


(—,–)

1ω 2ω+–

7
54

5
3

1
3

y=x2

A SURVEY OF CLASSICAL

AND MODERN GEOMETRIES

INSTRUCTORS’ SOLUTION MANUAL

Arthur Baragar
University of Nevada Las Vegas

PRENTICE HALL
Upper Saddle River, New Jersey 07458





iii

August 10, 2001

Dear Instructor,

I was under a severe time crunch when I wrote this solution manual.
Not all exercises are solved. Of the 600+ exercises in the text, about 500
are solved here. There are no solutions to exercises from Chapters 13 –
15. I believe all my solutions are correct, but there are many subtleties
that are easy to miss. I am sure there are quite a few errors, probably in
exposition or typing. I hope they are not too severe and that the reader will
be able to sort them out. Nevertheless, reports of errors are appreciated
and can be sent to the email address below. Despite the rush, there are
some solutions that I am proud of. Some of the exercises in this text make
good projects. For example, Exercises 1.101 (Feuerbach’s Theorem), 3.7
(Mohr constructions), 3.8 (Rusty compass problem), 4.40 (Construction of
the 13-gon using parabola paper in sketchpad), and 5.20 (classifying convex
polyhedra with only equilateral faces). The intended use of this manual is
two fold. An instructor can consult it to gauge the level of difficulty of an
exercise, or copy portions of it to distribute to their class when they deem
fit, presumably after homework has been handed in. I have tried to keep
that latter intent in mind while writing this and hope that the exposition
is clear enough for such an audience.

There is an electronic file that goes with this manual. The file contains
scripts that solve most of the exercises in Chapter 4, as well as some in
Chapters 7 and 8. These files are compressed and password protected (the
password is Pi∼22/7) and will be available on the website

www.prenhall.com/baragar

As I am writing this, the site has not yet been set up, but I hope it will
be up and running in the next week or so. Currently, the scripts are for
Windows based PC’s. I hope to make these available in Mac format too. I
don’t think there’s a unix version of Sketchpad.

I hope you find this manual useful and enjoy teaching geometry as much
as I have.

Arthur Baragar
baragar@unlv.nevada.edu
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Chapter 1

Euclidean Geometry

Exercise 1.1. Suppose that at the spring solstice the angle between a star,
the Earth, and the sun measures 79.1◦, and at the fall solstice the angle
measures 100.8◦. How far away is the star from the Earth? (The Earth is
93 million miles from the sun.)

The solution is in the text.

Exercise 1.2. The numbers in Exercise 1.1 were cooked up. From your
general knowledge, are these numbers reasonable? Explain.

Solution. In Exercise 1.1, we found that the star is 100,000,000,000 miles
away. Let us convert this figure to light years. A light year is how far light
travels in a year. Since light travels at a speed of 186,000 miles per second,
one light year is the same as

1 lightyear = 186, 000
miles
sec

yr
3600 sec

hr
24 hrs
day

365 day
yr

= 5.87× 1012 miles.

Thus, the distance to the star in Exercise 1.1 is

1011 miles
1 lightyear

5.87× 1012 miles
= .017 lightyear.

Since this is much smaller than 4.3 lightyears, the distance to the nearest
star (other than the Sun), we conclude that the numbers are not reasonable.

Exercise 1.3. What order of magnitude is the difference between 180◦

and the sum of the angles for the summer and winter observations of Alpha
Centauri? (See Figure 1.1.)

1
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α 
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Figure 1.1. The nearest star (other than the sun) is Alpha Centauri,
also known as Rigil Kentaurus, which is 4.3 light years away. This
star is the α or brightest star in the Centaurus constellation, which
is just south of Libra. It is visible from June to December in the
nighttime sky of the southern hemisphere. It briefly appears above
the southern horizon in parts of Florida and southern Texas.

Solution. Let Alpha Centauri be the vertex A, let the Earth during the
summer be the vertex B, and let the Earth during the winter be the vertex
C, forming a long narrow triangle ∆ABC. By the Law of Sines, we have

a

sinA
=

b

sinB
.

We are interested in the angle A. We know a = 4.3 lightyears and b =
186, 000, 000 miles. We do not know the exact measurement of B, but
expect it to be close to 90◦. Thus,

sinA =
b

a sinB
≈ 4.3(5.87× 1012 miles)

186, 000, 000 miles
≈ 1.357× 10−5

A ≈ .0008◦.

So, the order of magnitude of the angle at A is 10−3 degrees.

Exercise 1.4*. In Figure 1.1, how much does Alpha Centauri move (use
units of length) between the summer and winter observations?

