calculating the components on the left side:

�z

�x
D �z

�u

�u

�x
C �z

�v

�v

�x

D �z

�u
�1� C �z

�v
�1�

D �z

�u
C �z

�v
and

�z

�y
D �z

�u

�u

�y
C �z

�v

�v

�y

D �z

�u
�1� C �z

�v
�−1�

D �z

�u
− �z

�v
so

�z

�x

�z

�y
D ( �z

�u
C �z

�v
) ( �z

�u
− �z

�v
)

D ( �z

�u
)2

− ( �z

�v
)2

.

11. First calculate:

�u

�x
D y�y

2 − x2�

�x2 C y2�2
and

�u

�y
D x�x

2 − y2�

�x2 C y2�2

Now
x

�w

�x
C y�w

�y
D x�w

�u

�u

�x
C y�w

�u

�u

�y

D ( �w

�u
) (x�u

�x
C y�u

�y
)

D ( �w

�u
) (xy�y2 − x2�

�x2 C y2�2
C yx�x

2 − y2�

�x2 C y2�2
)

D 0.

12. First calculate:
�u

�x
D 4xy2

�x2 C y2�2
and

�u

�y
D −4x2y

�x2 C y2�2
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Now

x
�w

�x
C y�w

�y
D x�w

�u

�u

�x
C y�w

�u

�u

�y

D ( �w

�u
) (x�u

�x
C y�u

�y
)

D ( �w

�u
) (x 4xy2

�x2 C y2�2
C y −4x2y

�x2 C y2�2
)

D 0.

13. �u

�x
D −1
x2

,
�u

�y
D 1
y2

, and
�u

�z
D 0. Also

�v

�x
D −1
x2

,
�v

�y
D 0, and

�v

�z
D 1
z2

. Now it is just a matter of using

the chain rule and plugging in:

x2 �w

�x
C y2 �w

�y
C z2 �w

�z
D x2 [ �w

�u

�u

�x
C �w

�v

�v

�x
] C y2 [ �w

�u

�u

�y
C �w

�v

�v

�y
] C z2 [ �w

�u

�u

�z
C �w

�v

�v

�z
]

D �w

�u
[x2 �u

�x
C y2 �u

�y
C z2 �u

�z
] C �w

�v
[x2 �v

�x
C y2 �v

�y
C z2 �v

�z
]

D �w

�u


x2 (−1

x2
) C y2 ( 1

y2
) C 0


 C �w

�v
[x2 (−1

x2
) C 0 C z2 ( 1

z2
)]

D 0.

14. �u

�x
D 1
y

,
�u

�y
D −x
y2

, and
�u

�z
D 0. Also

�v

�x
D 0,

�v

�y
D −z
y2

, and
�v

�z
D 1
y

. Again, it is just a matter of using

the chain rule and plugging in:

x
�w

�x
C y�w

�y
C z�w

�z
D x [ �w

�u

�u

�x
C �w

�v

�v

�x
] C y [ �w

�u

�u

�y
C �w

�v

�v

�y
] C z [ �w

�u

�u

�z
C �w

�v

�v

�z
]

D �w

�u
[x�u

�x
C y�u

�y
C z�u

�z
] C �w

�v
[x�v

�x
C y �v

�y
C z�v

�z
]

D �w

�u


x ( 1
y

) C y (−x
y2

) C 0


 C �w

�v


0 C y (−z

y2
) C z ( 1

y
)




D 0.

15. (a) f ◦ g D �3�s − 7t�5, e2s−14t� so

D�f ◦ g� D [ 15�s − 7t�4 −105�s − 7t�4

2e2s−14t −14e2x−14t ]
(b)

Df D [ 15x4

2e2x ] D [ 15�s − 7t�4

2e2s−14t ] and Dg D [ 1 −7 ]
We can easily see that Df Dg D D�f ◦ g�.
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110 Chapter 2 Differentiation in Several Variables

16. (a) f ◦ g D �st�2 − 3�s C t2�2 D s2t2 − 3s2 − 6st2 − 3t4, so

D�f ◦ g� D [2st2 − 6s − 6t2 2s2t − 12st − 12t3].

(b) Df D [ 2x −6y ] D [ 2st −6s − 6t2 ], and Dg D [ t s
1 2t ], so

Df Dg D [ 2st −6s − 6t2 ] [ t s
1 2t ] D [2st2 − 6s − 6t2 2s2t − 12st − 12t3].

17. (a) f ◦ g D (�s/t�s2t − s2t

s/t
,
s/t

s2t
C s6t3) D (s3 − st2,

1
st2

C s6t3), so

D�f ◦ g� D [ 3s2 − t2 −2st
−1/�s2t2� C 6s5t3 −2/�st3� C 3s6t2 ]

(b)

Df D


 y C y

x2
x − 1

x
1
y

−x
y2 C 3y2


 D


 s2t C s2t

s2/t2
s

t
− t

s
1
s2t

−s/t
s4t2

C 3s4t2


 D


 s2t C t3 s2−t2

st
1
s2t

− 1
s3t3

C 3s4t2




and Dg D [ 1
t

− s

t2

2st s2
] so

Df Dg D


 s2t C t3 s2−t2

st
1
s2t

− 1
s3t3

C 3s4t2


 [ 1

t
− s

t2

2st s2
] D [ 3s2 − t2 −2st

−1
s2t2

C 6s5t3 −2
st3

C 3s6t2 ] .
18. (a) f ◦ g D ��t − 2�2�3t C 7� C �3t C 7�2t3, �t − 2��3t C 7�t3, et

3
� so

D�f ◦ g� D

 45t4 C 168t3 C 156t2 − 10t − 16
15t4 C 4t3 − 42t2

3t2et
3

 .
(b)

D�f� D


 2xy x2 C 2yz y2

yz xz xy
0 0 ez




D

 2�t − 2��3t C 7� �t − 2�2 C 2�3t C 7�t3 �3t C 7�2

�3t C 7�t3 �t − 2�t3 �t − 2��3t C 7�
0 0 et

3



and D�g� D


 1

3
3t2


 so D�f�D�g� D

 45t4 C 168t3 C 156t2 − 10t − 16
15t4 C 4t3 − 42t2

3t2et
3

 .
19. (a) f ◦ g D �st C tu C su, s3t3 − estu2

� so

D�f ◦ g� D [ t C u s C u s C t
3s2t3 − tu2estu2

3s3t2 − su2estu2 −2stuestu2 ] .
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(b)

Df D [ 1 1 1
3x2 −zeyz −yeyz ] D [ 1 1 1

3s2t2 −suestu2 −tuestu2 ]
and Dg D


 t s 0

0 u t
u 0 s


 so DfDg D [ t C u s C u s C t

3s2t3 − tu2estu2
3s3t2 − su2estu2 −2stuestu2 ] .

20. This is a matter of seeing what we have to determine and which formula to use. We calculate D�f ◦ g��1,−1, 3�
as Df�g�1,−1, 3��D�g�1,−1, 3��. The second piece is given in the exercise. For the first we calculate

Df�g�1,−1, 3�� D [ 2y 2x
3 −1 ]∣∣∣∣

g�1,−1,3�
D [ 2y 2x

3 −1 ]∣∣∣∣
�2,5�

D [ 10 4
3 −1 ] .

Then we can multiply the matrices to get the result

D�f ◦ g��1,−1, 3� D [ 10 4
3 −1 ] [ 1 −1 0

4 0 7 ] D [ 26 −10 28
−1 −3 −7 ] .

21. (a) This is similar to Exercise 20.

D�f ◦ g��1, 2� D Df�g�1, 2��Dg�1, 2� D Df�3, 5�Dg�1, 2�

D [ 1 1
3 5 ] [ 2 3

5 7 ] D [ 7 10
31 44 ]

(b)

D�g ◦ f��4, 1� D Dg�f�4, 1��Df�4, 1� D Dg�1, 2�Df�4, 1�

D [ 2 3
5 7 ] [ −1 2

1 3 ] D [ 1 13
2 31 ]

22. We’ll start with the right hand side of the equation because we can easily calculate the partials of x and y with
respect to r and θ.

( �z

�r
)2

C 1
r2

( �z

�θ
)2

D ( �z

�x

�x

�r
C �z

�y

�y

�r
)2

C 1
r2

( �z

�x

�x

�θ
C �z

�y

�y

�θ
)2

D ( �z

�x
)2 [( �x

�r
)2

C 1
r2

( �x

�θ
)2] C ( �z

�y
)2 [( �y

�r
)2

C 1
r2

( �y

�θ
)2]

C 2
�z

�x

�z

�y
[ �y

�r

�x

�r
C 1
r2

�x

�θ

�y

�θ
]

D ( �z

�x
)2 [cos2 θ C 1

r2
�r2 sin2 θ�] C ( �z

�y
)2 [sin2 θ C 1

r2
�r2 cos2 θ�]

C 2
�z

�x

�z

�y
[sin θ cos θ C 1

r2
�−r sin θ��r cos θ�] D ( �z

�x
)2

C ( �z

�y
)2

23. (a) From formula (10) in Section 2.5, we have

�

�x
D cos θ

�

�r
− sin θ

r

�

�θ
and

�

�y
D sin θ

�

�r
C cos θ

r

�

�θ
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Hence if z D f�x, y�, then

�2z

�x2
D �

�x
( �z

�x
) D cos θ

�

�r
( �z

�x
) − sin θ

r

�

�θ
( �z

�x
)

D cos θ
�

�r
(cos θ

�z

�r
− sin θ

r

�z

�θ
) − sin θ

r

�

�θ
(cos θ

�z

�r
− sin θ

r

�z

�θ
)

Now use the product rule:

�2z

�x2
D cos θ (cos θ

�2z

�r2
C sin θ
r2

�z

�θ
− sin θ

r

�2z

�r�θ
)

− sin θ
r

(− sin θ
�z

�r
C cos θ

�2z

�θ�r
− cos θ

r

�z

�θ
− sin θ

r

�2z

�θ2
)

D cos2 θ
�2z

�r2
C 2 sin θ cos θ

r2
�z

�θ
− 2 sin θ cos θ

r

�2z

�r�θ
C sin2 θ

r

�z

�r
C sin2 θ

r2
�2z

�θ2
.

