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Solution to Problems in Chapter 1, Section 1.10 
1.1. The relative importance of convection and diffusion is evaluated by Peclet number, 

� 

Pe = vL
Dij

     (S1.1.1) 

(a) Solving for L, L = PeDij/v.  When convection is the same as diffusion, Pe =1, L is 0.11cm. 
(b) The distance between capillaries is 10-4 m, O2 needs to travel half of this distance, and Pe = 

0.0455. Therefore, convection is negligible compared with diffusion. 

1.2. Since HO2 = HHb, equation (1.6.4) is simplified to the following: 

� 

CO2
= HO2

PO2
 +  4CHbS Hct    (S1.2.1) 

2O
P  and S  are 95 mmHg and 95% for arterial blood and 38 mmHg  70% for venous blood. CHb is 
0.0203 mol L-1 x 0.45 = 0.0091 M for men, and 0.0203 mol L-1 x 0.40 = 0.0081 M for women. Based 
on these data, the fraction of oxygen in plasma and bound to hemoglobin is 1.5% and 98.5% in 
arterial blood, and 0.83% and 99.17% in venous blood for men. Corresponding values for women are 
1.7% and 98.3% in arterial blood, and 0.93% and 99.07% in venous blood. Most oxygen in blood is 
bound to hemoglobin. 

1.3. For CO2 70% is stored in plasma and 30% is in red blood cell. Therefore, the total change of 
CO2is 2.27(0.70)+1.98(0.30) = 2.18 cm3 per 100 cm3. For O2, 2O

P  changes from 38 to 100 mmHg 
after blood passes through lung artery. Using data in problem (1.2), the total O2 concentration in 
blood is 0.0088 M in arterial blood and 0.0063 M in venous blood. At standard temperature (273.15 
K) and pressure (1 atm = 101,325 Pa), 1 mole of gas occupies 22,400 cm3.  Thus, the O2 
concentration difference of 0.0025 M corresponds to 5.58 cm3 O2 per 100 cm3.  While larger than the 
difference for CO2, the pressure difference driving transport is much larger for O2 than CO2. 

1.4. The diffusion time is L2/Dij = (10-4 cm)2/(2x10-5 cm2 s-1) = 0.0005 s. Therefore, diffusion is 
much faster than reaction and does not delay the oxygenation process. 

1.5. V = πR2L and the S=  2πRL where R is the vessel radius and L is the length 
Order volume, cm3 surface area, cm2 cumulative volume, cm3 cumulative surface area, cm2 

1 0.0158 26.27 0.0158 26.27 
2 0.03885 35.32 0.05 61.59 
3 0.05738 31.44 0.11 92.99 
4 0.09219 30.23 0.20 123.21 
5 0.12788 26.64 0.33 149.86 
6 0.20487 23.28 0.54 173.14 
7 0.20733 15.56 0.74 188.70 
8 0.24132 11.03 0.99 199.73 
9 0.31010 8.17 1.30 207.89 

10 0.23046 3.71 1.53 211.60 
11 0.50671 3.99 2.03 215.59 
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1.6.  

Order Volume (cm3) Surface Area (cm2) Cumulative Volume 
(cm3) 

Cumulative Surface 
Area (cm2) 

0 30.54 67.86 30.54 67.86 
1 11.13 36.49 41.66 104.34 
2 4.11 19.82 45.78 124.2 
3 1.50 10.70 47.27 134.9 
4 3.23 28.72 50.51 163.6 
5 3.29 37.65 53.80 201.2 
6 3.54 50.67 57.35 251.9 
7 4.04 70.29 61.39 322.2 
8 4.45 95.74 65.84 418.0 
9 5.15 133.76 70.99 551.7 

