SOLUTIONS MANUAL

A Survey of Classical and Modern Geometries
 INSTRUCTORS' SOLUTION MANUAL

Arthur Baragar

University of Nevada Las Vegas

Dear Instructor,
I was under a severe time crunch when I wrote this solution manual. Not all exercises are solved. Of the $600+$ exercises in the text, about 500 are solved here. There are no solutions to exercises from Chapters 13 15. I believe all my solutions are correct, but there are many subtleties that are easy to miss. I am sure there are quite a few errors, probably in exposition or typing. I hope they are not too severe and that the reader will be able to sort them out. Nevertheless, reports of errors are appreciated and can be sent to the email address below. Despite the rush, there are some solutions that I am proud of. Some of the exercises in this text make good projects. For example, Exercises 1.101 (Feuerbach's Theorem), 3.7 (Mohr constructions), 3.8 (Rusty compass problem), 4.40 (Construction of the 13 -gon using parabola paper in sketchpad), and 5.20 (classifying convex polyhedra with only equilateral faces). The intended use of this manual is two fold. An instructor can consult it to gauge the level of difficulty of an exercise, or copy portions of it to distribute to their class when they deem fit, presumably after homework has been handed in. I have tried to keep that latter intent in mind while writing this and hope that the exposition is clear enough for such an audience.

There is an electronic file that goes with this manual. The file contains scripts that solve most of the exercises in Chapter 4, as well as some in Chapters 7 and 8. These files are compressed and password protected (the password is $\mathrm{Pi} \sim 22 / 7$) and will be available on the website

> www.prenhall.com/baragar

As I am writing this, the site has not yet been set up, but I hope it will be up and running in the next week or so. Currently, the scripts are for Windows based PC's. I hope to make these available in Mac format too. I don't think there's a unix version of Sketchpad.

I hope you find this manual useful and enjoy teaching geometry as much as I have.