Follow the same steps to calculate

�2z

�y2
D �

�y
( �z

�y
) D sin θ

�

�r
( �z

�y
) C cos θ

r

�

�θ
( �z

�y
)

D sin θ
�

�r
(sin θ

�z

�r
C cos θ

r

�z

�θ
) C cos θ

r

�

�θ
(sin θ

�z

�r
C cos θ

r

�z

�θ
)

D sin2 θ
�2z

�r2
− 2 sin θ cos θ

r2
�z

�θ
C 2 sin θ cos θ

r

�2z

�θ�r
C cos2 θ

r

�z

�r
C cos2 θ

r2
�2z

�θ2
.

(b) Adding the two equations above we easily see that

�2

�x2
C �2

�y2
D �2

�r2
C 1
r

�

�r
C 1
r2

�2

�θ2
.

24. Given Exercise 23, this is easy: We know
�2

�x2
C �2

�y2
D �2

�r2
C 1
r

�

�r
C �

r2
�2

�θ2
. Since the z-coordinate means

the same thing in both Cartesian and cylindrical coordinates, the result follows.

25. (a) The chain rule gives
�w

�ρ
D �w

�r

�r

�ρ
C �w

�θ

�θ

�ρ
C �w

�z

�z

�ρ
for any appropriately differentiable function w.

Now (6) of §1.7 gives z D ρ cosϕ, r D ρ sinϕ. Hence

�w

�ρ
D sinϕ

�w

�r
C 0 C cosϕ

�w

�z
D sinϕ

�w

�r
C cosϕ

�w

�z
.

Also
�w

�ϕ
D ρ cosϕ

�w

�r
− ρ sinϕ

�w

�z
from a similar chain rule computation.

From this, we have

ρ sinϕ
�w

�ρ
C cosϕ

�w

�ϕ
D (ρ sin2 ϕ

�w

�r
C ρ sinϕ cosϕ

�w

�z
) C (ρ cos2 ϕ

�w

�r
− ρ cosϕ sinϕ

�w

�z
)

D ρ�w

�r
.

Thus
�w

�r
D sinϕ

�w

�ρ
C cosϕ

ρ

�w

�ϕ
or

�

�r
D sinϕ

�

�ρ
C cosϕ

ρ

�

�ϕ
.

(Alternatively, consider formula (10) in this section with x D z, y D r, θ replaced by ϕ, and r replaced
by ρ.)
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(b) The cylindrical Laplacian is
�2

�r2
C �2

�z2
C 1
r2

�2

�θ2
C 1
r

�

�r
. From z D ρ cosϕ, r D ρ sinϕ, we may treat

z and r as if they are Cartesian coordinates, so that

�2

�r2
C �2

�z2
D �2

�ρ2
C 1
ρ2

�2

�ϕ2
C 1
ρ

�

�ρ
�Cartesian/cylindrical�

Now we know
�

�r
from part (a). So, with r D ρ sinϕ, we have

( �2

�r2
C �2

�z2
) C 1

r2
�2

�θ2
C 1
r

�

�r
D ( �2

�ρ2
C 1
ρ2

�2

�ϕ2
C 1
ρ

�

�ρ
)

C 1
ρ2 sin2 ϕ

�2

�θ2
C 1
ρ sinϕ

(sinϕ
�

�ρ
C cosϕ

ρ

�

�ϕ
)

D �2

�ρ2
C 1
ρ2

�2

�ϕ2
C 2
ρ

�

�ρ
C 1
ρ2 sin2 ϕ

�2

�θ2
C cotϕ

ρ2

�

�ϕ
as desired.

Exercises 26–28 puts the implicit differentiation techniques which the students learned in a previous course in the
context of the current discussion. This is one of those problems where it would be immediately clear if we were able to talk
to each other. The problem is explaining to you which derivative with respect to x is being considered. One solution is to
introduce another variable. You might want to use this as an example of why the author introduces the notation she does for
Exercises 31–35. One other note is that the results hold also for F�x, y� or F�x, y, z� being constant (not necessarily 0).

26. (a) View x and y as functions of t, where x D x�t� D t and y D y�t�. Since F�x, y� D 0 we know that
Ft�x, y� D 0. This means that we know:

0 D dF

dt
D Fx�x, y�dx

dt
C Fy�x, y�dy

dt
.

But
dx

dt
D 1 and

dy

dt
D dy

dx
so

dy

dx
D −Fx�x, y�

Fy�x, y�
.

(b-i) If F�x, y� D x3 − y2 then Fx�x, y� D 3x2 and Fy�x, y� D −2y so
dy

dx
D − 3x2

−2y
D 3x2

2y
.

(b-ii) y2 D x3 so y D x3/2 so
dy

dx
D 3

2
x1/2. Multiply numerator and denominator by x3/2 to get the answer in

(b-i).
27. Here we’ll just use the formula from Exercise 26(a) where here F�x, y� D sin�xy� − x2y7 C ey.

dy

dx
D − y cos�xy� − 2xy7

x cos�xy� − 7x2y6 C ey
.

The results of Exercise 28 are used in Exercises 33 and 35 in a nice way. None of them is very time consuming—it is
worth assigning all three.

28. (a) We have the same problem here with ambiguity about what is meant by the derivative with respect to x and
y. Let x D x�s, t� D s, y D y�s, t� D t, and z D z�s, t�. Then

0 D �F

�s
D Fx�x, y, z��x

�s
C Fy�x, y, z��y

�s
C Fz�x, y, z��z

�s
D Fx�x, y, z� C Fz�x, y, z��z

�x
.

Solving we get
�z

�x
D −Fx�x, y, z�

Fz�x, y, z�
.

An analogous calculation gives
�z

�y
D −Fy�x, y, z�

Fz�x, y, z�
.
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114 Chapter 2 Differentiation in Several Variables

(b-i) F�x, y, z� D xyz − 2 so by part (a):

�z

�x
D − yz

xy
D − z

x
and

�z

�y
D − xz

xy
D − z

y
.

(b-ii) z D 2/xy so
�z

�x
D −2
x2y

and
�z

�y
D −2

xy2
.

29. Use the equations from Exercise 28(a) for F�x, y, z� D x3z C y cos z C �sin y�/z D 0:

�z

�x
D −3x2z

x3 − y sin z − �sin y�/z2
D −3x2z3

x3z2 − yz2 sin z − sin y
and

�z

�y
D − cos z − �cos y�/z

x3 − y sin z − �sin y�/z2
D −z2 cos z − z cos y

x3z2 − yz2 sin z − sin y
.

Exercise 30 is a good example of why you can not just blindly apply formulas such as the chain rule without first
checking that all of the hypotheses are met.

30. (a) By definition

fx�0, 0� D lim
h'0

f�h, 0� − f�0, 0�
h

D lim
h'0

0
h
D 0, and

fy�0, 0� D lim
h'0

f�0, h� − f�0, 0�
h

D lim
h'0

0
h
D 0.

(b)

f ◦ x D


at

1 C a2
if t Z 0

0 if t D 0

therefore f ◦ x D at

1 C a2
and so D�f ◦ x��0� D a

1 C a2
.

(c) By definition, D�f��0, 0� D [fx�0, 0�, fy�0, 0�]. We calculated these in part (a) to be 0 so

Df�0, 0�Dx�0� D [ 0 0 ] [ 1
a ] D 0.

The function f is not differentiable at the origin and so not all of the assumptions of the chain rule are met.

31. (a) ( �w

�x
)
y,z

D 1, ( �w

�y
)
x,z

D 7, ( �w

�z
)
x,y

D −10, ( �w

�x
)
y

D 1 − 10�2x� D 1 − 20x, and ( �w

�y
)
x

D

7 − 10�2y� D 7 − 20y.

(b) ( �w

�x
)
y

D ( �w

�x
)
y,z

( �x

�x
) C ( �w

�y
)
x,z

( �y

�x
) C ( �w

�z
)
x,y

( �z

�x
). But

�x

�x
D 1 and

�y

�x
D 0 so ( �w

�x
)
y

D

( �w

�x
)
y,z

C ( �w

�z
)
x,y

( �z

�x
).

32. ( �w

�x
)
y,z

D 3x2, ( �w

�y
)
x,z

D 3y2,( �w

�z
)
x,y

D 3z2,( �w

�x
)
y

D 3x2 C 3z2�2� D 3x2 C 6�2x − 3y�2, and

( �w

�y
)
x

D 3y2 C 3z2�−3� D 3y2 − 9�2x − 3y�2.

33. ( �s

�z
)
x,y,w

D xw − 2z, so ( �s

�z
)
x,w

D ( �s

�z
)
x,y,w

C ( �s

�y
)
x,z,w

( �y

�z
)
x,w

.
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To calculate ( �y

�z
)
x,w

we can use the results of Exercise 28 with F�x, y, z,w� D xyw − y3z C xz:

( �y

�z
)
x,w

D −Fz�x, y, z,w�
Fy�x, y, z,w�

D − −y3 C x
xw − 3y2z

.

So ( �s

�z
)
x,w

D xw − 2z C �x2� ( y3 − x
xw − 3y2

).

34. U D F�P, V , T� and PV D kT.

(a) ( �U

�T
)
P

D ( �U

�T
)
P,V

C ( �U

�V
)
P,T

( �V

�T
) D FT �P, V , T� C FV�P, V , T�( k

P
).

(b) ( �U

�T
)
V

D ( �U

�T
)
P,V

C ( �U

�P
)
V,T

( �P

�T
) D FT �P, V , T� C FP�P, V , T�( k

V
).

