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Chapter 2

1. Assuming the horizontal velocity of the ball is constant, the x-component of the
horizontal displacement is

D Dx v tx=

where Dx is the horizontal distance traveled, Dt is the time, and vx is the horizontal

veloci ty  component .  Conver t ing v x  t o  m / s ,  w e  h a v e
160 1000 1 1 3600km h  m km   h  s   44.4 m s.  ( )( ) ( ) =

Thus D Dt x
vx

= = =18 4
44 4

0 414.
.

. m
 m / s

 s.

The velocity-unit conversion implemented above can also be done using the “one-step”
conversion found in Appendix D (1 km/h = 0.2778 m/s).

2. Converting to SI units, we use Eq. 2-5 with d for total distance.

                          s    

 km / h) 1000 m / km
 s / h

   m

=

Ê
Ë

ˆ
¯ =

d
t

t

D

D( . .110 6
3600

200 0

which yields an elapsed time of Dt = 6.510 s. As mentioned in problem 1, the velocity-unit
conversion implemented above can also be done using the “one-step” conversion found
in Appendix D (1 km/h = 0.2778 m/s).

3. We use Eq. 2-4 and Eq. 2-5. During a time interval Dt if the velocity remains a positive

constant, speed is equivalent to the x-component of velocity, and distance is equivalent to
the x-component of displacement, with Dx = vx Dt.

(a) During the first part of the motion, the displacement between times t1 and t2 is
Dx x x1 2 2 1 40- = - =  km and the time interval from t1 to t 2 is

Dt t t1 2 2 1

40
1 33- = - = =(
.

 km)
(30 km / h)

 h.

During the second part the displacement is Dx x x2 3 3 2 40- = - =  km and the time interval is

Dt t t2 3 3 2

40
0 67- = - = =(
.

 km)
(60 km / h)

 h.
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Both displacements are in the same direction, so the total displacement is Dx1-3 = Dx1-2 +

Dx2-3 = 40 km + 40 km = 80 km. The total elapsed time for the trip is Dt1-3 = Dt1-2 + Dt2-3

= 2.00 h. Consequently, the average x-component of velocity is

r
v v i i ix= = =ˆ ( ˆ ( ˆ80

40
 km)

(2.0 h)
 km / h) .

(b) Since the velocity component is positive in this example, the numerical result for the
average speed is the same as the x-component of the average velocity 40 km/h.

(c) In the interest of saving space, we briefly describe the graph: two contiguous line
segments, the first having a slope of 30 km/hr and connecting the origin (t1, x1) = (0 hr, 0
km) to (t2, x2) = (1.33 hr, 40 km) and the second having a slope of 60 km/hr and
connecting (t2, x2) to (t3, x3) = (2.00 hr, 80 km). The average velocity, from the graphical
point of view, is the slope of a line drawn from the origin to (t3, x3).

4. If the plane (with velocity component vx) maintains its present course, and if the terrain
continues its upward slope of 4.3°, then the plane will strike the ground after traveling

Dx h= = ∞ = ª
tan

.q
35 465 5 m

tan 4.3
 m 0.465  km.

This corresponds to a time of flight found from Eq. 2-4 (with v vx x=  since it is constant)

D Dt x
vx

= = = ª0 465 0 000358. . km
1300 km / h

 h 1.3 s.

This, then, estimates the time available to the pilot to make his correction.

5. (a) Denoting the travel time and distance from San Antonio to Houston as T and D,
respectively, the average speed is

s D
T T

T T

1

55 90
72 5= = + =( (

.
 km / h)  km / h)

 km / h2 2

which should be rounded to 73 km/h.

(b) Using the fact that time = distance/speed while the speed is constant, we find

s D
T

D
D D2 2

55
2

90

68 3= = + =/ / .
 km/h  km/h

 km / h

which should be rounded to 68 km/h.

(c) The total distance traveled (2D) must not be confused with the net displacement
(zero). For the two-way trip, we use Eq. 2-5
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s D
D D= + =2 70

72 5 68 3. . km/h  km/h

 km / h.

(d) Since the net displacement vanishes, the average velocity for the trip in its entirety is
zero.

(e) In asking for a sketch, the problem is allowing the student to arbitrarily set the
distance D (the intent is not to make the student go to an Atlas to look it up); the student
can just as easily arbitrarily set T instead of D , as will be clear in the following
discussion. In the interest of saving space, we briefly describe the graph: two contiguous
line segments, the first having a slope of 55 km/hr and connecting the origin (t1, x1) = (0

hr, 0 km) to ( , ) ,( / )t x T T2 2 2
= Ê

Ë
ˆ
¯hr 55 km hr 2  km  and the second having a slope of 90 km/hr

and connecting (t2, x2) to (t3, x3) = (T, D) where D T= +( )( / / )55 km hr 90 km hr 2(km)  . The
average velocity, from the graphical point of view, is the slope of a line drawn from the
origin (0 hr, 0 km) to (T, D).

6. (a) Using the fact that time = distance/velocity while the velocity is constant, we find

r
v v i i ix= = +

+ =ˆ . .
. . . .

ˆ ( . ˆ73 2 73 2
73 2 1 22 73 2 3 05

1 74 m  m
 m  m / s  m  m

 m/s) .

(b) Using the fact that displacement = velocity ¥ time when the velocity 
r
v  is constant, we

find

r
v v i i ix= = + =ˆ ( . ( . ˆ ( . ˆ1 22 3 05

120
2 14

 m/s)(60 s)  m/s)(60 s)
 s

 m/s) .