10 6.25 192.38 77.24 744.1 
11 7.45 273.51 84.70 1018 
12 9.58 403.41 94.27 1421 
13 11.68 569.79 106.0 1991 
14 16.21 876.05 122.2 2867 
15 22.42 1358.86 144.6 4226 
16 30.57 2038.28 175.2 6264 
17 42.33 3135.25 217.5 9399 
18 60.223 4817.76 277.7 14217 
19 90.05 7663.95 367.8 21881 
20 138.42 12303.82 506.2 34185 
21 213.18 19831.06 719.4 54015 
22 326.72 31874.64 1046. 85890 
23 553.75 54024.81 1600 139915 

 

1.7. (a) The water content is 55% and 60% of the whole blood for men and women, respectively. 
Then the water flow rate through kidney is 990 L day-1 for men and 1,080 L day-1 for women. Then 
the fraction of water filtered across the glomerulus is 18.2% for men and 16.67% for women. 
(b) renal vein flow rate = renal artery flow rate – excretion rate = 1.19 L min-1 

renal vein flow rate = 1.25 L min-1 – (1.5 L day-1)/(1440 min day-1) = 1.249 L min-1 
(c) Na+ leaving glomerulus = 25,200 mmole day-1/180 L day-1 = 140 mM. 

Na+ in renal vein = Na+ in renal artery - Na+  excreted 
(1.25 L min-1 x 150mM – 150 mM day-1/(1440 min day-1))/1.249 L min-1  

= 150.037 mM 
There is a slight increase in sodium concentration in the renal vein due to the volume reduction. 

1.8. (a) Bi = kmL/Dij = 5 x 10-9 cm s-1 x 0.0150cm/(1 x 10-10 cm2 s-1) = 0.75.  
(b) The results indicate that the resistance to LDL transport provided by the endothelium is similar to 
that provided by the arterial wall. 
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1.9  The oxygen consumption rate is 
   
VO2

= Q Cv − Ca( )  where Q is the pulmonary blood flow and Cv 

and Ca are the venous are arterial oxygen concentrations. The oxygen concentrations are obtained 
from Equation (1.6.4) 

 

The fractional saturation S  is given by Equation (1.6.5).  For the data given, the venous fraction 
saturation is 0.971.  The arterial fractional saturation is 0.754 under resting conditions and 0.193 
under exercise conditions.   

  Men     Women 
Rest  Ca = 0.0070 M    Ca = 0.0063 M 

Exercise Ca = 0.0019 M    Ca = 0.0017 M 
  CV = 0.0090 M   Cv = 0.0080 M 

The oxygen consumption rates are 
  Men     Women 

Rest  0.0115 mole min-1   0.0102 mole min-1 
Exercise 0.1776 mole min-1   0.1579 mole min-1 
 
1.10. (a)  To obtain the rate of oxygen removal from the lungs, we use the mass balance discussed in 
class that equates the oxygen removed from the inspired air with the oxygen uptake in the blood. 

  
VI CI − Calv( ) = Q Cv − Ca( )      (S1.10.1) 

We want to assess the left hand side of Equation (S1.10.1)  which represents the rate of oxygen 
removal from the lungs. From the data provided and the ideal gas equation: 

Calv =
palv
RT

=
105 mm Hg( ) / 760 mm Hg/atm( )
0.08206 L atm/(mol K)( ) 310 K( ) = 0.00543 M  

 

CI =
palv
RT

=
0.21 1 atm( )

0.08206 L atm/(mol K)( ) 310 K( ) = 0.00826 M  

   
VI = 10 breaths/min( ) 0.56 − 0.19 L( ) = 3.7 L/min  males 

   
VI = 10 breaths/min( ) 0.45− 0.41 L( ) = 3.1 L/min  females 

 
Since we have all terms on the left hand side of Equation (1), the rate of oxygen removal from the 
lungs is: 
 

   
VI CI − Calv( ) = 3.7 L/min( ) 0.00282 mole O2 /L( ) = 0.0104 mole O2 /min  males 

   
VI CI − Calv( ) = 3.1 L/min( ) 0.00282 mole O2 /L( ) = 0.00874 mole O2 /min  females 

To convert to mL O2/L blood, multiply to oxygen removal rate by 22,400 L O2 per mole of O2.    