(c) ( �U

�P
)
V

D ( �U

�P
)
V,T

C ( �U

�T
)
P,V

( �T

�P
) D FP�P, V , T� C FT �P, V , T�(V

k
).

35. ( �x

�y
)
z

( �y

�z
)
x

( �z

�x
)
y

D (−Fy�x, y, z�
Fx�x, y, z�

) (−Fz�x, y, z�
Fy�x, y, z�

) (−Fx�x, y, z�
Fz�x, y, z�

) D −1.

36. In this case P D kT/V so ��P/�T�V D k/V . Similarly, V D kT/P so ��V/�P�T D −kT/P2 and T D PV/k
so ��T/�V�P D P/k. So

( �x

�y
)
z

( �y

�z
)
x

( �z

�x
)
y

D ( k
V

) (−kt
P2

) (P
k

) D −kTP

VP2
D −kT

VP
D −1.

The last equality holds since PV D kT.

37. It is easiest to use implicit differentiation and solve. For example, for the equation ax2 C by2 C cz2 − d D 0,
hold z constant and take the derivative with respect to y. You get 2ax��x/�y�z C 2by D 0. Solve this and get
��x/�y�z D −by/ax. Similarly we get that ��y/�z�x D −cz/by and ��z/�x�y D −ax/cz. So

( �x

�y
)
z

( �y

�z
)
x

( �z

�x
)
y

D (−by

ax
) (−cz

by
) (−ax

cz
) D −1.

2.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT

1. (a) §f�x, y, z� · �−k� is the directional derivative of f�x, y, z� in the direction −k (i.e., the negative
z direction).

(b) §f�x, y, z� · �−k� D ( �f

�x
, �f

�y
, �f

�z
) · �0, 0,−1� D − �f

�z
.

In Exercises 2–8, the students should notice that the given vector u is not always a unit vector and that they may have
to normalize it first.

2. §f�x, y� D �ey cos x, ey sin x� so §f�π/3, 0� D �1/2,
√

3/2�.

Duf�π/3, 0� D §f�π/3, 0� · �3,−1�/
√

10 D 3 −
√

3
2
√

10
.

3. §f�x, y� D �2x − 6x2y,−2x3 C 6y2�, so §f�2,−1� D �28,−10� and

Duf�2,−1� D �28,−10� · �1, 2�√
5

D 8√
5
.
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4. As noted above, here we have to normalize u so Du�f�a�� D §f�a� · u
||u||

.

§f�x, y� D ( −2x
�x2 C y2�2

,
−2y

�x2 C y2�2
) so §f�3,−2� D �1/169��−6, 4� and

Duf�a� D (−6
169
,

4
169

) · �1,−1�√
2

D −10

169
√

2
.

5. §f�x, y� D �ex − 2x, 0� so §f�1, 2� D �e − 2, 0� and

Duf�a� D �e − 2, 0� · �2, 1�√
5

D 2e − 4√
5
.

6. §f�x, y, z� D �yz, xz, xy� so §f�−1, 0, 2� D �0,−2, 0� and

Duf�a� D �0,−2, 0� · �−1, 0, 2�√
5

D 0.

7. §f�x, y, z� D −e−�x2Cy2Cz2��2x, 2y, 2z� so §f�1, 2, 3� D −e−14�2, 4, 6� and

Duf�a� D −e−14�2, 4, 6� · �1, 1, 1�√
3

D −4
√

3e−14.

8. §f�x, y, z� D ( ey

3z2C1
, xe

y

3z2C1
, −6xeyz
�3z2C1�2

) so §f�2,−1, 0� D �e−1, 2e−1, 0� and

Duf�a� D �e−1, 2e−1, 0� · �1,−2, 3�√
14

D −3
e
√

14
.

9. (a)

fx�0, 0� D lim
h'0

f�h, 0� − f�0, 0�
h

D lim
h'0

0 − 0
h

D 0.

fy�0, 0� D lim
h'0

f�0, h� − f�0, 0�
h

D lim
h'0

0 − 0
h

D 0.

(b)

D�u,v�f �0, 0� D lim
h'0

f�hu, hv� − 0

h
D lim
h'0

hu|hv|
h
√
h2u2 C h2v2

But (u, v ) is a unit vector so this

D lim
h'0

hu|h||v|
h|h|�1�

D u|v|

for all unit vectors (u, v ).
(c) The graph is shown below.
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10. (a)

fx�0, 0� D lim
h'0

f�h, 0� − f�0, 0�
h

D lim
h'0

0 − 0
h

D 0.

fy�0, 0� D lim
h'0

f�0, h� − f�0, 0�
h

D lim
h'0

0 − 0
h

D 0.

(b)

D�u,v�f �0, 0� D lim
h'0

f�hu, hv� − 0

h
D lim
h'0

�hu��hv�

h
√
h2u2 C h2v2

But (u, v ) is a unit vector so this

D lim
h'0

h2uv

h|h|
D uv�sgn�h��

for all unit vectors (u, v ) where sgn(h) is 1 for h Ú 0 and −1 for h < 0. Unless u or v are zero, this limit
doesn’t exist.

(c) The graph is shown below.

-1
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0

0.5

1

x
-1

-0.5

0

0.5

1

y

-0.5

0

0.5

z

11. The gradient direction for the function h is §h D �−6xy2,−6x2y�.
(a) Head in the direction §h�1,−2� D �−24, 12�. If you prefer your directions given by a unit vector, we

normalize to obtain:
§h�1,−2�

||§h�1,−2�||
D �−24, 12�√

242 C 122
D �−2, 1�√

5
.

(b) Head in a direction orthogonal to your answer for part (a): ;
�1,2�√

5
.

12. fx�3, 7� D 3 and fy�3, 7� D −2 so the gradient is §f�3, 7� D �3,−2�.
(a) To warm up we head in the direction of the gradient; this is the unit vector �3,−2�/

√
13.

(b) To cool off we head in the opposite direction; this is the unit vector �−3, 2�/
√

13.
(c) To maintain temperature we head in a direction orthogonal to the gradient, namely ;�2, 3�/

√
13.

13. We begin by heading east and keep heading towards lower levels while intersecting each level curve orthogonally.
See the solution given in the text.

14. We’re looking at the top half of this ellipsoid. The equation is f�x, y� D z D
√

4 − x2 − y2/4. For the path of
steepest descent, we look at the negative gradient

−§f�x, y� D �1/2��4 − x2 − y2/4�−1/2�2x, y/2�.

This means that
dy

dx
D y/2

2x
D y

4x
.

This is the separable differential equation �4/y� dy D �1/x� dx or 4 ln y D ln x C c. Work the usual magic and
get y4 D kx. So the raindrops will follow curves of that form where z is constrained by the surface of the ellipsoid.
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15. We want to head in the direction of the negative gradient. Since M�x, y� D 3x2 C y2 C 5000, the negative
gradient is −§M�x, y� D �−6x,−2y�. This means that

dy

dx
D −2y

−6x
D y

3x
.

This is the separable differential equation �3/y� dy D �1/x� dx or 3 ln y D ln x C c. Work the usual magic and
get y3 D kx. Substitute in the point (8, 6) to solve for k to end up with the path y3 D 27x.

For Exercises 16–22 we can use equations (5) and (6) from Section 2.6 in the text.

16. f�x, y, z� D x3 C y3 C z3 D 7 so §f�x, y, z� D �3x2, 3y2, 3z2� and §f�0,−1, 2� D �0, 3, 12�. So the
equation of the tangent plane is:

0 D �0, 3, 12� · �x − 0, y C 1, z − 2� or y C 4z D 7.

17. f�x, y, z� D zey cos x D 1 so §f�x, y, z� D �−zey sin x, zey cos x, ey cos x� and §f�π, 0,−1� D �0, 1,−1�.
So the equation of the tangent plane is:

0 D �0, 1,−1� · �x − π, y, z C 1� or y − z D 1.

18. f�x, y, z� D 2xz C yz − x2y C 10 D 0 so §f�x, y, z� D �2x − 2xy, z − x2, 2x C y� and §f�1,−5, 5� D
�20, 4,−3�. So the equation of the tangent plane is:

0 D �20, 4,−3� · �x − 1, y C 5, z − 5� or 20x C 4y − 3z D −15.

19. f�x, y, z� D 2xy2 − 2z2 C xyz so §f�x, y, z� D �2y2 C yz, 4xy C xz, xy − 4z� and §f�2,−3, 3� D
�9,−18,−18�. So the equation of the tangent plane is:

0 D �9,−18,−18� · �x − 2, y C 3, z − 3� or x − 2y − 2z D 2.

20. (a) First we use the formula (4) from Section 2.3 in the text: z D f�a, b� C fx�a, b��x − a� C fy�a, b��y −
b�. If x2 − 2y2 C 5xz D 7 then z D 7C2y2−x2

5x
D f�x, y�. Calculate the two partial derivatives:

fx�x, y� D −7 − 2y2 − x2

5x2
so fx�−1, 0� D −8

5

and fy�x, y� D 4y

5x
so fy�−1, 0� D 0.

At �−1, 0,−6/5� formula (4) gives the equation of the tangent plane as

z D −6
5

C −8
5
�x C 1�.

(b) Now we’ll use formula (6) from this section and calculate the gradient of f�x, y, z� D x2 − 2y2 C 5xz
as §f�x, y, z� D �2x C 5z,−4y, 5x� so §f�−1, 0,−6/5� D �−8, 0,−5� and so the equation for the
plane is

0 D �−8, 0,−5� · �x C 1, y, z C 6/5� or − 8x − 5z D 14.

This agrees with the answer we found in part (a).
21. (a) First we use the formula (4) from Section 2.3 in the text: x D f�a, b� C fy�a, b��y − a� C fz�a, b��z −

b�. If x sin y C xz2 D 2eyz then x D 2eyz

sin yCz2 D f�y, z�. Calculate the two partial derivatives:

fy�y, z� D 2eyz z sin y C z3 − cos z

�sin y C z2�2
so fy�π/2, 0� D 0

and fz�y, z� D 2eyz y sin y C yz2 − 2z

�sin y C z2�2
so fz�π/2, 0� D π.
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At �2, π/2, 0� formula (4) gives the equation of the tangent plane as

x D 2 C πz.