(c) The graphs are shown below (with meters and seconds understood). The first consists
of two (solid) line segments, the first having a slope of 1.22 m/s and the second having a
slope of 3.05 m/s. The slope of the dashed line represents the average velocity (in both
graphs). The second graph also consists of two (solid) line segments, having the same
slopes as before — the main difference (compared to the first graph) being that the stage
involving higher-speed motion lasts much longer.
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7. We use x = (3 m/s)t – (4 m/s2)t2 + (1 m/s3)t3. We will quote our answers to one or two
significant figures, and not try to follow the significant figure rules rigorously.

(a) Substituting in t = 1 s yields x = 0 m. With t = 2 s we get x = –2 m. Similarly, t = 3 s
yields x = 0 m and t = 4 s yields x = 12 m. For later reference, we also note that the
position at t = 0 s is x = 0 m.

(b) The position at t = 0 s is subtracted from the position at t = 4 s to find the
displacement Dx = 12 m.

(c) The position at t = 2 s is subtracted from the position at t = 4 s to give the displace-
ment Dx = 14 m.  Eq. 2-4, then, leads to a velocity of

r
v v i x

t
i

m
s

i ix= = = =ˆ ˆ ˆ ( ˆD
D

14
2

7 m/s) .

(d) The horizontal axis is 0 s £ t £ 4 s with SI units understood.

Not shown is a straight line drawn from the point at (t, x) = (2 s, –2 m) to the highest
point shown at (t, x) = (4 s, 12 m) which would represent the answer for part (c).

8. Recognizing that the gap between the trains is closing at a constant rate of 60 km/h, the
total time which elapses before they crash is Dt = (60 km)/(60 km/h) = 1.0 h. During this
time, the bird travels a distance of D Dx v tx= = (60 km/h)(1.0 h) = 60 km.

9. Converting to seconds, the elapsed running times are DtA = 147.95 s and DtB = 148.15

s, respectively. If the runners A and B were equally fast, then

s s
L
t

L
tA B
B

B

= fi =    A

AD D .

We will assume that the shorter track (LA) is actually 1.00000 km (1000.00 m) in length.
We obtain
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L LB A= Ê
ËÁ

ˆ
¯̃

= Ê
ËÁ

ˆ
¯̃

=148 15
147 95

148 15
147 95

1000 00 1001 35
.
.

.

.
. .

s
s

 
s
s

m  m

Thus, runner A is faster than runner B as long as LA is not shorter than LB by more than
about 1.35 m.  If LA is shorter than LB by more than that then runner B is actually the
faster.

10. Assuming a conventional horizontal x axis, the velocity component (both magnitude
and sign) is determined by the slope of the x versus t curve, in accordance with Eq. 2-6.

(a) The armadillo is to the left of the coordinate origin on the axis between t = 2.0 s and
t = 4.0 s.

(b) The velocity component is negative between t = 0.0 s and t = 3.0 s.

(c) The velocity component is positive between t = 3.0 s and t = 7.0 s.

(d) The velocity component is zero at the graph minimum (at t = 3.0 s).

11. We use Eq. 2-6.

(a) The velocity of the particle is

r
v v i dx

dt
i d

dt
m t t i t ix= = = - + = - +ˆ ˆ ( / ) ( / ) ] ˆ ( / ( / ) ) ˆ [ m s m s  m s m s4 12 3 12 62 2 2

Thus, at t = 1 s, the velocity is 
r
v v i s i ix= = - + = -ˆ ( / ( / ) ) ˆ ( / ) ˆ12 6 1 62m s m s m s vx = (–12 m/s

+ (6 m/s2)(1 s)) = –6 m/s.

(b) Since vx < 0 m/s, it is moving in the negative x direction at t = 1 s.

(c) At t = 1 s, the speed is |vx| = 6 m/s.

(d) For 0 s < t < 2 s, |vx| decreases until it vanishes. For 2 s < t < 3 s, |vx| increases from

zero to the value it had in part (c). Then, |vx| is larger than that value for t > 3 s.

(e) Yes, since vx smoothly changes from negative values (consider the t = 1 result) to
positive (note that as t Æ + •, we have vx Æ + •). One can check that vx = 0 m/s when

t = 2 s.

(f) No. In fact, from vx  = (–12 m/s + (6 m/s2) t), we know that vx  > 0 m/s for t > 2 s.

12. We use Eq. 2-4 for average velocity and Eq. 2-6 for instantaneous velocity.
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(a) We substitute into the given equation for x for t = 2.00 s and t = 3.00 s and obtain x2 =
21.75 m and x3 = 50.25 m, respectively. The average velocity during the time interval
2.00 s £ t £ 3.00 s is

r
v v i x

t
i ix= = = -

-
ˆ ˆ . .

. .
ˆD

D
50 25 21 75

3 00 2 00
 m  m
 s  s

which yields 
r
v i= ( . / ) ˆ28 5 m s .

(b) The instantaneous velocity is 
r
v dx

dt
i t i= =ˆ ( . / )( ) ˆ4 5 3 2m s , which yields

r
v v i ix= =ˆ ( . / ) ˆ18 0 m s  at time t = 2.00 s.

(c) At t = 3.00 s, the instantaneous velocity is 
r
v v i i ix= = =ˆ ( . / )( . ) ˆ ( . / ) ˆ4 5 3 00 40 53 2m s s m s .

(d) At t = 2.50 s, the instantaneous velocity is 
r
v v i i ix= = =ˆ ( . / )( . ) ˆ ( . / ) ˆ4 5 2 50 28 13 2m s s m s .

(e) Let tm stand for the moment when the particle is midway between x2 = 21.75 m and
x3 = 50.25 m (that is, when the particle is at xm = (x2 + x3)/2 = 36 m). Therefore,

36 9 75 1 5 2 5963 3m m m s       s= + fi =. ( . / ) .t tm m

Thus, the instantaneous velocity at this time is 
r
v v i i ix= = =ˆ ( . / )( . ) ˆ ( . / ) ˆ4 5 2 596 30 33 2m s s m s .