Solution. By Exercise 1.3, the angle at the star is about 0.0008◦. We as-
sume that the background stars are so far away that our lines of sight to
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them for the summer and winter observations are parallel. Thus, our line
of sight to Alpha Centauri changes by 0.0008◦. Let us now inspect the
markings in Figure 1.1. The markings on the side are in degrees. Along
the top, they are in hours, and with a little thought, we should come to the
conclusion that a full circle is 24 hrs, so each hour represents 15◦. However,
the horizontal markings (those in hours) follow lines of latitudes, so vary,
while the vertical markings follow lines of longitude, which are always great
circles. Using a ruler, we find that 10◦ is approximately 16 mm, so 0.0008◦

is approximately 0.001 mm in this figure. Since this is so tiny, we conclude
that to actually calculate this distance, we must take large pictures of a
much smaller portion of the night time sky.

1.1 The Pythagorean Theorem

Exercise 1.5. The diagram in Figure 1.2(a) suggests a different proof of
the Pythagorean theorem. Fill in the details.

c

c

c

c

C

BA

D

B ′

C ′A

BC

(a) (b)

Figure 1.2. See Exercises 1.5 and 1.6.

Solution. Consider a square of side c. On each edge, place a copy of our
triangle ∆ABC with the hypotenuse on each edge, and the vertex C inside
the square. Since the angles A and B are complimentary, we know that
the edges of these triangles match up, as in Figure 1.2(a), leaving a small
square in the center whose edges have length |a− b|. Calculating the area
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in two different ways, we find

c2 = 4(
1
2
ab) + (a− b)2

= 2ab+ a2 − 2ab+ b2

c2 = a2 + b2.

Exercise 1.6. The diagram in Figure 1.2(b) suggests another proof of the
Pythagorean theorem. Fill in the details. [H]

Solution. Let us first look at ∆ABB′. Since the area of a triangle is half
of its base times height, we know

|∆ABB′| = a2

2
.

To see this, think of BB′ as being the base. Then the altitude at A is
congruent to BC.

Now, note that |BB′| = |BC|, |BA| = |BC ′|, and ∠ABB′ = ∠C ′BC, so
by SAS, the two triangles ∆ABB′ and ∆C ′BC are congruent. In particular,
their areas are equal.

We calculate the area of ∆C ′BC by thinking of the base as BC ′, so the
altitude is congruent to CD, and hence

|∆C ′BC| = 1
2
c|C ′D|.

Equating the areas of these two congruent triangles, we get

c|C ′D| = a2.

In a similar fashion, we can show that the area of the remaining rectangle
in the square with side C (the rectangle with diagonal AD) has an area of
b2. Thus,

c2 = a2 + b2,

as desired.

Exercise 1.7 (Pappus’ Variation on the Pythagorean Theorem).
Let ∆ABC be a triangle (not necessarily right). Let ACDE and BCFG
be parallelograms whose sides DE and FG intersect at H (see Figure 1.3).
Let ABIJ be a parallelogram with sides AJ and BI parallel to and with
the same length as CH. Prove that the area of ABIJ is equal to the sum
of the areas of the other two parallelograms.

Solution. Extend the line HC so that it intersects the parallelogram ABIJ .
Label these points K and L. Also, draw a line segment MB parallel to
HC with M on FG. Then, the area of FGBC is the same as the area
of HMBC, since they have the same base BC and the same altitude.
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L

Figure 1.3. See Exercise 1.7

Now let us consider the parallelograms HMBC and KLIB. Note that
|KL| = |BI| = |HC|, by construction, so they have equal length bases.
With respect to these bases, their altitudes are also equal, so these two
parallelograms have equal areas. Thus, the area of CBGF and KLIB are
equal. Similarly, the areas of AECD and AJLK are equal. Thus, the area
of AJIB is equal to the sum of the areas of AECD and CBGF .

1.2 The Axioms of Euclidean Geometry

Exercise 1.8. How should we measure the length of a path?

Solution. This question is meant to be more of a source of discussion. One
should realize that we measure paths ‘one step at a time.’ That is, consider
a sequence of points along the path. Then the length of the path is approx-
imated by the sum of the distances between these points. As we add more
points, the approximation should get better. So, define the length of a path
to be the limit of these sums as the length of the steps approach zero, if
this limit exists. What we have described is essentially a path integral.

Exercise 1.9. The Cartesian plane R2 is a model of Euclidean geometry.
In this model, explicitly describe an isometry which has no fixed points and
is not a translation.