Arthur Baragar
baragar@unlv.nevada.edu

Contents

1 Euclidean Geometry 1
1.1 The Pythagorean Theorem 3
1.2 The Axioms of Euclidean Geometry 5
1.3 SSS, SAS, and ASA 7
1.4 Parallel Lines 11
1.5 Pons Asinorum 12
1.6 The Star Trek Lemma 12
1.7 Similar Triangles 18
1.8 Power of the Point 24
1.9 The Medians and Centroid 33
1.10 The Incircle, Excircles, and the Law of Cosines 35
1.11 The Circumcircle and Law of Sines 42
1.12 The Euler Line 48
1.13 The Nine Point Circle 50
1.14 Pedal Triangles and the Simson Line 57
1.15 Menelaus and Ceva 67
2 Geometry in Greek Astronomy 75
2.1 The Relative Size of the Moon and Sun 75
2.2 The Diameter of the Earth 76
3 Constructions Using a Compass and Straightedge 81
3.1 The Rules 81
3.2 Some Examples 81
3.3 Basic Results 82
3.4 The Algebra of Constructible Lengths 92
3.5 The Regular Pentagon 94
3.6 Other Constructible Figures 102
3.7 Trisecting an Arbitrary Angle 105
4 Geometer's Sketchpad 111
4.1 The Rules of Constructions 111
4.2 Lemmas and Theorems 111
4.3 Archimedes' Trisection Algorithm 114
4.4 Verification of Theorems 114
4.5 Sophisticated Results 117
4.6 Parabola Paper 120
5 Higher Dimensional Objects 125
5.1 The Platonic Solids 125
5.2 The Duality of Platonic Solids 127
5.3 The Euler Characteristic 127
5.4 Semiregular Polyhedra 127
5.5 A Partial Categorization of Semiregular Polyhedra 130
5.6 Four-Dimensional Objects 138
6 Hyperbolic Geometry 143
6.1 Models 143
6.2 Results from Neutral Geometry 143
6.3 The Congruence of Similar Triangles 145
6.4 Parallel and Ultraparallel Lines 145
6.5 Singly Asymptotic Triangles 146
6.6 Doubly and Triply Asymptotic Triangles 146
6.7 The Area of Asymptotic Triangles 147
7 The Poincaré Models of Hyperbolic Geometry 149
7.1 The Poincaré Upper Half Plane Model 149
7.2 Vertical (Euclidean) Lines 149
7.3 Isometries 149
7.4 Inversion in the Circle 150
7.5 Inversion in Euclidean Geometry 161
7.6 Fractional Linear Transformations 164
7.7 The Cross Ratio 169
7.8 Translations 173
7.9 Rotations 177
7.10 Reflections 181
7.11 Lengths 185
7.12 The Axioms of Hyperbolic Geometry 186
7.13 The Area of Triangles 186
7.14 The Poincaré Disc Model 188
7.15 Circles and Horocycles 190
7.16 Hyperbolic Trigonometry 195
7.17 The Angle of Parallelism 207
7.18 Curvature 209
8 Tilings and Lattices 211
8.1 Regular Tilings 211
8.2 Semiregular Tilings 211
8.3 Lattices and Fundamental Domains 212
8.4 Tilings in Hyperbolic Space 212
8.5 Tilings in Art 220
9 Foundations 221
9.1 Theories 221
9.2 The Real Line 221
9.3 The Plane 221
9.4 Line Segments and Lines 221
9.5 Separation Axioms 222
9.6 Circles 225
9.7 Isometries and Congruence 226
9.8 The Parallel Postulate 227
9.9 Similar Triangles 227
10 Spherical Geometry 229
10.1 The Area of Triangles 229
10.2 The Geometry of Right Triangles 231
10.3 The Geometry of Spherical Triangles 232
10.4 Menelaus' Theorem 234
10.5 Heron's Formula 241
10.6 Tilings of the Sphere 245
10.7 The Axioms 247
10.8 Elliptic Geometry 247
11 Projective Geometry 249
11.1 Moving a Line to Infinity 249
11.2 Pascal's Theorem 250
11.3 Projective Coordinates 250
11.4 Duality 255
11.5 Dual Conics and Brianchon's Theorem 257
11.6 Areal Coordinates 258
12 The Pseudosphere in Lorentz Space 265
12.1 The Sphere as a Foil 265
12.2 The Pseudosphere 272
12.3 Angles and the Lorentz Cross Product 280
12.4 A Different Perspective 284
12.5 The Beltrami-Klein Model 286
12.6 Menelaus' Theorem 286

Chapter 1

Euclidean Geometry

Exercise 1.1. Suppose that at the spring solstice the angle between a star, the Earth, and the sun measures 79.1°, and at the fall solstice the angle measures 100.8°. How far away is the star from the Earth? (The Earth is 93 million miles from the sun.)

The solution is in the text.
Exercise 1.2. The numbers in Exercise 1.1 were cooked up. From your general knowledge, are these numbers reasonable? Explain.

Solution. In Exercise 1.1, we found that the star is $100,000,000,000$ miles away. Let us convert this figure to light years. A light year is how far light travels in a year. Since light travels at a speed of 186,000 miles per second, one light year is the same as

$$
\begin{aligned}
1 \text { lightyear } & =186,000 \frac{\text { miles }}{\mathrm{sec}} \mathrm{yr} \frac{3600 \mathrm{sec}}{\mathrm{hr}} \frac{24 \mathrm{hrs}}{\text { day }} \frac{365 \text { day }}{\mathrm{yr}} \\
& =5.87 \times 10^{12} \text { miles }
\end{aligned}
$$

Thus, the distance to the star in Exercise 1.1 is

$$
10^{11} \text { miles } \frac{1 \text { lightyear }}{5.87 \times 10^{12} \text { miles }}=.017 \text { lightyear }
$$

Since this is much smaller than 4.3 lightyears, the distance to the nearest star (other than the Sun), we conclude that the numbers are not reasonable.

Exercise 1.3. What order of magnitude is the difference between 180° and the sum of the angles for the summer and winter observations of Alpha Centauri? (See Figure 1.1.)

Figure 1.1. The nearest star (other than the sun) is Alpha Centauri, also known as Rigil Kentaurus, which is 4.3 light years away. This star is the α or brightest star in the Centaurus constellation, which is just south of Libra. It is visible from June to December in the nighttime sky of the southern hemisphere. It briefly appears above the southern horizon in parts of Florida and southern Texas.