(b) Now we’ll use formula (6) from this section and calculate the gradient of f�x, y, z� D x sin y C xz2 − 2eyz

as §f�x, y, z� D �sin y C z2,−x cos y − 2zeyz, 2xz − 2yeyz� so §f�2, π/2, 0� D �1, 0,−π� and so the
equation for the plane is

0 D �1, 0,−π� · �x − 2, y − π/2, z� or x − 2 − πz D 0.

This agrees with the answer we found in part (a).
22. Using formula (6) we get that the gradient of f�x, y, z� D x3 − 2y2 C z2 at �x0, y0, z0� is §f�x0, y0, z0� D
�3x2

0,−4y0, 2z0�. For this to be perpendicular to the given line, �3x2
0,−4y0, 2z0� D k�3, 2,−

√
2�. This means

that x2
0 D −2y0 and z0 D −�

√
2/2�x2

0. Substituting this back into the equation of the surface, we get that
x3

0 − 2x4
0/4 C x4

0/2 D 27 or x0 D 3. Our point is, therefore �3,−9/2,−9
√

2/2�.
23. The tangent plane to the surface at a point �x0, y0, z0� is

0 D 18x0�x − x0� − 90y0�y − y0� C 10z0�z − z0�.

For this to be parallel to x C 5y − 2z D 7, the vector

�18x0,−90y0, 10z0� D k�1, 5,−2�.

This means that y0 D −x0 and z0 D �−18/5�x0. Substitute these back into the equation of the hyperboloid:
9x2 − 45y2 C 5z2 D 45 to get:

45 D 9x2
0 − 45x2

0 C 5�182/52�x2
0 therefore x0 D ;5/4.

This means that the points are �5/4,−5/4,−9/2� and �−5/4, 5/4, 9/2�.

24. First note that �2, 1,−1� lies on both surfaces: 7 · 22 − 12 · 2 − 5 · 1 D −1, 2 · 1�−1�2 D 2. The normal
to the first surface at �2, 1,−1� is given by �fx�2, 1�, fy�2, 1�,−1� where f�x, y� D 7x2 − 12x − 5y2. This
is ��14x − 12�|�2,1�,−10y|�2,1�,−1� D �16,−10,−1�. The normal to the second surface at �2, 1,−1� is
§F�2, 1,−1� where F�x, y, z� D xyz2. This is �yz2, xz2, 2xyz�|�2,1,−1� D �1, 2,−4�. We have

�16,−10,−1� · �1, 2,−4� D 16 − 20 C 4 D 0.

Since the normals are orthogonal, the tangent planes must be so as well.
25. The two surfaces are tangent at �x0, y0, z0� 3 the tangent planes at �x0, y0, z0� are the same 3 normal vectors

at �x0, y0, z0� are parallel (since the surfaces intersect at �x0, y0, z0�� 3 §F�x0, y0, z0� * §G�x0, y0, z0� D 0.

26. (a) S is the level set at height 0 of f�x, y, z� D x2 C 4y2 − z2 so §f D �2x, 8y,−2z�*

§f�3,−2,−5� D �6,−16, 10�. Thus formula (6) gives the equation of the tangent plane as 6�x − 3� −
16�y C 2� C 10�z C 5� D 0 or 3x − 8y C 5z D 0.

(b) §f�0, 0, 0� D �0, 0, 0� so formula (6) cannot be used. Note that there’s no tangent plane at the origin,
which is the vertex of the cone (i.e., the surface is not “locally flat” there).

27. (a) For f�x, y, z� D x3 − x2y2 C z2,§f�x, y, z� D �3x2 − 2xy2,−2x2y, 2z� so §f�2,−3/2, 1� D
�3, 12, 2�. Thus the equation of the tangent plane is

3�x − 2� C 12�y C 3/2� C 2�z − 1� D 0 or 3x C 12y C 2z C 10 D 0.

(b) §f�0, 0, 0� D �0, 0, 0� so the gradient cannot be used as a normal vector. If we solve z D ;

√
y2x2 − x3 D

;x
√
y2 − x, we see that g�x, y� D x

√
y2 − x fails to be differentiable at (0, 0)—so there is no tangent

plane there.
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120 Chapter 2 Differentiation in Several Variables

28. (a) 2x C 2y
dy

dx
D 0 so

dy

dx

∣∣∣∣
�−

√
2,
√

2�
D −x
y

∣∣∣∣∣
�−

√
2,
√

2�

D −
√

2
−
√

2
D 1.

The equation of the line is y −
√

2 D x C
√

2.
(b) The equation of the tangent line is 0 D §f�x0, y0� · �x − x0, y − y0�. Here f�x, y� D x2 C y2 D 4 so

§f�x, y� D �2x, 2y� or §f�−
√

2,
√

2� D �−2
√

2, 2
√

2�. The equation of the tangent line is

0 D �−2
√

2, 2
√

2� · �x C
√

2, y −
√

2� or x − y D −2
√

2.

29. (a) 3y2 dy

dx
D 2x C 3x2 so

dy

dx

∣∣∣∣
�1, 3√2�

D 5
�3�22/3

. The equation of the tangent line is

y − 3
√

2 D 5
�3�22/3

�x − 1�.

(b) f�x, y� D y3 − x2 − x3 so §f�x, y� D �−2x − 3x2, 3y2� so §f�1, 3
√

2� D �−5, �3�22/3�. The equation
of the tangent line is

0 D �−5, �3�22/3� · �x − 1, y − 3
√

2� or − 5x C �3�22/3y D 1.

30. (a) 5x4 C 2y C 2x
dy

dx
C 3y2 dy

dx
D 0 so

dy

dx

∣∣∣∣
�2,−2�

D −76
16

D −19
4

. The equation of the tangent line is

y C 2 D −19
4
�x − 2�.

(b) f�x, y� D y3 − x2 − x3 so §f�x, y� D �5x4 C 2y, 2x C 3y2� so §f�2,−2� D �76, 16�. The equation
of the tangent line is

0 D �76, 16� · �x − 2, y C 2� or 19x C 4y D 30.

31. If f�x, y� D x2 − y2 then §f�5,−4� D �10, 8� so the equations of the normal line are

x�t� D 10t C 5 and y�t� D 8t − 4 or 8x − 10y D 80.

32. If f�x, y� D x2 − x3 − y2 then §f�−1,
√

2� D �5, 2
√

2� so the equations of the normal line are

x�t� D 5t − 1 and y�t� D 2
√

2t −
√

2 or 2
√

2x − 5y D −7
√

2.

33. If f�x, y� D x3 − 2xy C y5 then §f�2,−1� D �14, 1� so the equations of the normal line are

x�t� D 14t C 2 and y�t� D t − 1 or x − 14y D 16.

34. If f�x, y, z� D x3z C x2y2 C sin�yz� then

§f�x, y, z� D �3x2 C 2xy2, 2x2y C z cos�yz�, x3 C y cos�yz��.

(a) The plane is given by 0 D §f�−1, 0, 3� · �x C 1, y, z − 3� D 9�x C 1� C 3y − �z − 3� or
9x C 3y − z D −12.

(b) The normal line to the surface at �−1, 0, 3� is given by
x D 9t − 1
y D 3t
z D −t C 3.
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35. Using the method above for f�x, y, z� D exy C ezx − 2eyz, we find that §f D �yexy C zexz, xexy − 2zeyz, xexz −
2yeyz� so §f�−1,−1,−1� D e�−2, 1, 1�. So

x D −2et − 1
y D et − 1
z D et − 1

or, factoring out e,


x D −2t − 1
y D t − 1
z D t − 1.

36. Remember in the equation of a plane 0 D v · �x − x0, y − y0, z − z0� that v is a vector orthogonal to the plane.
We saw in this section that we can use §f�x0, y0, z0� for v. This means that the equation of the line normal to
a surface given by the equation F�x, y, z� D 0 at a given point �x0, y0, z0� is

�x, y, z� D §F�x0, y0, z0�t C �x0, y0, z0�.

37. The hyper surface is the level set at height −1 of the function f�x1, ... , x5� D sin x1 C cos x2 C sin x3 C
cos x4 C sin x5. We find §f (π,π, 3π

2
, 2π, 2π) D �−1, 0, 0, 0, 1�. Hence the tangent hyperplane has equation

−1�x1 − π� C 1�x5 − 2π� D 0 or x5 − x1 D π.

38. The surface is the level set at height
n�n C 1�

2
of the function f�x1, ... , xn� D x2

1 C 2x2
2 C · · · C nx2

n. We

have §f D �2x1, 4x2, 6x3, ... , 2nxn� * §f�−1, ... ,−1� D −2�1, 2, 3, ... , n�. An equation for the tangent
hyperplane is thus

1�x1 C 1� C 2�x2 C 1� C 3�x3 C 1� C · · · C n�xn C 1� D 0

or

x1 C 2x2 C 3x3 C · · · C nxn C
n�n C 1�

2
D 0

39. Here f�x1, x2, ... , xn� D x2
1 C x2

2 C · · · C x2
n so §f�x1, x2, ... , xn� D �2x1, 2x2, ... , 2xn�. Using the tech-

niques of this section, the tangent hyperplane to the �n − 1�-dimensional sphere f�x1, x2, ... , xn� D 1 at
�1/

√
n, 1/

√
n, ... , 1/

√
n,−1/

√
n� is

0 D §f�1/
√
n, ... , 1/

√
n,−1/

√
n� · �x1 − 1/

√
n, x2 − 1/

√
n, ... , xn−1 − 1/

√
n, xn C 1/

√
n�

D 2√
n

(x1 − 1√
n

) C 2√
n

(x2 − 1√
n

) C · · · C 2√
n

(xn−1 − 1√
n

) C −2√
n

(xn C 1√
n

) or

0 D �x1 − 1/
√
n� C �x2 − 1/

√
n� C · · · C �xn−1 − 1/

√
n� − �xn C 1/

√
n� so

√
n D x1 C x2 C · · · C xn−1 − xn.