( ) ( )
2 2 2 2
O O O O

1 Hct 4 Hct
Hb Hb

C H P C S H P= ! + +
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For males the value is 233 mL O2/min and for females the value is 196 mL O2/min.  These values are 
a bit low but within the range of physiological values under resting conditions.   
 
(b)   In this part of the problem, you are asked to find the volume inspired in each breadth or 

  
VI .  

Sufficient information is provided to determine the right hand side of Equation (1) which represents 
both the rate of oxygen delivery and oxygen consumption.   
 
First, determine the oxygen concentrations in arteries and veins. The concentration in blood is: 

 
 
Using the relation for the percent saturation to calculate the concentration in the pulmonary vein: 

  

S =
PO2

P50( )2.6

1+ PO2
P50( )2.6 =

100 / 26( )2.6

1+ 100 / 26( )2.6 = 0.972  

Likewise for the pulmonary artery: 

  

S =
PO2

P50( )2.6

1+ PO2
P50( )2.6 =

20 / 26( )2.6

1+ 20 / 26( )2.6 = 0.3357  

This is substantially less than the value in the pulmonary artery under resting conditions, S = 0.754. 
 
The concentration in blood is: 

 
For men

 

Cv = 1.33 x 10–6  M mmHg–1( ) 20 mmHg( )0.55 +

    0.0203 M( ) 0.3357( ) + 1.50 x 10–6  M mmHg–1  ( ) 20 mmHg( )( )0.45 = 0.0031 M
  

Ca = 1.33 x 10–6  M mmHg–1( ) 100 mmHg( )0.55 +

    0.0203 M( ) 0.972( ) + 1.50 x 10–6  M mmHg–1  ( ) 100 mmHg( )( )0.45 = 0.0090 M
 

For women 
Cv = 1.33 x 10–6  M mmHg–1( ) 20 mmHg( )0.60 +

    0.0203 M( ) 0.3357( ) + 1.50 x 10–6  M mmHg–1  ( ) 20 mmHg( )( )0.40 = 0.00275 M
  

 
Ca = 1.33 x 10–6  M mmHg–1( ) 100 mmHg( )0.60 +

    0.0203 M( ) 0.972( ) + 1.50 x 10–6  M mmHg–1  ( ) 100 mmHg( )( )0.40 = 0.0080 M
 

 
Thus, the oxygen consumption rates are 
 

( ) ( )
2 2 2 2
O O O O

1 Hct 4 Hct
Hb Hb

C H P C S H P= ! + +

( ) ( )
2 2 2 2
O O O O

1 Hct 4 Hct
Hb Hb

C H P C S H P= ! + +
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Q Cv − Ca( )   0.148 mole O2/min  men 

    0.132 mole O2/min women 
These values are about 14 times larger than the values under resting conditions. 
 
From Equation (1)  

  

VI = Q
Cv − Ca( )
CI − Calv( )   52.5 L O2/min men 46.8 L O2/min    women 

For a respiration rate of 30 breaths per minutes, the net volume inspired in each breadth is: 1.75 
L/min for men and 1.56 L/min for women.  In terms of the total air inspired in each breadth, it is 1.94 
L/min for men and 1.70 L/min for women. 
 
1.11. CO = HR x SV where CO is the cardiac output (L min-1), SV is the stroke volume (L) and HR 
is the hear rate in beat min-1. 
 
     Stroke Volume, L    
    Rest   Exercise 
Athlete    0.0833   0.238 
Sedentary person  0.0694   0.2 
 
The peripheral resistance is R = pa /CO  
    Peripheral resistance, mm Hg/(L/min) 
    Rest    Exercise 
Athlete    20    5.2 
Sedentary person  20    6 
 
W = padV∫ = paΔV  since the mean arterial pressure is assumed constant.  DV corresponds to the 
stroke volume. 
 