Solution. Let Alpha Centauri be the vertex A, let the Earth during the summer be the vertex B, and let the Earth during the winter be the vertex C, forming a long narrow triangle $\triangle A B C$. By the Law of Sines, we have

$$
\frac{a}{\sin A}=\frac{b}{\sin B}
$$

We are interested in the angle A. We know $a=4.3$ lightyears and $b=$ $186,000,000$ miles. We do not know the exact measurement of B, but expect it to be close to 90°. Thus,

$$
\begin{aligned}
\sin A & =\frac{b}{a \sin B} \approx \frac{4.3\left(5.87 \times 10^{12} \text { miles }\right)}{186,000,000 \text { miles }} \\
& \approx 1.357 \times 10^{-5} \\
A & \approx .0008^{\circ}
\end{aligned}
$$

So, the order of magnitude of the angle at A is 10^{-3} degrees.

Exercise 1.4*. In Figure 1.1, how much does Alpha Centauri move (use units of length) between the summer and winter observations?

Solution. By Exercise 1.3, the angle at the star is about 0.0008°. We assume that the background stars are so far away that our lines of sight to
them for the summer and winter observations are parallel. Thus, our line of sight to Alpha Centauri changes by 0.0008°. Let us now inspect the markings in Figure 1.1. The markings on the side are in degrees. Along the top, they are in hours, and with a little thought, we should come to the conclusion that a full circle is 24 hrs , so each hour represents 15°. However, the horizontal markings (those in hours) follow lines of latitudes, so vary, while the vertical markings follow lines of longitude, which are always great circles. Using a ruler, we find that 10° is approximately 16 mm , so 0.0008° is approximately 0.001 mm in this figure. Since this is so tiny, we conclude that to actually calculate this distance, we must take large pictures of a much smaller portion of the night time sky.

1.1 The Pythagorean Theorem

Exercise 1.5. The diagram in Figure 1.2(a) suggests a different proof of the Pythagorean theorem. Fill in the details.

Figure 1.2. See Exercises 1.5 and 1.6.

Solution. Consider a square of side c. On each edge, place a copy of our triangle $\triangle A B C$ with the hypotenuse on each edge, and the vertex C inside the square. Since the angles A and B are complimentary, we know that the edges of these triangles match up, as in Figure 1.2(a), leaving a small square in the center whose edges have length $|a-b|$. Calculating the area
in two different ways, we find

$$
\begin{aligned}
c^{2} & =4\left(\frac{1}{2} a b\right)+(a-b)^{2} \\
& =2 a b+a^{2}-2 a b+b^{2} \\
c^{2} & =a^{2}+b^{2}
\end{aligned}
$$

Exercise 1.6. The diagram in Figure 1.2(b) suggests another proof of the Pythagorean theorem. Fill in the details.
Solution. Let us first look at $\triangle A B B^{\prime}$. Since the area of a triangle is half of its base times height, we know

$$
\left|\Delta A B B^{\prime}\right|=\frac{a^{2}}{2}
$$

To see this, think of $B B^{\prime}$ as being the base. Then the altitude at A is congruent to $B C$.

Now, note that $\left|B B^{\prime}\right|=|B C|,|B A|=\left|B C^{\prime}\right|$, and $\angle A B B^{\prime}=\angle C^{\prime} B C$, so by SAS, the two triangles $\Delta A B B^{\prime}$ and $\Delta C^{\prime} B C$ are congruent. In particular, their areas are equal.

We calculate the area of $\Delta C^{\prime} B C$ by thinking of the base as $B C^{\prime}$, so the altitude is congruent to $C D$, and hence

$$
\left|\Delta C^{\prime} B C\right|=\frac{1}{2} c\left|C^{\prime} D\right|
$$

Equating the areas of these two congruent triangles, we get

$$
c\left|C^{\prime} D\right|=a^{2}
$$

In a similar fashion, we can show that the area of the remaining rectangle in the square with side C (the rectangle with diagonal $A D$) has an area of b^{2}. Thus,

$$
c^{2}=a^{2}+b^{2}
$$

as desired.
Exercise 1.7 (Pappus' Variation on the Pythagorean Theorem). Let $\triangle A B C$ be a triangle (not necessarily right). Let $A C D E$ and $B C F G$ be parallelograms whose sides $D E$ and $F G$ intersect at H (see Figure 1.3). Let $A B I J$ be a parallelogram with sides $A J$ and $B I$ parallel to and with the same length as $C H$. Prove that the area of $A B I J$ is equal to the sum of the areas of the other two parallelograms.