Solution. Such isometries are called glide reflections, a term which might
ring a bell. We create such an isometry by translating along a line and
then reflecting through that line. For example, the horizontal translation
by one in R2 is given by T (x, y) = (x+1, y). Reflection through the x-axis
is given by R(x, y) = (x,−y). Thus, the composition

(R ◦ T )(x, y) = R(x+ 1, y) = (x+ 1,−y)
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is a glide reflection. It is clearly an isometry, since it is the composition of
two isometries. It is not a translation, since it does not preserve orientation.
Finally, it has no fixed points, since if it did, then we would have

(x, y) = (x+ 1,−y),

which is not satisfied by any value of x.
Footprints are common examples of objects with glide reflection sym-

metry.

Exercise 1.10. Which of Axioms 1 – 8 are local in nature, and which are
global? It may help to ask yourself if any of these properties are true on a
sphere.

This exercise is meant to be a source of discussion.

Exercise 1.11. The triangle inequality states

|PQ|+ |QR| ≥ |PR|.

Show that we can have equality if and only if Q is a point on the line
segment PR.

Solution. We cannot yet answer this question with any rigor – our definition
of a line segment is not yet sufficient. This exercise (as well as a few
others in this section) should be thought of as motivation for defining a
stronger foundation. This will be rectified in Chapter 9. At the heart of
our deficiency is the question of how we should define line segments and
what is meant by Axiom 1. For the moment, we are thinking of a line
segment as the shortest path between two points. Thus, the existence part
of Axiom 1 merely asserts the existence of a path between any two points.
What we further need to know is that the length of a line segment between
two points P and R is the same as the distance |PR| between the two points.
If we accept this (as a refinement of our definition of a line segment), then
we can answer the question.

If Q is on the line segment PR, then the length of the segment PR is
the same as the sum of the lengths of PQ and QR. That is,

|PR| = |PQ|+ |QR|.

Conversely, if
|PR| = |PQ|+ |QR|,

then the path which consists of the union of the line segments PQ and QR
joins P to R and has length |PR|, which is the same length as the line
segment joining P and R. Thus, if Q is not on this line segment, then
we have found a path of equal length, contradicting the uniqueness part of
Axiom 1. Thus, Q must be on PR.
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Exercise 1.12. It is sometimes possible to ‘define away’ an axiom by choos-
ing a suitable definition. For example, with our definition of a circle, Eu-
clid’s third axiom is vacuous – all circles exist by definition, though some
may be empty sets. Euclid’s first axiom can also be defined away by making
the following definition for a line segment:

PQ = {R : |PQ| = |PR|+ |RQ|}.
With this definition, between any two points P and Q there exists a unique
line segment PQ. Find an example of a familiar geometry where this def-
inition for a line segment does not correspond with our intuitive notion of
what a line segment should be.

Solution. Consider a sphere with North pole P and South pole Q. Then
for any point R on the sphere, we have

|PQ| = |PR|+ |RQ|.
Thus, the line segment PQ, as defined in this exercise, is the entire sphere.
This does not correspond with our intuitive notion of a line segment, since
we usually think of line segments as being one dimensional.

1.3 SSS, SAS, and ASA

The exercises in this section are very tough. I have never assigned them
as homework. On the surface, they are indicative of the types of ques-
tions which should naturally occur to us, and that we should be able to
answer. Deeper analysis might best be done in guided discussions, rather
than homework, and should demonstrate a need for a better set of axioms.

Exercise 1.13. Prove SAS.

Solution. Let ∆ABC and ∆A′B′C ′ satisfy ∠A = ∠A′, |AB| = |A′B′|, and
|AC| = |A′C ′|. Since ∠A = ∠A′, there exists an isometry f which sends
∠A to ∠A′ (by the definition of congruence of angles). That is, f(A) = A′,
and the ray AB is sent to either the ray A′B′ or A′C ′, while the ray AC is
sent to the other.

If AB is sent to A′B′, then f(B) = B′, since f(B) is on the ray AB
and |AB| = |A′B′|. Similarly f(C) = C ′, and hence f sends ∆ABC to
∆A′B′C ′, so they are congruent.

If f(B) lies on the ray A′C ′, then let us call B′′ = f(B) and consider
the triangle ∆A′B′B′′. Since |A′B′| = |A′B′′|, we have the congruence

∆A′B′B′′ ≡ ∆A′B′′B′

by SSS, and hence there exists an isometry g such that g(A′) = A′, g(B′) =
B′′, and g(B′′) = B′. Furthermore, g sends ∠A′ to ∠A′. Thus, there
exists an isometry h = g ◦ f which sends ∠A to ∠A′ which further satisfies
h(B) = B′. But then, as before, h(C) = C ′, as desired, so ∆ABC is
congruent to ∆A′B′C ′.
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Exercise 1.14. Prove ASA.