Note 1 L = 1000 cm3 *(1 m/100 cm)3 = 0.001 m3 
100 mm Hg = 13,333 Pa 
 
Sedentary person   
W = (100 mm Hg)(133.3 Pa/mm Hg)(0.069 L)(1000 cm3/L)(1 m3/1x106 cm3) =  
     Work, J (N m)    
    Rest    Exercise 
Athlete    1.11    4.12 
Sedentary person  0.925    4.00 
     Power, W (J/s)    
    Rest    Exercise 
Athlete    1.11    7.22 
Sedentary person  0.924    8.33 
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1.12.  Although the pressure drops from 760 mm Hg to 485 mm Hg, the partial pressures are 
unchanged.  The inspired air at 3,650 m is 101.85 mm Hg.  For a 30 mm Hg drop, the alveolar air is 
at 71.85 mm Hg.   

The oxygen consumption rate is  
   
VO2

= VI CI − Calv( )  

Assuming that the inspired air is warmed to 37 C 

CI =
pI
RT

=
101..85 mm Hg( ) / 760 mm Hg/atm( )

0.08206 L atm/(mol K)( ) 310 K( ) = 0.00527 M  

Calv =
palv
RT

=
71.85 mm Hg( ) / 760 mm Hg/atm( )
0.08206 L atm/(mol K)( ) 310 K( ) = 0.00372 M  

Assuming that the inspired and dead volumes are the same as at sea level 

   
VI = f VI −Vdead( ) = 20 0.56 L − 0.19 L( ) = 7.4 L min-1  

The venous blood is at a partial pressure of 0.98(71.85) = 70.32 mm Hg 
The corresponding saturation is 0.930. 
 
1.13.  (1650 kcal/day)*4.184 kJ/kcal*(1day/24 h)*(1 h/3600 s) = 79.9 J/s 
 
    Rest     
Athlete    0.014 
Sedentary person  0.014 
 
1.14.  The concentrations are found as the ratio of the solute flow rate/fluid flow rate 
 
 Urine, M Plasma, M Urine/Plasma 
Sodium 0.1042 0.08444 1.233 
Potassium 0.0694 0.004 17.36 
Glucose 0.000347 0.00444       0.0781 
Urea 0.32431 0.005183 62.57 
 
The results indicate that urine concentrates sodium to a small extent, potassium to a higher level and 
urea to very high levels.  Glucose is at a lower concentration in urine than plasma, suggesting that its 
transport across the glomerulus is restricted. 
 
1.15. Assuming that inulin is not reabsorbed by the kidneys and returned to the blood, then the mass 
flow rate of inulin across the glomerulus must equal the mass flow rate in urine.  The mass flow rate 
is the product of the mass concentration (mass/volume) multiplied by the flow rate (volume/time).  
Thus, 
   Cinulin

plasmaGFR = Cinulin
urineQurine  

 
Solving for the glomerular filtration rate: 
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   GFR =
Cinulin

urine

Cinulin
plasma Qurine =

0.125
0.001

⎛
⎝⎜

⎞
⎠⎟

1 mL min-1( ) = 125 mL min-1  
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Solution to Problems in Chapter 2, Section 2.10 

2.1. Q = v • ndA∫ =
3
2
x +

6
2
y⎛

⎝⎜
⎞
⎠⎟
dxdy =

3
2 2

x2 +
6
2 2

yx⎛
⎝⎜

⎞
⎠⎟

x=0

2

dy
y=0

3

∫x=0

2

∫y=0

3

∫  

Q =
6
2
+
12
2
y⎛

⎝⎜
⎞
⎠⎟
dy

y=0

3

∫ =
6
2
y +

6
2
y2⎛

⎝⎜
⎞
⎠⎟

y=0

3

=
72
2

 

Q = 50.91 cm3s-1 

 
2.2.  