Solution. Extend the line $H C$ so that it intersects the parallelogram $A B I J$. Label these points K and L. Also, draw a line segment $M B$ parallel to $H C$ with M on $F G$. Then, the area of $F G B C$ is the same as the area of $H M B C$, since they have the same base $B C$ and the same altitude.

Figure 1.3. See Exercise 1.7

Now let us consider the parallelograms $H M B C$ and $K L I B$. Note that $|K L|=|B I|=|H C|$, by construction, so they have equal length bases. With respect to these bases, their altitudes are also equal, so these two parallelograms have equal areas. Thus, the area of $C B G F$ and $K L I B$ are equal. Similarly, the areas of $A E C D$ and $A J L K$ are equal. Thus, the area of $A J I B$ is equal to the sum of the areas of $A E C D$ and $C B G F$.

1.2 The Axioms of Euclidean Geometry

Exercise 1.8. How should we measure the length of a path?
Solution. This question is meant to be more of a source of discussion. One should realize that we measure paths 'one step at a time.' That is, consider a sequence of points along the path. Then the length of the path is approximated by the sum of the distances between these points. As we add more points, the approximation should get better. So, define the length of a path to be the limit of these sums as the length of the steps approach zero, if this limit exists. What we have described is essentially a path integral.

Exercise 1.9. The Cartesian plane \mathbb{R}^{2} is a model of Euclidean geometry. In this model, explicitly describe an isometry which has no fixed points and is not a translation.

Solution. Such isometries are called glide reflections, a term which might ring a bell. We create such an isometry by translating along a line and then reflecting through that line. For example, the horizontal translation by one in \mathbb{R}^{2} is given by $T(x, y)=(x+1, y)$. Reflection through the x-axis is given by $R(x, y)=(x,-y)$. Thus, the composition

$$
(R \circ T)(x, y)=R(x+1, y)=(x+1,-y)
$$

is a glide reflection. It is clearly an isometry, since it is the composition of two isometries. It is not a translation, since it does not preserve orientation. Finally, it has no fixed points, since if it did, then we would have

$$
(x, y)=(x+1,-y)
$$

which is not satisfied by any value of x.
Footprints are common examples of objects with glide reflection symmetry.

Exercise 1.10. Which of Axioms $1-8$ are local in nature, and which are global? It may help to ask yourself if any of these properties are true on a sphere.

This exercise is meant to be a source of discussion.
Exercise 1.11. The triangle inequality states

$$
|P Q|+|Q R| \geq|P R|
$$

Show that we can have equality if and only if Q is a point on the line segment $P R$.

Solution. We cannot yet answer this question with any rigor - our definition of a line segment is not yet sufficient. This exercise (as well as a few others in this section) should be thought of as motivation for defining a stronger foundation. This will be rectified in Chapter 9. At the heart of our deficiency is the question of how we should define line segments and what is meant by Axiom 1. For the moment, we are thinking of a line segment as the shortest path between two points. Thus, the existence part of Axiom 1 merely asserts the existence of a path between any two points. What we further need to know is that the length of a line segment between two points P and R is the same as the distance $|P R|$ between the two points. If we accept this (as a refinement of our definition of a line segment), then we can answer the question.

If Q is on the line segment $P R$, then the length of the segment $P R$ is the same as the sum of the lengths of $P Q$ and $Q R$. That is,

$$
|P R|=|P Q|+|Q R|
$$

Conversely, if

$$
|P R|=|P Q|+|Q R|
$$

then the path which consists of the union of the line segments $P Q$ and $Q R$ joins P to R and has length $|P R|$, which is the same length as the line segment joining P and R. Thus, if Q is not on this line segment, then we have found a path of equal length, contradicting the uniqueness part of Axiom 1. Thus, Q must be on $P R$.