40. F�x, y, z� D z2y3 C x2y D 2.
(a) We can write z D f�x, y� when Fz Z 0. Fz�x, y, z� D 2zy3 is not 0 when both z Z 0 and y Z 0.
(b) We can write x D f�y, z� when Fx Z 0. Fx�x, y, z� D 2xy is not 0 when both x Z 0 and y Z 0.
(c) We can write y D f�x, z� when Fy Z 0. Fy�x, y, z� D 3z2y2 C x2 is not 0 everywhere but on the y- or

z-axis (i.e., except when x D 0 at the same time that either y D 0 or z D 0).

41. (a) �F

�z
D xexz. This is non-zero whenever x Z 0. There we can solve for z to get

z D ln�1 − sin xy − x3y�

x
.

(b) Looking only at points in S we only need to stay away from points in yz-plane (i.e., where x D 0).
(c) You shouldn’t then make the leap from your answer to part (b) that you can graph z D

ln�1 − sin xy − x3y�

x
for any values of x and y just so x Z 0. Your other restriction is that 1 − sin xy −

x3y > 0 as it is the argument of the natural logarithm. A sketch that gives you an idea of the surface is:
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Now the actual surface S includes the plane x D 0 since x D 0 satisfies the original equation: sin xy C
exz C x3y D 1. S will actually look a bit like:

-2
-1

0
1

x

-1
-0.50

0.5
1y

-4

-2

0

2

4

z

42. The point of this problem is that since F�x, y� D c defines a curve C in R2 such that either fx�x0, y0� Z 0 or
fy�x0, y0� Z 0 then by the implicit function theorem we can represent the curve near �x0, y0� as either the graph
of a function x D g�y� or a function y D g�x�.

Exercise 43 poses a bit of a puzzle. Here we can write the equation of C as y D f�x� even though Fy is zero at the
origin. Why doesn’t this contradict the implicit function theorem? What “goes bad” in Exercise 43 is that we have a corner
at the origin. You may also want to assign the students the same problem for the function F�x, y� D x − y3.

43. (a) F�0, 0� D 0 so the origin lies on the curve C. Fy�x, y� D 3y2 and so Fy�0, 0� D 0.
(b) We can write C as the graph of y D x2/3. The graph of C is

-1 -0.5 0.5 1
x

0.2

0.4

0.6

0.8

1

y

 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



�

�

“runall” — 2005/8/1 — 12:14 — page 123 — #54
�

�

�

�

�

�

Section 2.6 Directional Derivatives and the Gradient 123

(c) So here we are with Fy�0, 0� D 0 but we can express the graph of C everywhere as y D x2/3. On second
look we see that C is not a C1 function—it has a corner at the origin—and so the implicit function theorem
doesn’t apply.

44. (a) F�x, y� D xy C 1 so Fy�x, y� D x and so we cannot solve F�x, y� D c for y when x D 0 or when
c D 0�y� C 1 D 1. In other words, level sets are unions of smooth curves in R2 except for c D 1.

(b) Here the function is F�x, y, z� D xyz C 1. Using a similar argument to that in part (a), Fz�x, y, z� D xy
and this is only 0 when xy D 0. This means that we cannot solve F�x, y, z� D c for z when xy D 0 or when
c D z�0� C 1 D 1. So level sets of this family are unions of smooth surfaces in R3 except for level c D 1.

45. (a) G�−1, 1, 1� D F�−1 − 2 C 1,−1 − 1 C 3� D F�−2, 1� D 0.
(b) To invoke the implicit function theorem, we need to show that Gz�−1, 1, 1� Z 0.

Gz�−1, 1, 1� D Fu�−2, 1�
��x3 − 2y2 C z5�

�z

∣∣∣∣∣
�−1,1,1�

C Fv�−2, 1�
��xy − x2z C 3�

�z

∣∣∣∣∣
�−1,1,1�

D �7��5� C �5��1� D 40 Z 0.

46. Let F1 D x2y2 − x1 cos y1 D 5 and F2 D x2 sin y1 C x1y2 D 2. Solving for y in terms of x means that we have
to look at the determinant

det


�F1

�y1

�F1

�y2

�F2

�y1

�F2

�y2

 D det [ x1 sin y1 x2
x2 cos y1 x1

] D x2
1 sin y1 C x2

2 cos y1.

To see that you can solve for y1 and y2 in terms of x1 and x2 near �x1, x2, y1, y2� D �2, 3, π, 1�, evaluate the
determinant at that point. We get −9. This is not 0 so you can, at least in theory, solve for the y’s in terms of
the x’s.
To see that you can solve for y1 and y2 as functions of x1 and x2 near �x1, x2, y1, y2� D �0, 2, π/2, 5/2�, evaluate
the determinant at that point. We get 0. We can not solve for the y’s in terms of the x’s.

47. (a) Let F1 D x2
1y

2
2 − 2x2y3 D 1, F2 D x1y

5
1 C x2y2 − 4y2y3 D −9, and F3 D x2y1 C 3x1y

2
3 D 12. Solving

for y’s in terms of x’s means that we have to look at the determinant

det



�F1

�y1

�F1

�y2

�F1

�y3

�F2

�y1

�F2

�y2

�F2

�y3

�F3

�y1

�F3

�y2

�F3

�y3


D det

 0 2x2
1y2 −2x2

5x1y
4
1 x2 − 4y3 −4y2

x2 0 6x1y3



D −60x4
1y

4
1y2y3 − 8x2

1x2y
2
2 C 2x3

2 − 8x2
2y3.

Evaluating this at the point �x1, x2, y1, y2, y3� D �1, 0,−1, 1, 2� results in −120 Z 0. This means that we
can solve for y1, y2, and y3 in terms of x1 and x2.

(b) Take the partials of the three equations with respect to x1 to get

y2
2 C 2x1y2

�y2

�x1
− 2x2

�y3

�x1
D 0

y5
1 C 5x1y

4
1

�y1

�x1
C x2

�y2

�x1
− 4y3

�y2

�x1
− 4y2

�y3

�x1
D 0

x2
�y1

�x1
C 3y2

3 C 6x1y3
�y3

�x1
D 0.
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At the point �1, 0,−1, 1, 2� this system of equations becomes:

1 C 2
�y2

�x1
D 0

−1 C 5
�y1

�x1
− 8

�y2

�x1
− 4

�y3

�x1
D 0

12 C 12
�y3

�x1
D 0.

Solving, we find that
�y1

�x1
D −7

5
,

�y2

�x1
D −1

2
, and

�y3

�x1
D −1.

48. (a) We need to consider where the following determinant is non-zero.∣∣∣∣∣∣∣
�F1/�r �F1/�θ �F1/�z

�F2/�r �F2/�θ �F2/�z

�F3/�r �F3/�θ �F3/�z

∣∣∣∣∣∣∣ D
∣∣∣∣∣∣∣

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣ D r cos2 θ C r sin2 θ D r.

In other words, for any points for which r Z 0.
(b) This makes complete sense. When the radius is 0 then r and z completely determine the point. You get no

extra information from the θ component. Without the z coordinate, this is the standard problem when using
polar coordinates in the plane.

49. (a) As with Exercise 48, we need to consider where the same determinant is non-zero. In this case the determi-
nant is ∣∣∣∣∣∣∣

sinϕ cos θ ρ cosϕ cos θ −ρ sinϕ sin θ
sinϕ sin θ ρ cosϕ sin θ ρ sinϕ cos θ

cosϕ −ρ sinϕ 0

∣∣∣∣∣∣∣ D ρ2 sinϕ cos2 ϕ C ρ2 sin3 ϕ D ρ2 sinϕ.

In other words, for any points for which ρ Z 0 and for which sinϕ Z 0.
(b) Again, this makes complete sense. When the radius is 0, then ρ completely determines the point as being the

origin. When sinϕ D 0 you are on the z-axis so θ no longer contributes any information.

2.7 TRUE/FALSE EXERCISES FOR CHAPTER 2

1. False.
2. True.
3. False. (The range also requires v Z 0.)
4. False. (Note that f�i� D f�j�.)
5. True.
6. False. (It’s a paraboloid.)
7. False. (The graph of x2 C y2 C z2 D 0 is a single point.)
8. True.
9. False.

10. False. (The limit does not exist.)
11. False. �lim�x,y�'�0,0� f �x, y� D 0 Z 2.�
12. False.
13. False.
14. True.
15. False. �§f�x, y, z� D �0, cos y, 0�.�
16. False. (It’s a 4 * 3 matrix.)
17. True.
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18. False.
19. False. (The partial derivatives must be continuous.)
20. True.
21. False. �fxy Z fyx.�
22. False. (f must be of class C2.)
23. True. (Write the chain rule for this situation.)
24. True.
25. False. (The correct equation is x C y C 2z D 2.)
26. False. (The plane is normal to the given vector.)
27. True.
28. False. (The directional derivative equals −�f/�z.)
29. False.
30. True.

2.8 MISCELLANEOUS EXERCISES FOR CHAPTER 2

1. (a) Calculate the determinant ∣∣∣∣∣∣∣
i j k
1 0 1
x1 x2 x3

∣∣∣∣∣∣∣ D �−x2, x1 − x3, x2�.

More explicitly, the component functions are f1�x1, x2, x3� D −x2, f2�x1, x2, x3� D x1 − x3, and
f3�x1, x2, x3� D x2.

(b) The domain is all of R3 while the range restricts the first component to be the opposite of the last component.
In other words the range is the set of all vectors �a, b,−a�.