� 

n = 1= a2 + a2 + a2 = 3a  
Rearranging, 

� 

a = 1/ 3  
 

2.3.
∇ • ρvv( ) = ex

∂
∂x

+ ey
∂
∂y

+ ez
∂
∂z

⎛
⎝⎜

⎞
⎠⎟
• ρvv( ) = ex

∂
∂x

+ ey
∂
∂y

+ ez
∂
∂z

⎛
⎝⎜

⎞
⎠⎟
• ρexvxv + ρeyvyv + ρezvzv( )

              = ∂
∂x

ρvxv( ) + ∂
∂y

ρvyv( ) + ∂
∂z

ρvzv( )
 

Differentiating term by term, 

� 

∇ • ρvv( ) = v ∂
∂x

ρvx( ) + ∂
∂y

ρvy( ) + ∂
∂z

ρvz( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + ρvx

∂
∂x
v( ) + ρvy

∂
∂y
v( ) + ρvz

∂
∂z
v( ) 

� 

∇ • ρvv( ) = v∇ • ρv( ) + ρv•∇v 
 
2.4.  (a) For a two-dimensional steady  flow, the acceleration is: 

   

� 

a = vx
∂v
∂x

+ vy
∂v
∂y

 

For v = Uo(x2 – y2 +x)ex - Uo(2xy +y)ey, 
 

 

� 

∂v
∂x

=Uo 2x + 1( )ex -  Uo2yey            ∂v
∂y

=Uo −2y( )ex -  Uo 2x +1( )ey   

 
 a = Uo

2 x2 − y2 + x( ) 2x +1( )ex - 2yey( ) − Uo
2 2xy + y( ) −2yex - 2x+1( )ey( )   

 
Collecting terms: 
a = Uo

2 x2 − y2 + x( ) 2x +1( ) + 2xy + y( )2y⎡⎣ ⎤⎦ex −  Uo
2 x2 − y2 + x( )2y − 2xy + y( ) 2x +1( )⎡⎣ ⎤⎦ey  

a = Uo
2 2x3 + 3x2 − 2xy2 − y2 + x + 4xy2 + 2y2⎡⎣ ⎤⎦ex −  Uo

2 2yx2 − 2y3 + 2xy − 4x2y + 2xy + 2xy + y⎡⎣ ⎤⎦ey

a = Uo
2 2x3 + 3x2 + x + 2xy2 + y2⎡⎣ ⎤⎦ex −  Uo

2 −2yx2 − 2y3 + 6xy + y⎡⎣ ⎤⎦ey  

a = Uo
2 2x2 + 2y2 + 3x +1( )x + y2⎡⎣ ⎤⎦ex +  Uo

2 2x2 + 2y2 − 6x −1( )yey  
 

At y = 1 and x  = 0 a = 2( )2 ex + ey( ) = 4ex + 4ey        
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At y = 1 and x  = 2  
a = 2( )2 8 + 2 + 6 +1( )2 +1⎡⎣ ⎤⎦ex + 2( )2 8 + 2 −12 −1( )ey = 140ex −12ey   
 
(b)  From equation 2.2.6 
   

� 

Q = v•ndA∫ = vx∫ dydz        
since n = ex. 
 

Q = Uo
z=0

3

∫
y=0

5

∫ x2 − y2 + x( )
x=5
dydz = 3Uo 30 − y2( )dy

y=0

5

∫ = 3Uo 30y − y3

3
⎛
⎝⎜

⎞
⎠⎟
= 6 150 −

125
3

⎛
⎝⎜

⎞
⎠⎟
= 650 m3s-1  

 

2.5. (a) ax = exa = vx
∂vx
∂x

=U0 1−
x
L

⎛
⎝⎜

⎞
⎠⎟
−2 ∂
∂x

U0 1−
x
L

⎛
⎝⎜

⎞
⎠⎟
−2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   

 
∂
∂x

1− x
L

⎛
⎝⎜

⎞
⎠⎟
−2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
2
L
1− x

L
⎛
⎝⎜

⎞
⎠⎟
−3

   

ax = exa = vx
∂vx
∂x

=U0
2 1− x

L
⎛
⎝⎜

⎞
⎠⎟
−2 ∂
∂x

1− x
L

⎛
⎝⎜

⎞
⎠⎟
−2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
2U0

2

L
1− x

L
⎛
⎝⎜

⎞
⎠⎟
−5

 

For values given: 

ax =
50 m2 /s2

2 m
1− 0.5( )−5 = 25 m/s2( ) / 1 / 32( ) = 800 m/s2    

 
(b)   (1) The “no slip” boundary condition is not satisfied.  