(f) The answer to part (a) is given by the slope of the straight line between t = 2 and t = 3
in this x-vs-t plot. The answers to parts (b), (c), (d) and (e) correspond to the slopes of
tangent lines (not shown but easily imagined) to the curve at the appropriate points.

13. This problem involves four regions.  The regions from t = 0 s to t = 2 s and from
t = 10 s to t = 12 s are regions of uniformly changing velocity.  The regions from t = 2 s
to t = 10 s and from t = 12 s to t = 16 s are regions of constant velocity.  For the regions
of changing velocity, we use the alternate “primary” equation listed below Table 2-1
14. 

v x
t

v v
x

v v
tx

x x x x= =
+

fi =
+Ê

ËÁ
ˆ
¯̃

D
D D D1 2 1 2

2 2
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From t = 0 s to t = 2 s, Dt = 2 s – 0 s = 2 s and v1 x = 0 m/s and v2 x = 8 m/s so

Dx = +( ) =0 m s 8 m s 2 s 8 m/ / 2 .  From t = 10 s to t = 12 s, Dt = 12 s – 10 s = 2 s and v1 x = 8
m/s and v2 x = 4 m/s so Dx = +( ) =8 m s 4 m s 2 2 s 12 m/ /

Since vx is constant during the time interval between t = 2 s and t = 10 s (Dt = 10 s – 2 s =

8 s), we can use v v x
t

x v tx x x= = fi = =D
D D D  (8 m/s)(8 s) = 64 m.

In the remaining region, Dt = 16 s – 12 s = 4 s and vx = 4 m/s so Dx = (4 m/s)(4 s) = 16 m.

In this way, we obtain a total Dx = 100 m.

14. From Eq. 2-6 and Eq. 2-9, we note that the sign of the x-component of velocity is the
sign of the slope in an x-vs-t plot, and the sign of the x-component of acceleration
corresponds to whether such a curve is concave up (for ax positive) or concave down (for
ax negative).

(e) Any increase in the magnitude of vx  either by becoming less negative or more positive
represents increasing | |vx  (speed).  This will occur any time that vx is positive and the
acceleration is positive or any time both vx is negative  and the acceleration is negative.
Thus, point (a) with zero velocity and positive acceleration, point (b) with zero velocity
and negative acceleration and point (d) with negative velocity and negative acceleration
involve increasing speed.  Point (c) involves negative velocity and positive acceleration
(it’s magnitude is becoming less negative) so its speed is decreasing.

15. We use Eq. 2-6 and Eq. 2-9.

(a) This is vx
 2 — that is, the square of the x-component of velocity.

(b) This is the acceleration ax.

(c) The SI units for these quantities are (m/s)2 = m2/s2 and m/s2, respectively.

16. Eq. 2-9 indicates that acceleration is the slope of the vx-vs-t graph.

Based on this, we show here a sketch of the acceleration (in m/s2) as a function of time.
The values along the acceleration axis should not be taken too seriously.
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17. We represent its initial direction of motion as the +x direction, so that v1 x = +18 m/s
and v2 x = –30 m/s (when t = 2.4 s). Using Eq. 2-7 (or Eq. 2-12, suitably interpreted) we
find

ax = - - + = -( ) ( )
.

30 18
2 4

20
m/s m/s

s
m/s2

which indicates that the average acceleration has magnitude 20 m/s2 and is in the opposite
direction to the particle’s initial velocity.

18. We use Eq. 2-4 (average velocity) and Eq. 2-7 (average acceleration). Regarding our
coordinate choices, the initial position of the man is taken as the origin and his direction
of motion during 5 min £ t £ 10 min is taken to be the positive x direction. We also use

the fact that D Dx v tx=  when ever the velocity is constant during a given time interval Dt .

(a) Here, the entire interval considered is Dt2-8 = 8 min – 2 min = 6 min which is

equivalent to 360 s, whereas the sub-interval in which he is moving is only
Dt5 8 8 5 3 180- = - = =min min min  s. His position at t = 2 min is x  = 0 m and his
position at t = 8 min is x v tx= =-D 5 8  ( . )( )2 20 180m/s s  = 396 m. Therefore,

vx = - =396 0
360

1 10
 m  m

 s
 m / s. .

(b) The man is at rest at t = 2 min and has velocity v = +2.20 m/s at t = 8 min. Thus,

ax = - =2 20 0
360

0 00611
.

. .
 m/s  m/s

 s
 m/s2

(c) Now, the entire interval considered is Dt3-9 = 9 min – 3 min = 6 min (360 s again),

whereas the sub-interval in which he is moving is Dt5 9 9 5 4 240- = - = =min min min  s ). His
position at t = 3 min is x  = 0 m and his position at t = 9 min is
x v tx= = =-D 5 9 2 20 240 528( . )( )m/s s  m. Therefore,

vx = - =528 0
360

1 47
 m  m

 s
m / s..
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(d) The horizontal line near the bottom of this x-vs-t graph represents the man standing at
x = 0 m for 0 s £ t < 300 s and the linearly rising line for 300 s £ t £ 600 s represents his

constant-velocity motion. The dotted lines represent the answers to part (a) and (c) in the
sense that their slopes yield those results.

The graph of vx-vs-t is not shown here, but would consist of two horizontal “steps” (one
at vx = 0 m/s for 0 s £ t < 300 s and the next at vx = 2.20 m/s for 300 s £ t £ 600 s). The

indications of the average accelerations found in parts (b) and (d) would be dotted lines
connecting the “steps” at the appropriate t values (the slopes of the dotted lines
representing the values of ‹ax›).