2. (a) It might help to see f explicitly first as

( �3,−2, 1� · �x, y, z�
�3,−2, 1� · �3,−2,−1�

) �3,−2, 1� D 3x − 2y C z
14

�3,−2, 1�.

(b) The domain is all of R3 and the range are vectors of the form �3a,−2a, a�.
3. (a) The domain of f is {�x, y�|x Ú 0 and y Ú 0} ∪ {�x, y�|x … 0 and y … 0}. The range is all real numbers

greater than or equal to 0.
(b) The domain is closed. The quarter planes are closed on two sides because they include the axes.

4. (a) The domain of f is {�x, y�|x Ú 0 and y > 0} ∪ {�x, y�|x … 0 and y < 0}. The range is all real numbers
greater than or equal to 0.

(b) The domain is neither open nor closed. The quarter planes are closed on one side because they include the
y-axis but they don’t include the x-axis and so aren’t closed.

5.
f (x, y) Graph Level curves

1/�x2 C y2 C 1� D d

sin
√
x2 C y2 B e

�3y2 − 2x2�e−x
2−2y2

A b

y3 − 3x2y E c

x2y2e−x
2−y2

F a

ye−x
2−y2

C f
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6. (a) See below left.

-4 -2 0 2 4
-4

-2

0

2

4

-4
-2

0

2

4

x
-4

-2

0

2

4

y

2
3
4
5

z

(b) See above right.
7. First we’ll substitute x D r cos θ and y D r sin θ while noting that �x, y�' �0, 0� is equivalent to r ' 0.

lim
�x,y�'�0,0�

yx2 − y3

x2 C y2
D lim
r'0

�r sin θ��r2 cos2 θ� − �r3 sin3 θ�

r2 cos2 θ C r2 sin2 θ

D lim
r'0

r3�cos2 θ − sin2 θ� sin θ

r2

D lim
r'0
r cos 2θ sin θ D 0

8. (a)
2xy

x2 C y2
D 2r2 cos θ sin θ

r2
D 2 cos θ sin θ D sin 2θ. So

f�x, y� D { sin 2θ if r Z 0
0 if r D 0 .

(b) We’re looking for (x, y) such that f�x, y� D c. For −1 < c < 1 the level sets are pairs of radial lines
symmetric about θ D π/4.
For example, if c D 1/2 then we are looking for θ such that sin 2θ D 1/2. In this case, θ D π/12, 5π/12,
13π/12, and 17π/12. So the level sets are the lines θ D π/12 and θ D 5π/12. These could also be written
as θ D π/4 ; π/6.
For c D 1 the level set is the line θ D π/4, for c D −1 the level set is the line θ D 3π/4 and for |c| > 1
the level set is the empty set.

(c) f is constant along radial lines, so the figure below just shows a ribbon corresponding to .4 < r < 1.

-1
-0.5

0
0.5

1
x

-0.5
0

0.5
1

y

-1

-0.5

0

0.5

1

z

-1
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(d) lim�x,y�'�0,0� f �x, y� D limr'0 sin 2θ which doesn’t exist.
(e) Since the limit doesn’t exist at the origin, f couldn’t be continuous there. Also, f takes on every value

between 1 and −1 in every open neighborhood of the origin.

Before assigning Exercise 9 you may want to ask the students if it is true that if a function F (x, y) is continuous in each
variable separately it is continuous. The calculations in Exercise 9 are fairly routine but the conclusion is very important.

9. g�x� D F�x, 0� K 0 and so is continuous at x D 0 and h�y� D F�0, y� K 0 and so is continuous at y D 0.
Consider p�x� D F�x, x� D 1 when x Z 0 and F�0, 0� D 0. Clearly, p(x) is not continuous at 0 so F (x, y) is
not continuous at (0,0).

10. (a) You can see as x gets closer and closer to 0 that 1/x2 gets larger and larger. More formally, for any N > 0,
if 0 < |x| < 1/

√
N then 1/x2 > N.

(b) Here ||�x, y� − �1, 3�|| D
√
�x − 1�2 C �y − 3�2 so for any N > 0, if 0 < ||�x, y� − �1, 3�|| <√

�2/N�, then
2

�x − 1�2 C �y − 3�2
D 2

||�x, y� − �1, 3�||2
>

2
2/N

D N.

(c) The definition is analogous to that for above: limx'a f�x� D −q means that given any N < 0 there is
some δ > 0 such that if 0 < ||x − a|| < δ then f�a� < N.

(d) We are considering lim�x,y�'�0,0� so let’s restrict our attention to |x| < 1 and |y| < 1. For |x| < 1 we have

1 − x
xy4 − y4 C x3 − x2

D −1
y4 C x2

.

For |y| < 1 we have y4 < y2 so

−1
y4 C x2

<
−1

y2 C x2
D −1

||�x, y�||2
.

So for any N < 0 if 0 < ||�x, y�|| < min{1, 1/
√
−N} then

1 − x
xy4 − y4 C x3 − x2

< N.

11. We read right from the table in the text:
(a) 15◦F.
(b) 5◦F.

12. (a) If the temperature of the air is 10◦F we read off the chart that when the windspeed is 10 mph the windchill is
−4; when the windspeed is 15 mph the windchill is −7. Since we are looking to estimate when the windchill
is −5 you might be tempted to stop here and just conclude that the answer is between 10 mph and 15 mph
(and you’d be correct) but we want to say more. Our first estimate will just use linear interpolation (similar
triangles) to get x

2
D 5

3
or the distance from 15 is x D 10/3. We would then conclude that, to the nearest

degree, the windspeed is 15 − 10/3 L 12 mph.
(b) Before you feel too good about your answer to part (a) you should notice further that when the windspeed is 20

the windchill is −9 and when the windspeed is 25 the windchill is −11. In other words, the rate at which the
windchill is dropping is slowing slightly. In calculus terms, for the function f�s� D W�s mph, 30◦�, f ′′�s�
seems to be positive so the curve is concave up. The line used to estimate in part (a) then probably lies above
the curve and our guess of 12 mph is, most likely, too high.

13. For the function W�s mph, t◦�, we want to estimate

�W

�t

∣∣∣∣
�30 mph,35◦�

D lim
h'0

W�30, 35 C h� − W�30, 35�

h
.

We will use the slopes of the two secant lines:

W�30, 40� − W�30, 35�

5
D 28 − 22

5
D 1.2

W�30, 30� − W�30, 35�

−5
D 15 − 22

−5
D 1.4

We average them to get an estimate of 1.3.
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128 Chapter 2 Differentiation in Several Variables

14. We will use the same technique as in Exercise 13 and estimate the derivative with respect to windspeed by
averaging the slopes of the two secant lines.

W�20, 25� − W�15, 25�

5
D 11 − 13

5
D −0.4

W�10, 25� − W�15, 25�

−5
D 15 − 13

−5
D −0.4

so we average them to get an estimate of −0.4.
15. (a) Comparison with Exercise 11: With an air temperature of 25◦F, windspeed of 10 mph,

W�10, 25� D 91.4 C �25 − 91.4��0.474 C 0.304
√

10 − 0.203�

L 9.573 or 10◦F

(as compared to 15◦F in 11(a)).
If s D 20 mph, then W D −15◦F if

91.4 C �t − 91.4��0.474 C 0.304
√

20 − 0.406� D −15.

Hence t D 91.4 − 15 C 91.4
�0.474 C 0.304

√
20 − 0.406�

L 16.866 or 17◦F (as compared to 5◦F in 11(b)).

Comparison with Exercise 12: With W�s, t� D 91.4 C �t − 91.4��.474 C .304
√
s − .0203s�, we must

solve
20 D 91.4 C �30 − 91.4��.474 C .304

√
s − .0203s�

or

20 − 91.4
30 − 91.4

D .474 C .304
√
s − .0203s so that

1.16287 L .474 C .304
√
s − .0203s or

0 L .0203s − .304
√
s C .688866

Now solve the quadratic:
√
s L

.304 ;

√
.0364801

.0406
. The two solutions are 7.74682 and 148.646.

(b) The windchill effect of windspeed appears to be greater in the Siple formula than that which may be inferred
from the table.

(c) For temperatures greater than 91.4 the model has the wind actually making the apparent temperature warmer
than air temperature. Physically, the model probably falls apart because between 91.4 and 106 you are too
close to body temperature for the wind to have much effect and if you are in temperatures much greater than
106 a breeze won’t replace a frosty beverage. For winds below 4 mph, the effect is negligible and won’t be
reflected in the model.

16. Comparison with Exercise 13: We want to calculate Wt�30, 35�. �W/�t D 0.621 C 0.4275s0.16, so Wt�30, 35� D
0.621 C �0.4275�300.16

L 1.358 (this is close).

Comparison with Exercise 14: We want Ws�15, 25�.

�W/�s D −35.75�0.16�s−0.84 C 0.4275�0.16�ts−0.84

D �−5.72 C 0.0684t�s−0.84

Ws�15, 25� D �−5.72 C 0.0684 · 25�15−0.84
L −0.412 (again close).

17. (a) Pictured (left) are the pairs W1�s, 40� and W2�s, 40� and, on the right, the pairs W1�s, 5� and W2�s, 5�.
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20 40 60 80 100 120
s10

15

20

25

30

35

40

W1

W2

W(s,40)

20 40 60 80 100 120
s

-40

-30

-20

-10

10

W2

W1

W(s,5)

From these graphs, we see that windspeed depresses apparent temperature in the Siple formula much more
than in the National Weather Service Formula.

(b) Pictured (left) are the pairs W1�10, t� and W2�10, t� and, on the right, the pairs W1�30, t�; and W2�30, t�.
Again we see that the Siple formula results in lower apparent temperatures predicted, only the effect appears
to be more of a constant difference.