      (2)  At x = L, the acceleration is undefined! 
 
2.6. (a) Using the definition of the volumetric flow rate, Q 

  
 

Q = vindA∫ = vzrdrdθ
0

Ri

∫
0

2π

∫    

The cross-sectional area element in cylindrical coordinates is rdrdθ.  Since the velocity does not vary 
with angular position, substitution for vz and integration in the angular direction yields: 

 Q = vmax 1−
r2

R2
⎛
⎝⎜

⎞
⎠⎟
rdrdθ

0

Ri

∫
0

2π

∫ = 2πvmax 1− r2

Ri
2

⎛
⎝⎜

⎞
⎠⎟
rdr

0

Ri

∫   

 
Ri is used to denote the local radius within the stenosis. Integrating in the radial direction yields: 

Q = 2πvmax 1− r2

Ri
2

⎛
⎝⎜

⎞
⎠⎟
rdr

0

Ri

∫ = 2πvmax
r2

2
−

r4

4Ri
2

⎛
⎝⎜

⎞
⎠⎟ r=0

R

=
πRi

2

2
vmax    
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Solving for vmax: vmax =
2Q
πRi

2 =
2Q

πR0
2 1− 0.5 1− 4 z

L
⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

1/2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2  

Outside the stenosis, Ri = R0 and: 
 

   vmax =
2Q
πR0

2    

(b)  At z = 0, the velocity in the stensosis is 

vmax =
2Q
πRi

2 =
2Q

πR0
2 0.5[ ]2

=
8Q
πR0

2   

Ri = R0 1− 0.5 1− 4
z
L

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

1/2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0.5R0  

The shear stress in the stenosis is: 
 

τ rz stenosis
= µ ∂vr

∂z
= µ

∂
∂r

vmax 1−
r2

Ri z = 0( )2
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥r=Ri

= −
2µRi z = 0( )vmax

Ri z = 0( )2
= −

32µQ
πR0

3   

 
Outside the stenosis the shear stress is: 
 

τ rz = µ
∂
∂r

vmax 1−
r2

R0
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
r=R0

= −
2µvmax
R0

= −
4µQ
πR0

3     

 
 
2.7. Evaluating Equation (2.7.30) for y = -h/2 yields: 

� 

τw = τ yx ( y = −h / 2) = Δp
L
h
2

   (S2.7.1) 

From Equations (2.7.23) and (2.7.26), 

    

� 

Δp
L

= 8µvmax

h2
 =  12µQ

wh3
   (S2.7.2) 

Replacing Δp/L in Equation (S2.7.1) with the expression in Equation (S2.7.2) yields  

� 

τw = 6µQ
wh2

    

Solving for h: h =
6µQ
wτw

  

Inserting the values provided for Q, w, µ and τw yields h = 0.051 cm. 
  
2.8.  (a) Δp = ρgh = (1 g cm-3)(980 cm s-2)(2.5 x 10-4 cm) = 0.245 dyne cm-2  

 
(b) Rearranging equation (2.4.16) we have 
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     Tc =  Δp

2 1
Rp

− 1
Rc

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

 

Tc  = 1.838 x 10-5 dyne cm-1 

 
2.9.  (a) To find the radius use Equation (2.4.16) and treat the pipet radius as the capillary radius Rc 
= Rcap. 