19. In this solution, we make use of the notation x(t) for the value of x at a particular t.
The notations vx(t) and ax(t) which represent vector components have similar meanings.

(a) Since the unit of ct2 is that of length, the unit of c must be that of length/time2, or m/s2

in the SI system. Since bt3 has a unit of length, b must have a unit of length/time3, or
m/s3.

(b) When the particle reaches its maximum (or minimum) coordinate its velocity is zero.
Since the velocity is given by vx = dx/dt = 2ct – 3bt2, vx = 0 m/s occurs for t = 0 s and for

t c
b

= = =2
3

2 3 0
3 2 0

1 0( . )
( . )

. m / s
 m / s

 s .
2

3

For t = 0 s, x = x0 = 0 m and for t = 1.0 s, x1 = 1.0 m > x0. Since we seek the maximum,
we reject the first root (t = 0 s) and accept the second (t = 1.0 s).

(c) In the first 4.0 s the particle moves from the origin where x = 0.0 m to x = 1.0 m, turns
around, and goes back to

x = - = -( . )( . ( . )( .3 0 4 0 2 0 4 0 802 m/s  s)  m/s  s)  m .2 3 3

The total path length it travels is 1.0 m + 1.0 m + 80 m = 82 m.
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(d) Its displacement is given by Dx = x4 – x0, where x0 = 0 m and x4 = –80 m. Thus, Dx =

–80 m.

(e) The velocity is given by vx = 2ct – 3bt2 = 2(3.0 m/s2)t – 3(2.0 m/s3)t2. Thus

v
v
v
v

x

x

x

x

1

2

3

4

6 0 1 0 1 0 0
6 0 2 0 2 0 12
6 0 3 0 3 0 36 0
6 0

= - =
= - = -
= - = -
=

( . )( . )( .
( . )( . )( .
( . )( . )( . .
( .

 m / s  s) (6.0 m / s  s) m / s
 m / s  s) (6.0 m / s  s) m / s
 m / s  s) (6.0 m / s  s)  m / s
 m / s

2 3 2

2 3 2

2 3 2

2)()( . )( .4 0 4 0 72 s) (6.0 m / s  s)  m / s  .3 2- = -

(f) The acceleration is given by ax = dvx/dt = 2c – 6b = 6.0 m/s2 – (12.0 m/s3)t. Thus

a
a
a
a

x

x

x

x

1

2

3

4

6 0 12 0 1 0
6 0 12 0 2 0 18
6 0 12 0 3 0 3
6 0 12 0

= - = -
= - = -
= - = -
= -

. ( . )( .
. ( . )( .
. ( . )( .
. ( .

 m / s  m / s  s) 6.0 m / s
 m / s  m / s  s)  m / s
 m / s  m / s  s) 0 m / s
 m / s  m / s

2 3 2

2 3 2

2 3 2

2 3)()( . .4 0 42 s)  m / s2= -

20. For the automobile Dvx = 55 km/hr – 25 km/hr = 30 km/h, which we convert to SI

units:

a
v
tx
x= =

( )
=D

D
(

( . min)(
. .

30 1000 3600
0 50 60

0 28
 km / h)  m / km  s / h

s / min)
 m / s2

The change of velocity for the bicycle, for the same time, is identical to that of the car, so
its acceleration is also 0.28 m/s2.

21. From the equation on the bottom of page 43 or from manipulation of the equations in
Table 2-1, v v a xx x x2

2
1
2 2- = D .

(a) Setting v2 x = 0 m/s in v v a xx x x2
2

1
2 2= + D , we find

Dx
v
a

x

x

= - = - ¥
- ¥

Ê
ËÁ

ˆ
¯̃

=1
2

1
2

5 00 10
1 25 10

0 1001
2 6

14

( .
.

.
m/s)
m/s

m .
2

2

Since the muon is slowing, the initial velocity and the acceleration must have opposite
signs.

(b) Below are the time-plots of the position x and velocity v of the muon from the
moment it enters the field at t1 = 0 s to the time it stops. Using the equations in Table 2-1
where we set t2 – t1 = t to make the plots.
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22. The time required is found from Eq. 2-12 (or, suitably interpreted, Eq. 2-7). First, we
convert the velocity change to SI units:

Dvx = Ê
Ë

ˆ
¯ =( .100

3600
27 8 km / h) 1000 m / km

 s / h
 m / s .

Thus, Dt = Dvx/ax = (27.8 m/s)/(50 m/s2)= 0.56 s.

23. We use v2 x = v1 x + axt, with t = 0 s as the instant when the velocity equals +9.6 m/s.

(a) Since we wish to calculate the velocity for a time before t = 0 s, we set t = –2.5 s.
Thus, Eq. 2-12 gives

v x2 9 6 3 2 2 5 1 6= + ( ) - =( . . ( . . m / s)  m / s   s)  m / s.2

(b) Now, t = +2.5 s and we find

v x2 9 6 3 2 2 5 18= + ( ) =( . . ( . m / s)  m / s   s)  m / s.2

24. The bullet starts at rest (v1 x = 0 m/s) and after traveling the length of the barrel (Dx =

1.20 m) emerges with the given velocity (v2 x = 640 m/s), where the direction of motion is
the positive direction. Turning to the constant acceleration equations 2-14 and 2-15, we
use

D D Dx
v v

t tx x=
+

fi =1 2

2
2 1 20

0
 

m
m/s +640 m/s

( . )

Thus, we find Dt = 0.00375 s (about 3.8 ms).