Solution. Suppose there exist ∆ABC and ∆A′B′C ′ with |BC| = |B′C ′|,
∠B = ∠B′, and ∠C = ∠C ′. If we also have |BA| = |B′A′|, then by SAS,
the two triangles are congruent. So let us assume, without loss of generality,
that |BA| < |B′A′|.

By the definition of congruence of angles, there exists an isometry which
sends B to B′ and the rays BA and BC to the rays B′A′ and B′C ′. If C is
sent to a point C ′′ on B′A′, then by SSS, ∆C ′B′C ′′ ≡ ∆C ′′B′C ′, so there
exists an isometry g which fixes B′, sends C ′′ to C ′, and sends ∠C ′B′C ′′ to
∠C ′′B′C ′ (that is, it fixes the angle at B′). Thus, there exists an isometry
h = g ◦ f such that h(B) = B′, h(C) = C ′, and h sends the angle at B
to the angle at B′. If, on the other hand, f(C) is on the ray B′C ′, then
f(C) = C ′ already, so choose h = f .

Now, A′′ = h(A) is on the ray B′A′, and since |BA| < |B′A′|, the point
A′′ is between B′ and A′. On the ray C ′A′′, find the point A′′′ such that
|C ′A′′′| = |C ′A′|. Since ∆B′C ′A′′ is congruent to ∆ABC (since it is the
image of the latter under an isometry), we know ∠A′′C ′B′ = ∠ACB, so
∠A′′′C ′B′ = ∠ACB = ∠A′C ′B′. Thus, by SAS, ∆A′′′C ′B′ ≡ ∆ACB. In
particular, |B′A′′′| = |B′A′|. Let D be the midpoint of A′A′′′. Note that
the line C ′A′′′ enters the triangle ∆DA′′′B′ at A′′′, so it must intersect the
segment B′D. Let us call that point of intersection E. It is clear that E �=
C ′. Now, consider ∆B′A′D and ∆B′A′′′D. They are congruent by SSS.
Thus, ∠A′DB′ = ∠A′′′DB′, and since these two angles sum to a straight
line, they must both be right angles. Similarly, ∠C ′DA′ is a right angle, so
the angle ∠C ′DB′ is a straight line. But this line intersects C ′A′′ at C ′ and
E, a contradiction of Axiom 1. Thus, we could not have |BA| < |B′A′|, as
assumed, so the two triangles are congruent, as desired.

Exercise 1.15. Suppose f is an isometry and suppose there exist two dis-
tinct points P and Q such that f(P ) = P and f(Q) = Q. Show that f is
either the identity or a reflection.

Solution. Suppose f is not the identity. Then there exists a point A such
that A′ = f(A) �= A. Let D be the midpoint of AA′. Since P and Q are
distinct, D is not one of them, so we may assume, without loss of generality,
that D �= P .

Suppose B �= P and f(B) = B. Then, since f is an isometry, |PA| =
|PA′|, so by SSS, ∆PAD ≡ ∆PA′D. Hence, ∠ADP ≡ ∠A′DP , and since
they sum to a straight line, they must both be right angles. Similarly, using
B in place of P , we get that ∠ADB is a right angle. Thus, P , D and B
are collinear. Since this is true for any B such that f(B) = B, it is in
particular true for B = Q. Thus, f(B) = B only if B is on the line PQ.

Now suppose B is on the line PQ. Let B′ = f(B). Then we consider
three cases. Either B is between P and Q, P is between B and Q, or Q
is between P and B. Let us assume B is between P and Q. Then |PB|+
|BQ| = |PQ|. Since f is an isometry, we therefore also have |PB′|+|B′Q| =
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|PQ|, which implies B′ is on the segment PQ (by Exercise 1.11). Finally,
since both B and B′ are on the segment PQ, and since |PB′| = |PB|,
the points B and B′ must be equal. The other two cases are similar, so
f(B) = B if B is on the line PQ.

Thus, we have shown that f is an isometry which fixes every point on
the line PQ, and fixes no other points. That is, f is a reflection through
the line PQ.

Exercise 1.16. Suppose f is a reflection. Prove that f is not a direct
isometry.

Solution. Let f be the reflection through the line PQ, and let A be a point
not on PQ. Then A′ = f(A) �= A. Let D be the midpoint of AA′. Then
D lies on PQ (see the solution to the previous exercise). But then ∆PQD
and ∆PQD′ have opposite orientations, so f is not a direct isometry.