W2

W1

W(10,t)

-40 -20 20 40
t

-60

-40

-20

20
-40 -20 20 40

t

-120

-100

-80

-60

-40

-20

20

W2

W1

W(30,t)

(c) The surfaces z D W1�s, t� and z D W2�s, t� are pictured. Note that the Siple surface determined by W1 is
more curved, demonstrating a more nonlinear effect of windspeed.
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s -40
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0
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t

-100
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0
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40

60

s
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0
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t

-100

-50

0
W2

18. The equation of the sphere is F�x, y, z� D x2 C y2 C z2 D 9 so §F D �2x, 2y, 2z� and the plane tangent to
the sphere at (1, 2, 2) is 0 D �2, 4, 4� · �x − 1, y − 2, z − 2� or x C 2y C 2z D 9. This intersects the x-axis
when y D 0 and z D 0 so x D 9.

19. Without loss of generality we can locate the center of the sphere at the origin and so the equation of the sphere is
F�x, y, z� D x2 C y2 C z2 D r2 so §F D �2x, 2y, 2z� and the equation of the plane tangent to the sphere at
P D �x0, y0, z0� is 0 D �2x0, 2y0, 2z0� · �x − x0, y − y0, z − z0� or x0x C y0y C z0z D x2

0 C y2
0 C z20.

This is orthogonal to the vector �x0, y0, z0� which is the vector from the center of the sphere to P .

20. Because we’re looking at a curve in the plane 2x − y D 1 we know the x and y components of the parametric
equations. What is left to determine is z. Substitute in 2x − 1 for y in the equation of the surface to get
z D 3x2 C x3/6 − x4/8 − 4�2x − 1�2 D −5x2 C x3/6 − x4/8 C 4. We can now calculate the derivative
�z/�x D −10x C x2/2 − x3/2 and evaluate it at the point �1, 1,−23/24� to get −10. Because the value of z
is −23/24 when x D 1, this component of the tangent line is derived by looking at z C 23/24 D −10�x − 1�.
So the parametric equations for the tangent line are �t, 2t − 1,−10t C 192/24�.
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21. (a) For the function f�x, y, z� D x2 C y2 − z2 D 0 we consider §f�x0� · �x − x0� D 0. Here we get
�2�3�, 2�−4�,−2�5�� · �x − 3, y C 4, z − 5� D 0 or the equation is 6�x − 3� − 8�y C 4� − 10�z −
5� D 0.

(b) In general we get �2�a�, 2�b�,−2�c�� · �x − a, y − b, z − c� D 0. This amounts to 2a�x − a� C
2b�y − b� − 2c�z − c� D 0.

(c) Note that (0, 0, 0) is a solution so the plane passes through the origin.

22. Show that the two surfaces

S1 : z D xy and S2 : z D 3
4
x2 − y2

intersect perpendicularly at the point (2, 1, 2). First we see that 2 D 1�2� and 2 D �3/4��4� − 1 so (2, 1, 2) is
a point on both surfaces. Rewrite the surfaces so that they are level sets of functions:

F1�x, y, z� D xy − z and F2�x, y, z� D z C y2 − 3
4
x2.

The gradients are normal to the tangent planes (see Section 2.6, Exercise 36), so we calculate the two gradients
at the given point: §F1�2, 1, 2� D �1, 2,−1� and §F2�2, 1, 2� D �−3, 2, 1� so

§F1�2, 1, 2� · §F2�2, 1, 2� D 0.

So the two surfaces intersect perpendicularly at (2, 1, 2).

23. (a) As we have done before we find the plane tangent to the surface given by F�x, y, z� D z − x2 − 4y2 D 0
by formula (6):

0 D §F�1,−1, 5� · �x − 1, y C 1, z − 5� D �−2, 8, 1� · �x − 1, y C 1, z − 5�

or − 2x C 8y C z D −5.

(b) The line is parallel to a vector which is orthogonal to §F�1,−1, 5� D �−2, 8, 1� and with no component
in the x direction. So it is of the form (0, a, b) with �0, a, b� · �−2, 8, 1� D 0 so the line has the direction

�0, 1,−8� and passes through �1,−1, 5�. The equations are


x D 1
y D t − 1
z D −8t C 5.

24. We are assuming that the collar is fairly rigid so that it is maintaining a cylindrical shape throughout this process.

We want
�V

�t
at t D t0. Since V D πr2h, �V

�t
D 2πrh

dr

dt
C πr2 dh

dt
. We are given that the rate of change of the

circumference at t D t0 is −.2 in/min. This means

−.2 D �C

�t

∣∣∣∣
t0

D ��2πr�

�t

∣∣∣∣
t0

D 2π
dr

dt

∣∣∣∣
t0

.

We also know that at t D t0, 2πr D 18, h D 3, and
dh

dt
D .1. Substituting into the equation above, we get:

�V

�t

∣∣∣∣
t0

D �18��3�(−.2
2π

) C π( 18
2π

)2

�.1� D −5.4
π

C 8.1
π

D 2.7
π
.

So the volume is increasing at t D t0.

25. First note that 0.2◦C/day D 0.2 · 24 D 4.8◦C/month. Then, with time measured in months, the chain rule
tells us

dP

dt
D �P

�S

dS

dt
C �P

�T

dT

dt
.
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Here
dS

dt
D −2,

dT

dt
D 4.8. With P�S, T� D 330S2/3T 4/5, we have

dP

dt

∣∣∣∣
�SD75,TD15�

D �220S−1/3T 4/5�|�75,15��−2� C 264S2/3T−1/5|�75,15��4.8�

D 220�75�−1/3�15�4/5�−2� C 264�75�2/3�15�−1/5�4.8�

D 12,201.4 units/month

�or 508.392 units/day�

26. We want to know
du

dt
(t in weeks) when x D 80, y D 240, given that

dx

dt
D 5 and

dy

dt
D −15. The chain rule

tells us

du

dt
D �u

�x

dx

dt
C �u

�y

dy

dt
D �0.002xe−0.001x2−0.00005y2

�
dx

dt
C �0.0001ye−0.001x2−0.00005y2

�
dy

dt

Thus

du

dt

∣∣∣∣
xD80,yD240

D e�−0.001�802−0.00005�240�2 [�0.002�80 · 5 − �0.0001�240 · 15]

L 0.000041.

So the utility function is increasing ever so slightly
27.

w D x2 C y2 C z2,
x D ρ cos θ sinϕ,

y D ρ sin θ sinϕ and

z D ρ cosϕ

(a)

�w

�ρ
D �w

�x

�x

�ρ
C �w

�y

�y

�ρ
C �w

�z

�z

�ρ

D 2x cos θ sinϕ C 2y sin θ sinϕ C 2z cosϕ

D 2ρ cos2 θ sin2 ϕ C 2ρ sin2 θ sin2 ϕ C 2ρ cos2 ϕ

D 2ρ,

�w

�ϕ
D �w

�x

�x

�ϕ
C �w

�y

�y

�ϕ
C �w

�z

�z

�ϕ

D 2xρ cos θ cosϕ C 2yρ sin θ cosϕ − 2zρ sinϕ

D 2ρ2 cos2 θ cosϕ sinϕ C 2ρ2 sin2 θ cosϕ sinϕ − 2ρ2 cosϕ sinϕ

D 0, and

�w

�θ
D �w

�x

�x

�θ
C �w

�y

�y

�θ
C �w

�z

�z

�θ

D −2xρ sin θ sinϕ C 2yρ cos θ sinϕ

D −2ρ2 cos θ sin θ sin2 ϕ C 2ρ2 cos θ sin θ sin2 ϕ

D 0.
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(b) First substitute: w D x2 C y2 C z2 D �ρ cos θ sinϕ�2 C �ρ sin θ sinϕ�2 C �ρ cosϕ�2 D ρ2. Now taking
the derivatives from part (a) is trivial: wρ D 2ρ,wϕ D 0, and wθ D 0.

28. If w D f ( xCy
xy

), let u D xCy
xy

. So

x2 �w

�x
− y2 �w

�y
D x2 �w

�u

�u

�x
− y2 �w

�u

�u

�y

D x2 �w

�u
(−y2

x2y2
) − y2 �w

�u
(−x2

x2y2
)

D 0.

29. (a) First use the chain rule to find
�z

�r
and

�z

�θ
:

�z

�r
D �z

�x

�x

�r
C �z

�y

�y

�r

D �z

�x
�er cos θ� C �z

�y
�er sin θ�, and

�z

�θ
D �z

�x

�x

�θ
C �z

�y

�y

�θ

D �z

�x
�−er sin θ� C �z

�y
�er cos θ�.

Now solve for
�z

�x
and

�z

�y
:

�z

�x
D e−r cos θ

�z

�r
− e−r sin θ

�z

�θ
, and

�z

�y
D e−r sin θ

�z

�r
C e−r cos θ

�z

�θ
.

(b) Given the results for
�z

�x
and

�z

�y
in part (a), we compute:

�2z

�x2
D �

�x
( �z

�x
) D e−r cos θ

�

�r
( �z

�x
) − e−r sin θ

�

�θ
( �z

�x
)

D e−r cos θ
�

�r
(e−r cos θ

�z

�r
− e−r sin θ

�z

�θ
) − e−r sin θ

�

�θ
(e−r cos θ

�z

�r
− e−r sin θ

�z

�θ
)

D e−r cos θ (−e−r cos θ
�z

�r
C e−r cos θ

�2z

�r2
C e−r sin θ

�z

�θ
− e−r sin θ

�2z

�r�θ
)

− e−r sin θ (−e−r sin θ
�z

�r
C e−r cos θ

�2z

�θ�r
− e−r cos θ

�z

�θ
− e−r sin θ

�2z

�θ2
)

D e−2r [�sin2 θ − cos2 θ�
�z

�r
C cos2 θ

�2z

�r2
C 2 sin θ cos θ

�z

�θ
− 2 sin θ cos θ

�2z

�r�θ
C sin2 θ

�2z

�θ2
]

A similar calculation gives:

�2z

�y2
D �

�y
( �z

�y
) D e−r sin θ

�

�r
( �z

�y
) C e−r cos θ

�

�θ
( �z

�y
)
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D e−r sin θ
�

�r
(e−r sin θ

�z

�r
C e−r cos θ

�z

�θ
) C e−r cos θ

�

�θ
(e−r sin θ

�z

�r
C e−r cos θ

�z

�θ
)

D e−2r [�cos2 θ − sin2 θ�
�z

�r
C sin2 θ

�2z

�r2
− 2 sin θ cos θ

�z

�θ
C 2 sin θ cos θ

�2z

�r�θ
C cos2 θ

�2z

�θ2
] .