  
Δp = 2Tc

1
Rcap

−
1
Rc

⎛

⎝
⎜

⎞

⎠
⎟   

 
For Rc = 6.5 µm 
Tc = 0.06 mN/m= 6 x 10-5 N/m(1 x 10-6 m/µm) = 6 x 10-11  N/µm 
 
Δp = 0.2 mm Hg  
Since 1.0133 × 105 N m−2 = 760 mm Hg  
0.2 mm Hg = 26.7 N m-2(1 m/106 µm)2 = 2.67 x 10-11 N µm-2 
 
Solving for Rcap 
 

  

1
Rpcap

=
1
Rc

+
Δp
2Tc

 

 

  

Rcap =
1

1
Rc

+ Δp
2Tc

   

 

  

Rcap =
1

1
Rc

+ Δp
2Tc

=
1

1
6.5

+ 2.67
2 6( )

= 2.66 µm   

 
While this result satisfies the law of Laplace, we need to assess whether the surface area is no greater 
than the maximum surface area of the cell, 1.4 times the surface area of a spherical cell, or 743.3 
µm2.  The factor of 1.4 accounts for the excess surface area.  Ideally, a larger cell entering a smaller 
capillary with look like a cylinder with hemispheres on each end.  The cylinder will have length l 
and radius equal to the capillary.  The hemispheres will have a radius equal to the capillary radius.  
The volume must remain constant, so 
 

V =
4
3
πRc

3 + πRc
2L  

Solving for the length, 
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 L =
V − 4

3
πRc

3

πRc
2 =

4
3
π R3 − Rc

3( )
πRc

2 =
4
3

6.53 − 2.663( )
2.662 = 48.2 µm  

 
The resulting surface area is  SA = 4πRc

2 + 2πRcL = π 4 * 2.662 + 2 * 48.2 * 2.66( ) = 894.6 µm2  
This is larger than the surface area 530.9 µm2 or 1.4 times the surface area 743.3 µm2.   
 
To find the radius and length, one could iteratively solve for L and surface area of use the fzero 
function in MATLAB.  After several iterations, the result approaches a radius of 3.3 µm and L =  
29.2 µm. 
 
If the cell had no excess area, then the cell would have no capacity to enter a capillary smaller than 
itself! 
 
(b)  Whether or not excess area is not considered, a cell with a radius of 3.0 µm can enter the 
capillary. 
 
2.10. A momentum balance is applied on a differential volume element, 2πrΔrΔy, as shown in the 
figure below. 

 
  

� 

p r 2πrΔy − p r+Δr 2π r + Δr( )Δy + τ yr y+Δy
2πrΔr − τ yr y 2πrΔr = 0  (S2.10.1) 

Divide each term by 2πrΔrΔy and take the limit as Δr and Δy go to zero results in the following 
expression: 

   

� 

1
r
d rp( )
dr

=
dτ yr
dy

      (S2.10.2) 

Note that if the gap distance h is much smaller than the radial distance, then curvature is not 
significant.  Each side is equal to a constant C1.  Solving for the shear stress, τyr = C1y + C2.  
Substituting Newton’s law of viscosity and integrating yields: 

   

� 

vr = C1y
2

2µ
+ C2

µ
y + C3      (S2.10.3) 

Applying the boundary conditions that vr = 0 at y=±h/2, 

    

� 

0 = C1h
2

8µ
+ C2

µ
h
2

+ C3       (S2.10.4a) 

    

� 

0 = C1h
2

8
− C2

µ
h
2

+ C3       (S2.10.4b) 

Adding Equations (S2.10.4a) and (S2.10.4b) and solving for C3, 
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� 

C3 = −C1h
2

8
       (S2.10.5) 

Inserting Equation (S2.10.5) into Equation (S2.10.4a) yields C2 = 0.  Thus the velocity is: 

    

� 

vr = C1

µ
y2

2
− h

2

8
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟       (S2.10.6) 

The volumetric flow rate is: 
 

  