Exercise 1.17. Prove that if a line l1 �= l is sent to itself under a reflection
through l, then l1 and l intersect at right angles.

Solution. Let A be a point on l1 such that A is not on l. Then A′ = f(A) �=
A. Let D be the midpoint of AA′. Note that D is on l1, since both A and
A′ are on l1. Let P �= D be a point on l. Then ∆ADP ≡ ∆A′DP by SSS,
so in particular, ∠ADP = ∠A′DP . Since they sum to a straight line, they
are right angles. That is, l1 = AD is perpendicular to l = PD.

Exercise 1.18. Suppose that f is an isometry for which there exists exactly
one point P such that f(P ) = P . Prove that f is a rotation. That is, prove
that f is a direct isometry.

Solution. If an isometry preserves the orientation of one nondegenerate
triangle, then it preserves the orientation of all nondegenerate triangles.
This is shown in Exercise 9.12 and I do not think we can show this with
any rigor without first coming up with a better set of axioms. So let us
accept it as fact. As a corollary, if f reverses the orientation of any triangle,
then it reverses the orientation of all (nondegenerate) triangles.

Suppose now that f is not a direct isometry. Then it reverses the
orientation of all triangles. Consider a point Q �= P and its image Q′ =
f(Q). If ∆PQQ′ is not degenerate, then consider the image of ∆PQQ′

under f . Note that f(P ) = P , f(Q) = Q′. Let f(Q′) = Q′′. Note that
Q′′ lies on the circle centered at P with radius |PQ|, and also on the circle
centered at Q′ with center |Q′Q|. There are two points of intersection, one
of which is Q. If it is the other point, then ∆PQQ′ has the same orientation
as ∆PQ′Q′′. Since we assumed f reverses orientation, we get f(Q′) = Q.
Finally, let M be the midpoint of QQ′. Then f(M) is a distance |MQ|
from Q′, and a distance |MQ′| from Q. Since |MQ| = |MQ′|, these two
circles intersect at exactly one point,M . Thus, f(M) =M . But this means
M = P , so ∆PQQ′ is degenerate, a contradiction. Thus, f is orientation
preserving.
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Now, suppose there does not exist a Q such that ∆PQQ′ is nondegen-
erate. Then P , Q, and Q′ are collinear, and since Q �= Q′, P must be the
midpoint of QQ′. Then it is clear that f is rotation by 180◦.

Exercise 1.19†. Suppose f and g are two isometries such that f(A) =
g(A), f(B) = g(B), and f(C) = g(C) for some nondegenerate triangle
∆ABC. Show that f = g. That is, show that f(P ) = g(P ) for any point
P .

Solution. Consider the isometry h = g−1f . Note that h(A) = A, h(B) = B,
and h(C) = C. By Exercise 1.15, h is either the identity, or a reflection
which fixes the line AB, since h(A) = A and h(B) = B. But since h(A) = A
and h(C) = C, it is also either the identity or a reflection which fixes the
line AC. Since ∆ABC is nondegenerate, the lines AB and AC are distinct,
so h cannot fix both of them, so it must be the identity. Thus, f = g.

Exercise 1.20*. Suppose P and Q are two distinct points. Prove that
there exists exactly one translation which sends P to Q. [H]

Solution. There are two questions here – existence and uniqueness. I will
ignore the question of existence. The only way I see of doing it is con-
structive, and in passing shows that Axioms 6 and 7 follow from Axiom
8.

Let f be a translation which sends P to Q. Let Q′ = f(Q), and let us
now show that Q′ is on the line PQ. Suppose it is not. Let M and M ′

be the midpoints of the segments PQ and QQ′, respectively. Consider the
perpendicular l to PQ throughM , and the perpendicular l′ to QQ′ through
M ′. These lines intersect (and this is where we use the parallel postulate).

To see this, consider the line l′′ which is perpendicular to PQ at Q.
If l and l′′ intersect on one side of PQ, then the must intersect on the
other side too, contradicting Axiom 1 (actually, we have just assumed that
there are two sides to a line, a concept not covered by our current set of
axioms). Thus, l and l′′ cannot intersect. Similarly, consider the line l′′′

perpendicular to QQ′ and through Q. This line is parallel to l′. Since PQ
and QQ′ are distinct lines, the lines l′′ and l′′′ are distinct. Thus, l′′ must
intersect l′, since by Axiom 5, there is only one line (namely l′′′) through
Q which is parallel to l′. Let this point of intersection be R. Then l′′ is the
unique line, through R, which is parallel to l, so since l′ �= l′′ and l′ goes
through R, it cannot be parallel to l. Thus, l and l′ intersect.