Exercise 1.12. It is sometimes possible to 'define away' an axiom by choosing a suitable definition. For example, with our definition of a circle, Euclid's third axiom is vacuous - all circles exist by definition, though some may be empty sets. Euclid's first axiom can also be defined away by making the following definition for a line segment:

$$
P Q=\{R:|P Q|=|P R|+|R Q|\}
$$

With this definition, between any two points P and Q there exists a unique line segment $P Q$. Find an example of a familiar geometry where this definition for a line segment does not correspond with our intuitive notion of what a line segment should be.

Solution. Consider a sphere with North pole P and South pole Q. Then for any point R on the sphere, we have

$$
|P Q|=|P R|+|R Q|
$$

Thus, the line segment $P Q$, as defined in this exercise, is the entire sphere. This does not correspond with our intuitive notion of a line segment, since we usually think of line segments as being one dimensional.

1.3 SSS, SAS, and ASA

The exercises in this section are very tough. I have never assigned them as homework. On the surface, they are indicative of the types of questions which should naturally occur to us, and that we should be able to answer. Deeper analysis might best be done in guided discussions, rather than homework, and should demonstrate a need for a better set of axioms.

Exercise 1.13. Prove SAS.
Solution. Let $\triangle A B C$ and $\Delta A^{\prime} B^{\prime} C^{\prime}$ satisfy $\angle A=\angle A^{\prime},|A B|=\left|A^{\prime} B^{\prime}\right|$, and $|A C|=\left|A^{\prime} C^{\prime}\right|$. Since $\angle A=\angle A^{\prime}$, there exists an isometry f which sends $\angle A$ to $\angle A^{\prime}$ (by the definition of congruence of angles). That is, $f(A)=A^{\prime}$, and the ray $A B$ is sent to either the ray $A^{\prime} B^{\prime}$ or $A^{\prime} C^{\prime}$, while the ray $A C$ is sent to the other.

If $A B$ is sent to $A^{\prime} B^{\prime}$, then $f(B)=B^{\prime}$, since $f(B)$ is on the ray $A B$ and $|A B|=\left|A^{\prime} B^{\prime}\right|$. Similarly $f(C)=C^{\prime}$, and hence f sends $\triangle A B C$ to $\Delta A^{\prime} B^{\prime} C^{\prime}$, so they are congruent.

If $f(B)$ lies on the ray $A^{\prime} C^{\prime}$, then let us call $B^{\prime \prime}=f(B)$ and consider the triangle $\Delta A^{\prime} B^{\prime} B^{\prime \prime}$. Since $\left|A^{\prime} B^{\prime}\right|=\left|A^{\prime} B^{\prime \prime}\right|$, we have the congruence

$$
\Delta A^{\prime} B^{\prime} B^{\prime \prime} \equiv \Delta A^{\prime} B^{\prime \prime} B^{\prime}
$$

by SSS, and hence there exists an isometry g such that $g\left(A^{\prime}\right)=A^{\prime}, g\left(B^{\prime}\right)=$ $B^{\prime \prime}$, and $g\left(B^{\prime \prime}\right)=B^{\prime}$. Furthermore, g sends $\angle A^{\prime}$ to $\angle A^{\prime}$. Thus, there exists an isometry $h=g \circ f$ which sends $\angle A$ to $\angle A^{\prime}$ which further satisfies $h(B)=B^{\prime}$. But then, as before, $h(C)=C^{\prime}$, as desired, so $\triangle A B C$ is congruent to $\Delta A^{\prime} B^{\prime} C^{\prime}$.

Exercise 1.14. Prove ASA.
Solution. Suppose there exist $\triangle A B C$ and $\Delta A^{\prime} B^{\prime} C^{\prime}$ with $|B C|=\left|B^{\prime} C^{\prime}\right|$, $\angle B=\angle B^{\prime}$, and $\angle C=\angle C^{\prime}$. If we also have $|B A|=\left|B^{\prime} A^{\prime}\right|$, then by SAS, the two triangles are congruent. So let us assume, without loss of generality, that $|B A|<\left|B^{\prime} A^{\prime}\right|$.