� 

Q = v•ndA∫ = 2πrvrdyy=−h / 2

h / 2∫ = 2πrC1

µ
y2

2
− h

2

8
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dyy=−h / 2

h / 2∫   (S2.10.7) 

 

� 

Q = 2πrC1

µ
y3

6
− h

2y
8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
y=−h / 2

h / 2

= 2πrC1h
3

µ
1
24

− 1
8

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = −πrC1h

3

6µ
   (S2.10.8) 

 
Solving for C1 and inserting into equation (S2.10.6) 

    

� 

vr = − 6Q
πrh3

y2

2
− h

2

8
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟       (S2.10.9) 

 
The shear stress can thus be written as; 

    

� 

τw = τ yr y=−h / 2
= µdvr

dr y=−h / 2

= − 6Q
πrh3

y
y=−h / 2

= 3µQ
πrh2

  (S2.10.10) 

 
 
2.11.  Flow rate per fiber, Qf  =  Q/250 = 0.8 mL/60 s = 0.01333 mL/s  
 
Average velocity per fiber:  <vf > = Qf/πRf 

2 =  (0.01333 mL/s)/(3.14159*(0.01 cm)2) 
    <vf > = 42 cm/s     
 
Re = ρ<vf >Df/µ = 1.05*42*0.02/0.03 = 29.7.    
 
Le = 0.058DRe = 0.058*(0.02 cm)(29.7) = 0.034 cm << L = 30 cm. 
 
2.12. (a)  The momentum balance is the same as that used for the case of pressure-driven flow in a 
cylindrical tube in Section 2.7.3. 

� 

dp
dz

= 1
r
d(rτ rz )
dr

     (S2.12.1) 

(b) The velocity profile is sketched below: 

   
Integrating the momentum balance and substituting Newton’s law of viscosity, 
    

� 

τ rz = − Δp
2L

r + C1
r

= µ
dvz
dr

     (S2.12.2) 
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Note that the shear stress and shear rate are a maximum at 

� 

r = 2C1
Δp / L

.  Assuming that C1 is greater 

than zero, then r will have a maximum in the fluid.   
 
(c) Integrating Equation (S2.12.2) yields: 
  

� 

vz = − Δp
4µL

r2 + C1
µ
ln(r) +C2      (S2.12.3) 

Applying the boundary conditions 
  

� 

V = − Δp
4µL

RC
2 + C1

µ
ln(RC ) +C2      (S2.12.4a) 

  

� 

0 = − Δp
4µL

R2 + C1
µ
ln(R) +C2      (S2.12.4b) 

Subtracting  
  

� 

V = − Δp
4µL

RC
2 − R2( ) + C1

µ
ln RC

R
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟     (S2.12.5) 

Solving for C1: 

  C1 =
µV

ln RC
R

⎛
⎝⎜

⎞
⎠⎟
+
Δp
4L

RC
2 − R2( )

ln RC
R

⎛
⎝⎜

⎞
⎠⎟

    (S2.12.6a) 

 
Using this result to find C2 

  C2 =
Δp
4µL

R2 −
V

ln R
RC

⎛
⎝⎜

⎞
⎠⎟

+
Δp
4µL

RC
2 − R2( )

ln R
RC

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ln(R)   (S2.12.6b) 

 
The resulting expression for the velocity profile is 

vz =
ΔpR2

4µL
1− r2

R2
⎛
⎝⎜

⎞
⎠⎟
+ V +

Δp
4µL

RC
2 − R2( )⎛

⎝⎜
⎞
⎠⎟

ln r
R

⎛
⎝⎜

⎞
⎠⎟

ln R
RC

⎛
⎝⎜

⎞
⎠⎟

    (S2.12.7) 

 
(d)  The shear stress is: 
 

τ zr = µ
dvz
dr

= −
rΔp
2L

+
µV + Δp

4L
RC

2 − R2( )
ln R

RC

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
r

⎛
⎝⎜

⎞
⎠⎟

    (S2.12.8) 

 
(e) At r = R, the shear stress is: 
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