Let the point of intersection of l and l′ be S. Let us now show that
|MS| = |M ′S|. Note that |MQ| = |MP | = |M ′Q| (the first equality follows
since M is the midpoint of PQ, and the second equality follows since M ′

and Q are the images of M and P under the isometry f). Though we
know the triangles ∆MQS and ∆M ′QS are congruent by the Pythagorean
theorem, we really shouldn’t use that result, since we haven’t proved it
(recall that the proof we gave used results from Euclidean geometry which
we had not yet proved, and motivated our discussion of axioms). So, let
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us instead reflect ∆MQS through l. Since the angle at M is a right angle,
the point Q is sent to P , and the angle ∠QMP is a straight line, giving us
the triangle ∆PQS with M on the side PQ. Further, |PS| = |QS|. Do the
same for ∆M ′Q′S to get ∆QQ′S, which is congruent to ∆PQS and ∆QPS
by SSS. Now we know ∠MQS = ∠PQS = ∠QPS = ∠Q′QS = ∠M ′QS,
and we get ∆MQS ≡ ∆M ′QS by SAS. Thus, |MS| = |M ′S|.

We will now show that f(S) = S. Since S is on l, and l′ is the image
of l under f , we know f(S) lies on l′. Since f(M) = M ′, there are only
two possibilities for f(S), one of which is S, the other is the reflection of S
through the line QQ′. Since f is a translation, it preserves orientation, so
the image of S must be S. Thus, we have shown that f has a fixed point,
a contradiction. Thus, the assumption that f(Q) is not on PQ is false.

Now, suppose that there exists another translation g such that g(P ) =
Q. Let h = g−1f . Then h(P ) = P and h(Q) = Q. By Exercise 1.15,
h is either the identity or a reflection. Since h is the composition of two
translations, it preserves orientations, so it cannot be a reflection. Thus,
it is the identity. Hence g = f , and the translation which sends P to Q is
therefore unique.

1.4 Parallel Lines

Exercise 1.21*. Show that Euclid’s version of Axiom 5 implies our version
of Axiom 5.

Solution. Let l be a line and P a point not on l. We wish to show that
there exists a unique line l′ through P which does not intersect l. Let us
first show that l′ exists. By Lemma 1.4.2, there exists a point Q on l such
that l and PQ intersect at right angles. Let l′ be the line through P which
is perpendicular to PQ. If l and l′ intersect, say at R, then by Axiom 8,
there exists an isometry which fixes the line PQ and sends R to a point
R′ �= R. But since the angles at P and Q in ∆PQR are both right angles,
the angles at P and Q in ∆PQR′ are also right angles, so the angles ∠RPR′

and ∠RQR′ are both straight lines. That is, l and l′ intersect at two points
R and R′, a contradiction of Axiom 1. Thus, R cannot exist, so l and l′ are
parallel.

Now, suppose l′′ is any other line through P . Then the angles l′′ makes
with PQ are not right angles, so one of those angles is less than a right
angle. The line PQ therefore meets l and l′′ so that the sum of the angles
on one side is less than a straight line, so l and l′′ intersect. Thus, the line
l′ is unique.

Exercise 1.22. Prove that the angles in a quadrilateral sum up to 360◦.
Generalize this result to an n-sided polygon.

Solution. For a quadrilateral ABCD, draw the diagonal AC, creating two
triangles ∆ABC and ∆BCD. The sum of the angles in these two triangles
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are each 180◦, giving a total of 360◦. The sum of these angles is also equal
to the sum of the angles in the quadrilateral.

In general, if we label the vertices of an n-gon P1, P2, ... Pn, then we
can ‘triangulate’ it by drawing the segments P1P3, P1P4,...,P1Pn−1. By
doing so, we have drawn n−3 segments, and created n−2 triangles. Thus,
the sum of the angles in an n-gon is (n− 2)180◦.

Exercise 1.23. What is the sum of the exterior angles of a triangle? What
is the sum of the exterior angles of a quadrilateral? What is the sum of the
exterior angles of an n-gon?

Solution. The exterior angle for any angle is the difference of 180◦ less
the interior angle. Thus, using the result in Exercise 1.22, the sum of the
exterior angles of an n-gon is

n(180◦)− (n− 2)180◦ = 360◦.