25. The constant acceleration stated in the problem permits the use of the equations in
Table 2-1.
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(a) We solve v2 x = v1 x + axDt for the time interval:

Dt
v v

a
x x

x

=
-

= ¥ = ¥2 1
1

10
8

6
3 0 10
9 8

3 1 10
( .

.
.

m/s)
m/s

 s
2

which is equivalent to 1.2 months.

(b) We evaluate x x v t a tx x2 1 1
1
2

2- = + D , with x1 = 0 m and v1 x = 0 m/s. The result is

x2
2 131

2
9 8 3 1 10 4 7 10= ( ) ¥ = ¥. ( . ) . m / s s  m .2 6

26. From the equation on the bottom of page 43 or from manipulation of the equations in
Table 2-1, v v a xx x x2

2
1
2 2- = D  is used to solve for ax. Converting 360 km/hr to 100 m/s and

1.80 km to 1800 m, the minimum acceleration is

a
v v

xx
x x

min
max

(
(

.=
-

= =2
2

1
2

2
100
2 1800

2 78D
m/s)

 m)
m/s

2
2

27. The assumed constant acceleration permits the use of the equations in Table 2-1 or
the equation on the bottom of page 43. We solve v v a x xx x x2

2
1
2

2 12= + -( )  with x1 = 0 m and

x2 = 0.010 m. Thus,

a
v v

xx
x x=

-
= ¥ - ¥ = ¥2

2
1
2 5 2 5 2

15

2
5 7 10 1 5 10

2 0 010
1 6 10D

( . ) ( . )
( . )

. .
m/s m/s

m
 m / s2

28. The acceleration is found from Eq. 2-12 (or, suitably interpreted, Eq. 2-7).

a
v
tx
x= =

( ) ( )
=D

D
1020 1000 3600

1 4
202 4 2

km / h m / km s / h
s

m / s
.

. .

In terms of the gravitational acceleration g, this is expressed as a multiple of 9.8 m/s2 as
follows:

a g gx = =202 4
9 8

21
.

.
.

m/s
m/s

2

2

29. We choose the positive direction to be that of the initial velocity of the car (implying
that ax < 0 m/s2 since it is slowing down). We assume the acceleration is constant and use
Table 2-1.

(a) Substituting v1 x = 137 km/h = 38.1 m/s, v2 x = 90 km/h = 25 m/s, and ax = –5.2 m/s2

into v2 x = v1 x + axDt, we obtain
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Dt = -
- =25 38

5 2
2 5

2

m / s m / s
m / s

s
.

. .

(b) We take the car to be at x = 0 m when the brakes are applied (at time t = 0 s). Thus,
the coordinate of the car as a function of time is given by

x t t= ( ) + -( )38 5 21
2

2m/s m/s2.

in SI units. This function is plotted from t = 0 s to t = 2.5 s on the graph below. We have
not shown the vx-vs-t graph here; it is a descending straight line from v1 x to v2 x.

30. From the figure, we see that x1 = –2.0 m when t1 = 0 s. From Table 2-1, we can apply
x2 – x1 = v1 xDt + 1

2 axDt2 with Dt1-2 = t2 – t1 = 1.0 s, and then again for Dt1-3 = t3 – t1 = 2.0 s.

This yields two equations for the two unknowns, v1 x and ax.

0 0 2 0 1 0 1 0

6 0 2 0 2 0 2 0
1

1
2

2

1
1
2

2

. . . .

. . . . .

m m s s

m m s s

- -( ) = ( ) + ( )
- -( ) = ( ) + ( )

v a

v a
x x

x x

Solving these simultaneous equations yields the results v1 x = 0.0 m/s and ax = 4.0 m/s2.
The fact that the answer is positive tells us that the acceleration vector points in the +x
direction.

31. The problem statement (see part (a)) indicates that ax = constant, which allows us to
use Table 2-1.

(a) We solve Dx = v1 xDt + 1
2 axDt2 (Eq. 2-15) for the acceleration: a x v t tx x= -2 1

2( )D D D ,

Substituting Dx = 24.0 m, v1 x = 56.0 km/h = 15.55 m/s and Dt = 2.00 s, we find

ax =
- ( ) ( )( )

( )
= -

2

2 00
3 562

24.0 m 15.55 m / s 2.00 s

s
m / s2

.
. .
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The negative sign indicates that the acceleration is opposite to the direction of motion of
the car.  The car is slowing down.

(b) We evaluate v2 x = v1 x + axDt as follows:

v x2 15 55 3 56 2 00 8 43= - ( ) ( ) =. . . .m / s m / s s m / s2

which is equivalent to 30.3 km/h.

32. We take the moment of applying brakes to be t1 = 0 s. The deceleration is constant so
that the Table 2-1 equations can be used. Our primed variables (such as

¢ =v x1 72 km / h = 20 m / s ) refer to one train (moving in the +x direction and located at the

origin when t1= 0 s) and unprimed variables refer to the other (moving in the –x direction
and located at x1 = +950 m when t1 = 0 s). We note that the acceleration vector of the
unprimed train points in the positive direction, even though the train is slowing down; its
initial velocity is v1 x = –144 km/h =  –40 m/s. Since the primed train has the lower initial
speed, it should stop sooner than the other train would (were it not for the collision).
Using the equation on the bottom of page 43 or from manipulation of the equations in
Table 2-1 and knowing it should stop (meaning ¢ =v x2 0 m/s) at

D ¢ =
¢( ) - ¢( )

¢ = -
- =x

v v

a
x x

x

2

2

1

2
2

2
0 20

2 1 0
200

( (
( . )

.
m/s) m/s)

m/s
m

2

2

The speed of the other train, when it reaches that location, is

v v a xx x2
2

2
2 40 2 1 0 200 950 100 10= + = -( ) + ( ) -( ) = =1 x

2 2 2m/s m/s m m m /s m/sD .

using the previous equation again. Specifically, its velocity at that moment would be –10
m/s since it is still traveling in the –x direction when it crashes. If the computation of v
had failed (meaning that a negative number would have been inside the square root) then
we would have looked at the possibility that there was no collision and examined how far
apart they finally were. A concern that can be brought up is whether the primed train
collides before it comes to rest; this can be studied by computing the time it stops (Eq. 2-
12 yields Dt = 20 s) and seeing where the unprimed train is at that moment (Eq. 2-17

yields Dx  = 350 m, still a good distance away from contact). So

D D Dx x xtotal = + ¢ = 350 m +  200 m =  550 m <  950 m .