Now add these to get:

�2z

�x2
C �2z

�y2
D e−2r[�cos2 θ C sin2 θ�zθθ C �cos2 θ C sin2 θ�zrr] D e−2r[zθθ C zrr].

30. (a) Consider w D f�x, y� D xy D ey ln x. Then d

du
�uu� can be calculated by taking the derivative and evaluating

at the point (u, u).

dw

du
D �w

�x

dx

du
C �w

�y

dy

du
D yxy−1 C ln xey ln x D u · uu−1 C �lnu� uu D uu�1 C lnu�.

(b) Here x D sin t and y D cos t. So

dw

dt
D �w

�x

dx

dt
C �w

�y

dy

dt
D yxy−1 cos t C �ln x� ey ln x�− sin t� D cos2 t�sin t�cos t−1 − sin t ln�sin t� sin tcos t .

31. This is an extension of the preceding exercise. This time w D f�x, y, z� D xyz . If x D u, y D u, and z D u we
again calculate

dw

du
D �w

�x

dx

du
C �w

�y

dy

du
C �w

�z

dz

du
D yzxyz−1 C ey

z ln x�z ln x�yz−1 C ee
z ln y ln x�ln x� ez ln y ln y

D uuu�uu−1� C uuu�u lnu�uu−1 C uuu�lnu�2uu D uuuuu�1/u C lnu C �lnu�2�.

32. With

r D ||x|| D
√
x2

1 C · · · C x2
n,

�r

�xi
D xi√
x2

1 C · · · C x2
n

D xi
r
.

The chain rule gives
�f

�xi
D dg
dr

�r

�xi
D g′�r�xi

r
By the product and chain rules:

�2f

�x2
i

D �

�xi
(g′�r�xi

r
) D g

′�r�

r
C xi d

dr
(g′�r�
r

) �r

�xi

D 1
r
g′�r� C xi ( rg′′�r� − g′�r�

r2
) xi
r

D 1
r
g′�r� C x2

i (g′′�r�
r2

− g′�r�

r3
) .

Add these to find

§
2f D

n∑
iD1

�2f

�xi2
D n
r
g′�r� C (g′′�r�

r2
− g′�r�

r3
) �x2

1 C · · · C x2
n�︸ ︷︷ ︸

Dr2

D n
r
g′�r� C g′′�r� − g′�r�

r

D 1
r
�n − 1�g′�r� C g′′�r�.
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33. (a)

§
2�§2f�x, y��D �2

�x2
( �2f

�x2
C �2f

�y2
) C �2

�y2
( �2f

�x2
C �2f

�y2
)

D �4f

�x4
C �4f

�x2�y2
C �4f

�y2�x2︸ ︷︷ ︸
these are equal−f is of class C4

C�4f

�y4

D desired expression.

(b) Similar:

§
2�§2f� D �2

�x2
1

 n∑
jD1

�2f

�x2
j

 C · · · C �2

�x2
n

 n∑
jD1

�2f

�xj


D

n∑
iD1

�2

�xi2

 n∑
jD1

�2f

�x2
j

 D
n∑
i,jD1

�4f

�x2
i �x

2
j

.

34. Livinia is at (0, 0, 1) and T�x, y, z� D 10�xe−y
2 C ze−x2

�
(a) The unit vector in the direction from (0, 0, 1) to (2, 3, 1) is u D �2, 3, 0�/

√
13.

DuT D §T�0, 0, 1� · u D 10�1, 0, 1� · �2, 3, 0�/
√

13 D 20/
√

13 deg/cm.

(b) She should head in the direction of the negative gradient: �−1, 0,−1�/
√

2.
(c) �3�10�1, 0, 1� · �−1, 0,−1�/

√
2 D −30

√
2 deg/sec.

35. z D r cos 3θ
(a) z D r[cos θ cos 2θ − sin θ sin 2θ] D r[cos θ�cos2 θ − sin2 θ� − sin θ�2 sin θ cos θ�] so

z D r
3[cos3 θ − cos θ sin2 θ − 2 sin2 θ cos θ]

r2
D x

3 − 3xy2

x2 C y2
.

(b) Note that limr'0 r cos 3θ D 0 which is the value of the function at the origin. So yes, f�x, y� D z is
continuous at the origin.

(c) (i) fx D
�x2 C y2��3x2 − 3y2� − �x3 − 3xy2�2x

�x2 C y2�2
D x

4 − 3y4 C 6x2y2

�x2 C y2�2
.

(ii) fy D
�x2 C y2��−6xy� − �x3 − 3xy2�2y

�x2 C y2�2
D −8x3y

�x2 C y2�2
.

(iii) fx�0, 0� D limh'0
f�h, 0� − f�0, 0�

h
D lim
h'0

h − 0
h

D 1.

(iv) fy�0, 0� D limh'0
f�0, h� − f�0, 0�

h
D lim
h'0

0 − 0
h

D 0.

(d) g�r, θ� D r cos 3θ so gr�r, θ� D cos 3θ. This is the directional derivative Duf .

(e) When �x, y� Z �0, 0�, fy�x, y� D −8x3y

x2 C y2
. In particular, when y D x, fy D −2. From part (c) fy�0, 0� D

0 so fy is not continuous at the origin.
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(f) Below are two sketches; the one on the left just shows a ribbon of the surface:
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0
0.5

1
x

-1

-0.5

0

0.5
1

y

-1

-0.5

0

0.5

1

z

-1
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0

0.5

1

x

-1

-0.5

0

0.5

1

y

-1

-0.5

0

0.5

1

z

36. (a) u D cos�x − t� C sin�x C t� − 2ezCt − �y − t�3 so

• ux D − sin�x − t� C cos�x C t� and uxx D − cos�x − t� − sin�x C t�.
• uy D −3�y − t�2 and uyy D −6�y − t�.
• uz D −2ezCt and uzz D −2ezCt .
• ut D sin�x − t� C cos�x C t� − 2ezCt C 3�y − t�2 and utt D − cos�x − t� − sin�x C t� −

2ezCt − 6�y − t�.
We have, therefore, the result: uxx C uyy C uzz D utt .

(b) u�x, y, z, t� D f1�x − t� C f2�x C t� C g1�y − t� C g2�y C t� C h1�z − t� C h2�z C t� so

• ux D �f1�x−t
��x − t�

�x
C �f2�xCt

��x C t�
�x

D �f1�x−t C �f2�xCt so

• �2u

�x2
D �2f1

��x − t�2
C �2f2

��x C t�2

• uy D �g1�y−t
��y − t�

�y
C �g2�yCt

��y C t�
�y

D �g1�y−t C �g2�yCt so

• �2u

�y2
D �2g1

��y − t�2
C �2g2

��y C t�2
.

• uz D �h1�z−t
��z − t�

�z
C �h2�zCt

��z C t�
�z

D �h1�z−t C �h2�zCt so

• �2u

�z2
D �2h1

��z − t�2
C �2h2

��z C t�2
.

• ut D �f1�x−t
��x − t�

�t
C �f2�xCt

��x C t�
�t

C �g1�y−t
��y − t�

�t
C �g2�yCt

��y C t�
�t

C

�h1�z−t
��z − t�

�t
C �h2�zCt

��z C t�
�t

so ut D −�f1�x−t C �f2�xCt − �g1�y−t C �g2�yCt −

�h1�z−t
��z − t�

�t
C �h2�zCt

��z C t�
�t

and

• utt D uxx C uyy C uzz.

37. F�tx, ty� D t3x3 C t3xy2 − 6t3y3 D t3F�x, y� so F is homogeneous of degree 3.

38. F�tx, ty, tz� D t3x3y − t4x2z2 C t8z8 so, no, F is not homogeneous.

39. F�tx, ty, tz� D t3zy2 − t3x3 C t3x2z D t3F�x, y, z� so yes F is homogeneous of degree 3.
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40. F�tx, ty� D ety/tx D ey/x D F�x, y� so F is homogeneous of degree 0.

41. F�tx, ty, tz� D t
3x3 C t3x2y − t3yz2

t3xyz C 7t3xz2
D F�x, y, z� so F is homogeneous of degree 0.

42. Make sure that the students realize (as in Exercises 40 and 41) that a function can be homogeneous and not be a
polynomial. In the special case that F is a polynomial, F is homogeneous when all of the terms are of the same
degree.

43. F�tx1, tx2, ... , txn� D tdF�x1, x2, ... , xn� so that, by differentiating both sides with respect to t:

x1
�F

�x1
�tx1, ... , txn� C · · · C xn �F

�xn
�tx1, ... , txn� D dtd−1F�x1, ... , xn�.

Now let t D 1 and we get the result:

x1
�F

�x1
C · · · C xn �F

�xn
D dF.

44. The conjecture is:
n∑

i1,...,ikD1
D xi1xi2 · · · xikFxi1xi2 ···xik D

d!
�d − k�!

F.

Although not asked in the text, a good exercise is to ask the students to establish the formula given in this exercise.
Show that

�

�xi
[dF ] D

n∑
jD1
xj

�2F

�xi�xj
C �F

�xi
.

Then you can show

d2F D d
n∑
iD1
xi

�F

�xi
D

n∑
i,jD1

xixj
�2F

�xi�xj
C dF.

You can finish from there.
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