1.5 Pons Asinorum

Exercise 1.24†. Prove the converse of pons asinorum. That is, show that
if in ∆ABC we have ∠ABC = ∠ACB, then |AB| = |AC|.
Solution. By ASA, ∆ABC ≡ ∆ACB, so |AB| = |AC|.

Exercise 1.25†. Prove that if a diameter of a circle bisects a chord which
itself is not a diameter, then the diameter is perpendicular to the chord.
Also, prove that the perpendicular bisector of a chord goes through the
center of the circle. And finally, prove that if a diameter is perpendicular
to a chord, then the diameter bisects the chord. [S]

1.6 The Star Trek Lemma

Exercise 1.26. Prove the Star Trek lemma for an acute angle for which
the center O is outside the angle.

Solution. The proof is almost identical to the one in the book, so let us
repeat it here, and point out how it differs. Note that OA, OB, and OC are
radii, so we have several isosceles triangles. We have continued the segment
OA to intersect the circle at D. Since ∆AOB is isosceles, ∠BAO = ∠OBA.
Since the sum of angles in a triangle is 180◦,

∠BOD = ∠OBA+ ∠BAO = 2∠BAO.

Similarly,
∠DOC = 2∠OAC.
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Figure 1.4

And now for the difference. Rather than adding these two angles, it is clear
we want to taker the difference, which gives

∠BOC = ∠BOD − ∠DOC = 2(∠BAO − ∠OAC) = 2∠BAC.

Exercise 1.27. Prove the Star Trek lemma for an obtuse angle.

The proof is identical to the one in the text. Just draw a different
diagram.

Exercise 1.28†. Suppose ∠ABC is a right angle inscribed in a circle.
Prove that AC is a diameter. [S]

Exercise 1.29† (Bow Tie Lemma). Let A, A′, B, and C lie on a circle,
and suppose ∠BAC and ∠BA′C subtend the same arc (as in Figure 1.5(a)).
Show that

∠BAC = ∠BA′C.

Again, because of the diagram, this lemma is sometimes known as the Bow
Tie lemma. We say ‘The angles at A and A′ are equal since they subtend
the same arc.’

Solution. By the Star Trek lemma, ∠BAC is half the measure of the arc BC
that it subtends. Also by the Star Trek lemma, ∠BA′C is half the measure
of the arc BC that it subtends. Thus, the two angles are equal.

Exercise 1.30. If |AB| = |AC| = |BC|, what is the angle at D? (See
Figure 1.5(b).) [A]

Solution. Since ∆ABC is an equilateral triangle, ∠ABC = 60◦. Since
∠ADC subtends the same arc, it must also be 60◦.
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Figure 1.5. See Exercises 1.29, 1.30, and 1.31.

Exercise 1.31. If |AB| = 12, |BD| = 9, |BC| = 16, and |AC| = 20, then
what is the length of the diameter? (See Figure 1.5(c).) [A]

Solution. Note that ∆ABC has sides of length 12, 16, and 20, so b2 =
a2 + c2. Thus, by the converse of the Pythagorean theorem, the angle at
B is a right angle. It therefore subtends a diameter (see Exercise 1.28), so
AD is a diameter. By the Pythagorean theorem,

|AD|2 = |AB|2 + |BD|2 = 122 + 92 = 152.

Thus, the length of the diameter is 15.

Exercise 1.32. If |AB| = |AC| = |BC| and AD is perpendicular to BC,
then what is ∠BCD? (See Figure 1.6(a).)

Solution. Let AD and BC intersect at E. Since |AB| = |AC|, |AE is
shared, and ∠AEC = ∠AEB = 90◦, we know |BE| = |EC| by the Pytha-
gorean theorem, and hence, ∆AEC ≡ ∆AEB by SSS. Thus, 2∠BAD =
∠BAC = 60◦, so ∠BAD = 30◦. Since ∠BAD and ∠BCD subtend the
same arc, we therefore get ∠BCD = 30◦.

Exercise 1.33† (The Tangential Case of the Star Trek Lemma).
Suppose AT is a line segment that is tangent to a circle. Prove that ∠ATB
is half the measure of the arc TB which it subtends. Do this by pick-
ing a point C on the circle such that ∠TCB subtends the arc TB (as in
Figure 1.6(b)). Show that

∠ATB = ∠TCB.

Solution. It doesn’t matter where we pick C, since ∠TCB is always half the
arc it subtends. So, pick C so that BC is a diameter. Then ∠CTB = 90◦,
and ∠TCB = ∠TCO = ∠CTO. Thus, ∠OTB = 90◦ − ∠TCB. But
the radius OT and the tangent TA intersect at right angles, so ∠OTB =
90◦ − ∠BTA. Thus,

90◦ − ∠BTA = 90◦ − ∠TCB
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Figure 1.6. See Exercises 1.32 and 1.33.