33. The acceleration is constant and we may use the equations in Table 2-1.

(a) Since the car traveled Dx = 60 m in Dt = 6.00s, its vx  is 10.0 m/s and we apply Eq.

2-15:
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v
v v v

x
x x x=

+
fi

+
=1 2 1

2
15
2

10 0
m/s

 m/s.

We solve for the initial velocity: v1 x = 5.00 m/s.

(b) Substituting v2 x = 15 m/s, v1 x = 5 m/s and Dt = 6.00 s into ax = (v2 x – v1 x)/ D t (Eq. 2-

12), we find ax = 1.67 m/s2.

(c) Substituting v2 x = 0 m/s in v v a xx x x2
2

1
2 2= + D  and solving for Dx, we obtain

Dx
v
a

x

x

= - = - ( ) = -1
2 2

2
5 00

2 1 67
7 50

( .
.

. .
m/s)
m/s

m
2

(d) The graphs require computing the time when v2 x = 0 m/s, in which case, we use v2 x =
v1 x + axDt' = 0 m/s. Thus,

D ¢ =
-

= - = -t
v
a

x

x

1 5 00
1 67

3 0
.

.
.

m/s
m/s

s
2

indicates the moment the car was at rest.  Assuming that ¢ =t s1 0  when x1 = 0 m, then the
graphs can be drawn as shown.

34. We denote the required time as t, assuming the light turns green when the clock reads
zero. At this time, the distances traveled by the two vehicles must be the same.

(a) Denoting the acceleration of the automobile as acar x and the (constant) speed of the
truck as vtr x then after a time interval Dt we have Dxcar =  Dxtr

D D D Dx a t v t xx xcar car tr tr= = =1
2

2( )

which leads to
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D Dt t
v

a
x

x

= = =
( )

=0
2 2 9 5

2 2
8 6 s   and   

m/s
m/s

s .tr

car
2

.
.

.

We are interested in Dt = 8.6 s.

D Dx v txtr tr m/s s m .= = ( ) ( ) =9 5 8 6 82. .

(b) The speed of the car at that moment is

v a txcar x car
2m/s s m / s= = ( ) ( ) =D 2 2 8 6 19. . .

35. We have two situations: Situation A with an initial x-component of velocity vA and
travel distance DxA  and situation B with vB and DxB . In general for each situation, we
denote Dtr as the reaction time interval and Dtbr as the braking time interval. The motion

during Dtr is of the constant-velocity type and the distance traveled is vADtr or vBDtr for

the two cases. The motion during Dtbr is constant acceleration.  Then the distance the car

moves in the two situations is

D D D D
D D D D

x v t v t a t
x v t v t a t

A A r A br x br

B B r B br x br

= + +
= + +

1
2

2

1
2

2

( )
( )

where ax is the acceleration (which we expect to be negative-valued since we are taking
the velocity in the positive direction and we know the car is slowing down).  In the
previous two equations, we have 3 unknowns—Dtr, D tbr, and ax. So we need a third

equation to solve for three unknowns.  After the brakes are applied, in case A so the car is
stopped,  the velocity of the car is given by 0.0 m/s = vA + axDtbr so that Dtbr = –vA/ax. We

use this result to eliminate Dtbr from the first equation and obtain

D D Dx v t v a
v
a

v t
v
aA A r A x

A

x
A r

A

x

= - + = -2
2 21

2
1
2

.

We can write a similar equation for situation B to get:

D Dx v t
v
aB B r

B

x

= - 1
2

2

Solving these equations simultaneously for Dtr and ax we get

D D D
D Dt

v x v x
v v v v

a
v v v v

v x v xr
B A A B

A B B A
x

B A A B

B A A B

= -
-( ) = - -

-
2 2 2 21

2
    and    

Substituting ∆xA = 56.7 m, vA = 80.5 km/h = 22.4 m/s, ∆xB = 24.4 m and vB = 48.3 km/h =
13.4 m/s, we find
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(a) Dtr = -
- =( . ( . ) ( . ( . )

( . )( . )( . . )
.

13 4 56 7 22 4 24 4
22 4 13 4 13 4 22 4

0 74
2 2m/s) m m/s) m

m/s m/s m/s m/s
 s

and

(b) ax = - -
- = -1

2
13 4 22 4 22 4 13 4
13 4 56 7 22 4 24 4

6 2
2 2

2
( . )( . ) ( . )( . )
( . )( . ) ( . )( . )

. .
m/s m/s m/s m/s
m/s m/s m/s m/s

 m / s

The magnitude of the acceleration is therefore 6.2 m/s2.