∠BTA = ∠TCB.

Hence, ∠BTA is half the the measure of the arc it subtends.

Exercise 1.34†. Suppose two lines intersect at P inside a circle and meet
the circle at A and A′ and at B and B′, as shown in Figure 1.7(a). Let α
and β be the measures of the arcs A′B′ and AB respectively. Prove that

∠APB =
α+ β

2
.
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O
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B ′
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B

O

α 

(a) (b)

Figure 1.7

Solution. Draw the segment AB′, and consider the triangle ∆AB′P . By
the Star Trek lemma, ∠AB′P = β/2, and ∠B′AP = α/2. Since ∠APB is
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the exterior angle of ∆AB′P at P , we have

∠APB = ∠AB′P + ∠B′AP =
α+ β

2
.

Exercise 1.35†. Suppose an angle α is defined by two rays which intersect
a circle at four points, as in Figure 1.8(b). Suppose the angular measure
of the outside arc it subtends is β, and the angular measure of the inside
arc it subtends is γ. (So, in Figure 1.8(b), ∠AOB = β and ∠A′OB′ = γ.)
Show that

α =
β − γ

2
. [S]
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Figure 1.8. See Exercises 1.34 and 1.35.

Exercise 1.36. Prove that the opposite angles in a convex quadrilateral
(called a convex quadrangle in the first printing) inscribed in a circle sum to
180◦. Conversely, prove that if the opposite angles in a convex quadrilateral
sum to 180◦, then the quadrilateral can be inscribed in a circle. Such a
quadrilateral is called a cyclic quadrilateral.

Solution. Let ABCD be a convex quadrilateral inscribed in circle. Then
the arc subtended by the angles at B and D, together, form the whole
circle, so measure 360◦. Thus, the sum of the angles B and D is half that,
so is 180◦.

Conversely, suppose the opposite angles B and D sum to 180◦ in a
convex quadrilateral ABCD. Consider the circumcircle of ∆ABC. If D
lies inside this circle, then by Exercise 1.34, the angle D is larger than half
the measure of the arc ABC = 360◦− 2∠ABC, so the sum of the angles at
B and D is greater than 180◦. Similarly, if D lies outside the circle, then
by Exercise 1.35, the sum of the angles is less than 180◦. Thus, D must lie
on the circle. That is, the quadrilateral ABCD is cyclic.
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Exercise 1.37†. Let two circles Γ and Γ′ intersect at A and B, as in
Figure 1.9. Let CD be a chord on Γ. Let AC and BD intersect Γ′ again
at E and F . Prove that CD and EF are parallel. [S]

F

E

D

C

B

A
Γ 

Γ′

Figure 1.9. See Exercise 1.37.

This exercise is restated and proved in Lemma 11.2.2.

Exercise 1.38†. Let ABCD be a nonconvex cyclic quadrilateral. That is,
ABCD is inscribed in a circle and two of its opposite sides intersect (as in
Figure 1.10(a)). Prove that ∠ABC = ∠CDA and ∠DAB = ∠BCD. Con-
versely, suppose ∠ABC = ∠DAB and ∠BCD = ∠DAB in a quadrilateral
with intersecting opposite sides. Show that ABCD is cyclic.

Solution. The solution is essentially the same as the solution of Exercise
1.36. The angles are equal since they subtend the same arcs. Conversely,
consider the circumcircle of ∆ABC. If D is inside this circle, then by
Exercise 1.34, the angle at D must be larger than the angle at B; and if D
is outside this circle, then by Exercise 1.35, the angle at D is smaller than
the angle at B. Thus, D must lie on the circle.

Exercise 1.39. Suppose ABCDEF is a hexagon inscribed in a circle.
Show that

∠ABC + ∠CDE + ∠EFA = 360◦.

Prove that the converse is not true. That is, find an example of a hexagon
ABCDEF whose angles B, D, and F sum to 360◦ but which cannot be
inscribed in a circle.

Solution. The sum of the arcs subtended by the angles ∠ABC, ∠CDE, and
∠EFA is twice the entire circle, so 720◦. Thus, the sum of these angles is
half that, or 360◦.

The converse, though, is not true. To see this, let us first consider a
regular hexagon ABCDEF inscribed in a circle. Note that the sides AB
andDE are parallel. Thus, we may stretch these sides without changing the
angles. By doing so, we will have created a hexagon which is not inscribed
in a circle, but whose angles satisfy the condition.
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