36. Constant acceleration is indicated, so we use the equations in Table 2-1. We start with
Eq. 2-17 and Eq. 2-4 and denote the passenger train’s initial velocity as vp x(t1) and the
locomotive’s constant velocity as vL x (which is also the final velocity of the train, if the
rear-end collision is barely avoided).  For the displacement of the passenger train and the
displacement of the locomotive where D  is the initial gap between trains we have
respectively:

D D D D Dx v t t a t x v t Dp p x p x L L x= + = +   and    ( ) ( ) .1
1
2

2

We note that the distance the passenger train can move before colliding with the
locomotive consists of the original gap between the trains (D) as well as the forward
distance the locomotive travels during the time Dt.

We now use Eq. 2-12 to solve for the time it takes the passenger train to catch the
locomotive remembering that to avoid a collision vp x(t2)  = vL x.

 a
v t v t

t
v v t

t
t

v v t
ax

p x p x L x p x L x p x

p x
p =

-
=

-
fi =

-( ) [ ( )] [ ( )] [ ( )]
.2 1 1 1

D D D

Determining where the train and locomotive will be at the same location and substituting
for Dt and solving for ap x yields:

D D D D Dx x D v t t a t v t D

v t
v v t

a
a

v v t
a

v
v v t

a

p L p x p x L x

p x
L x p x

p x
p x

L x p x

p x
L x

L x p x

p x

= + = + = + fi

-Ê
ËÁ

ˆ
¯̃

+
-Ê

ËÁ
ˆ
¯̃

=
-Ê

ËÁ
ˆ
¯

( )

( )
[ ( )] [ ( )] [ ( )]

1
2

1

1 1

2

1

1
2

1
2 ˜̃ + D

which leads to

D
v t v v t

a
v v v t v t

a
v v v t

a
p x L x p x

p x

L x L x p x p x

p x

L x L x p x

p x

=
-Ê

ËÁ
ˆ
¯̃

+
- +Ê

ËÁ
ˆ
¯̃

-
-Ê

ËÁ
ˆ
¯̃

( ) [ ( )] ( ) [ ( )] [ ( )] ( ) [ ( )]1 1
2 2

1 1
2 2

12
2

Hence,  D
v t v v t v

a
a

v t v
D

p x L x p x L x

p x
p x

p x L x=
- + -

fi =
- -[ ( )] ( )[ ( )] ( ) [ ( )] ( )1

2
1

2
1

2 22
2 2
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Converting 161 km/hr to 44.7 m/s and 29.0 km/hr to 8.06 m/s gives

ap x = - -( ) = -1
2 676

8 06 44 7 0 993
2

2

(
. . .

 m)
 m s  m s  m / s

so that the magnitude of ap x is 0.993 m/s2. A graph is shown below for the case where a
collision is just avoided (x along the vertical axis is in meters and t along the horizontal
axis is in seconds). The top (straight) line shows the motion of the locomotive and the
bottom curve shows the motion of the passenger train.

The other case (where the collision is not quite avoided) would be similar except that the
slope of the bottom curve would be greater than that of the top line at the point where
they meet.

37. Assume that the elevator starts rising at time t1, reaches its maximum speed v2 x a t
time t2, then moves at constant velocity until time t3 and comes to rest again at t4. If the
periods of speeding up (Dt1-2 = t2 – t1) and slowing down (Dt2-3 = t3 – t 2) are periods of

constant ax then the Table 2-1 equations can be used. Taking the direction of motion to be
+x then a1 x = +1.22 m/s2 , a2 x = 0.00 m/s2 and a3 x = –1.22 m/s2. We use SI units so the
x-component of velocity at t = t1 is given by vx  = (305 m/min)/(60s/min) = 5.08 m/s.

(a) We denote Dx1 as the distance moved during Dt1-2, and use the equation on the bottom

of page 43 that is derived from the equations in Table 2-1,

v v a x xx x x2
2

1
2

1 1 1

2

2
5 08

2 1 22
= + fi =D D    

m/s)
m/s2

( .
( . )

which yields Dx1 = 10.59 m ª 10.6 m.

(b) Using Eq. 2-12, we have

Dt
v v

a
x x

x
1 2

2 1

1

5 08
1 22

4 17- =
-

= =.
.

.
m/s
m/s

 s.
2
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Since the acceleration magnitudes are the same for speeding up and slowing down, by
symmetry the slowing time Dt3-4 turns out to be the same as the speeding up time Dt1-2.

Thus, Dt1-2 + Dt3-4 = 8.33 s. The distances traveled during Dt1-2 and Dt3-4 are the same so

that they total  2(10.59 m) = 21.18 m. This implies that for a distance of 190 m – 21.18 m
= 168.82 m, the elevator is traveling at constant velocity. This time interval of constant
velocity motion is

Dt2 3
168 82
5 08

33 21- = =.
.

. m
 m / s

 s.

Therefore, the total time for the 190 m elevator run is 8.33 s + 33.21 s ª 41.5 s.

38. The problem consists of two constant-acceleration parts:  part 1 with v1 x = 0 m/s, v2 x

= 6.0 m/s, x2 = 1.8 m, and x1 = 0 m (if we take its original position to be the coordinate
origin); and, part 2 with v2 x = 6.0 m/s, v3 x = 0 m/s, and a2 x = –2.5 m/s2 (negative because
we are taking the positive direction to be the direction of motion).

(a) We can use Eq. 2-15 combined with Eq. 2-4 to find the time for the first part

x2 – x1  =  1
2

(v1 x + v2 x) Dt1 – 2  fi  1.8 m – 0 m  =  1
2

 (0 m/s + 6.0 m/s) D t1 – 2

so that Dt1 – 2 = 0.60 s.  And Eq. 2-12 is used to obtain the time for the second part

v3 x  =  v2 x + a2 xt   fi   0 m/s = 6.0 m/s + (–2.5 m/s2) D t2 – 3

from which Dt2 – 3 = 2.4 s is computed.  Thus, the elapsed time is Dt1 – 2 + Dt2 – 3 = 3.0 s.

(b) We already know the distance for part 1. We could find the distance for part 2 from
several of the equations, but let’s use the equation on the bottom of page 43.

v3 x
2  =  v2 x

2  + 2a2 x Dx2 – 3   fi   (0 m/s)2  =  (6.0 m/s)2 + 2(–2.5 m/s2) Dx2 – 3

which leads to Dx2 – 3 = 7.2 m.  Therefore, the total distance traveled by the shuffleboard

disk is 1.8 m + 7.2 m = 9.0 m.

39. We separate the motion into two parts, and take the direction of motion to be positive.
In part 1, the vehicle accelerates from rest to its highest speed between time t1 and t2; we
are given v1 x = 0 m/s; v2 x = 20 m/s and a1 x = 2.0 m/s2.  In part 2, the vehicle decelerates
from its highest speed to a halt between time t2 and t3 ; we are given v2 x = 20 m/s; v3 x = 0
m/s and a2 x = –1.0 m/s2 (negative because the acceleration vector points opposite to the
direction of motion).
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(a)  From Table 2-1, we find D t1 – 2 = Dt2 – Dt1 (the duration of part 1) from

v2 x = v1 x + a1 xDt1 – 2. In this way, 20 m/s = 0  m/s + (2.0 m/s2) D t1 – 2 yields Dt1 – 2 = 10 s.

We obtain the duration Dt2 – 3 of part 2 from the same equation. Thus, 0 m/s = 20 m/s +

(–1.0 m/s2) D t2 – 3 leads to Dt2 – 3 = 20 s. Finally, the total elapsed time is 20 s + 10 s = 30

s.

(b) For part 1, we use the equation v2 x
2 = v1 x

2 + 2 a1 x(x2 – x1) from the bottom of page 43
and we find

Dx
v v

a
x x

x
1 2

2
2

1
2

1

2 2

22
20 0

2 2 0
100- =

-
= - =( / ) ( / )

( . / )
m s m s

m s
 m.

This position is then the initial position for part 2, so that when the same equation is used
in part 2 we obtain

Dx
v vx x

x
2 3

3
2

2
2

2
- =

-
2a

  =  ( (
( . )

0 20
2 1 0

2 2m/s) m/s)
m/s2

-
◊ -  = 200 m.

Thus, the total displacement is Dxtot = Dx1 - 2 + Dx2 - 3 = 100m + 200 m = 300 m.  That this

is also the total distance traveled should be evident (the vehicle did not "backtrack" or
reverse its direction of motion).

40. At tr = 0 s, xr 1 = 0 m, vr x = 20 km/hr = 5.56 m/s, and  xg 1 = 220 m.

Case A:  When passing at x = 44.5 m, the red car has traveled a distance of Dxr = x2 – x1 =

(44.5 m – 0 m).  Since its velocity component is vr x = 5.56 m/s and vr x = (Dxr)/( D tr) then

Dtr = (Dxr)/( vr x) = (44.5 m)/(5.56 m/s) = 8.00 s so the elapsed travel time for both cars is

(Dtr = Dtg = 8.00 s).

Case B: When passing at x = 76.6 m, the red car has traveled a distance of Dxr = x2 –

x1 = (76.6 m – 0 m) at a velocity with x-component is vr x = 40 km/hr = 11.12 m/s so the
elaspsed travel time is Dtr = Dtg = (Dxr)/( vr x ) = (77.6 m)/(11.12 m/s) = 6.89 s.

This gives us two simultaneous equations of the form D D Dx v t t a tg g x g g x g= +( ) ( )1
21

2
describing the acceleration and initial velocity components of the green car.

For Case A: ( ( ( )( . )220 001
2

2 m  44.5 m) ( ))(8.00 s) 8  s1- = +v t ag x g x

For Case B: ( ( ( )( . )220 6 891
2

2 m  76.6 m) ( ))(6.89 s)  s1- = +v t ag x g x

Solving the equations simultaneously gives (ag x = 1.99 m/s2 and vg x(t1) = 13.9 m/s
(approximately 50 km/hr).
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41. (a)  Taking derivatives of  x = (12 m2/s2)t2 – (2 m/s3)t3 we obtain the functions for the
x-components of velocity and acceleration.:

vx  =  (24 m2/s2)t – (6 m/s3)t2   and ax =  24 m2/s2 – (12 m/s3)t

Substituting in the value t = 3.0 s yields x = 54 m, vx = 18 m/s, and ax = –12 m/s2.

(b) At the maximum x, we must have vx = 0 m/s; eliminating the t = 0 s root, the velocity
equation reveals t = (24 m2/s2)/(6 m/s3) = 4 s for the time of maximum x. Substituting t =
4 s into the equation for x leads to x = 64 m for the largest x value reached by the particle.

(c) A maximum vx requires ax = 0 m/s2, which occurs when t = (24 m2/s2)/(12 m/s3) = 2.0
s.  This, inserted into the velocity equation, gives (vx)

max = 24 m/s.

(d) In part (b), the particle was (momentarily) motionless at t = 4 s.  The acceleration at
that time is readily found to be 24 m2/s2 – (12 m/s3)(4 s) = –24 m/s2.

(e) The average velocity is defined by Eq. 2-4, so we see that the values of x at t1 = 0 s
and t2 = 3.0 s are needed; these are, respectively, x1 = 0 m and x2 = 54 m (found in part
(a)).  Thus,

r
v vx= = -

-
Ê
ËÁ

ˆ
¯̃

=ˆ
.

ˆ ˆi
m m
s s

i  (18 m/s) i.
54 0
3 0 0