By the definition of congruence of angles, there exists an isometry which sends B to B^{\prime} and the rays $B A$ and $B C$ to the rays $B^{\prime} A^{\prime}$ and $B^{\prime} C^{\prime}$. If C is sent to a point $C^{\prime \prime}$ on $B^{\prime} A^{\prime}$, then by $\mathrm{SSS}, \Delta C^{\prime} B^{\prime} C^{\prime \prime} \equiv \Delta C^{\prime \prime} B^{\prime} C^{\prime}$, so there exists an isometry g which fixes B^{\prime}, sends $C^{\prime \prime}$ to C^{\prime}, and sends $\angle C^{\prime} B^{\prime} C^{\prime \prime}$ to $\angle C^{\prime \prime} B^{\prime} C^{\prime}$ (that is, it fixes the angle at B^{\prime}). Thus, there exists an isometry $h=g \circ f$ such that $h(B)=B^{\prime}, h(C)=C^{\prime}$, and h sends the angle at B to the angle at B^{\prime}. If, on the other hand, $f(C)$ is on the ray $B^{\prime} C^{\prime}$, then $f(C)=C^{\prime}$ already, so choose $h=f$.

Now, $A^{\prime \prime}=h(A)$ is on the ray $B^{\prime} A^{\prime}$, and since $|B A|<\left|B^{\prime} A^{\prime}\right|$, the point $A^{\prime \prime}$ is between B^{\prime} and A^{\prime}. On the ray $C^{\prime} A^{\prime \prime}$, find the point $A^{\prime \prime \prime}$ such that $\left|C^{\prime} A^{\prime \prime \prime}\right|=\left|C^{\prime} A^{\prime}\right|$. Since $\Delta B^{\prime} C^{\prime} A^{\prime \prime}$ is congruent to $\triangle A B C$ (since it is the image of the latter under an isometry), we know $\angle A^{\prime \prime} C^{\prime} B^{\prime}=\angle A C B$, so $\angle A^{\prime \prime \prime} C^{\prime} B^{\prime}=\angle A C B=\angle A^{\prime} C^{\prime} B^{\prime}$. Thus, by SAS, $\triangle A^{\prime \prime \prime} C^{\prime} B^{\prime} \equiv \triangle A C B$. In particular, $\left|B^{\prime} A^{\prime \prime \prime}\right|=\left|B^{\prime} A^{\prime}\right|$. Let D be the midpoint of $A^{\prime} A^{\prime \prime \prime}$. Note that the line $C^{\prime} A^{\prime \prime \prime}$ enters the triangle $\Delta D A^{\prime \prime \prime} B^{\prime}$ at $A^{\prime \prime \prime}$, so it must intersect the segment $B^{\prime} D$. Let us call that point of intersection E. It is clear that $E \neq$ C^{\prime}. Now, consider $\Delta B^{\prime} A^{\prime} D$ and $\Delta B^{\prime} A^{\prime \prime \prime} D$. They are congruent by SSS. Thus, $\angle A^{\prime} D B^{\prime}=\angle A^{\prime \prime \prime} D B^{\prime}$, and since these two angles sum to a straight line, they must both be right angles. Similarly, $\angle C^{\prime} D A^{\prime}$ is a right angle, so the angle $\angle C^{\prime} D B^{\prime}$ is a straight line. But this line intersects $C^{\prime} A^{\prime \prime}$ at C^{\prime} and E, a contradiction of Axiom 1. Thus, we could not have $|B A|<\left|B^{\prime} A^{\prime}\right|$, as assumed, so the two triangles are congruent, as desired.

Exercise 1.15. Suppose f is an isometry and suppose there exist two distinct points P and Q such that $f(P)=P$ and $f(Q)=Q$. Show that f is either the identity or a reflection.

Solution. Suppose f is not the identity. Then there exists a point A such that $A^{\prime}=f(A) \neq A$. Let D be the midpoint of $A A^{\prime}$. Since P and Q are distinct, D is not one of them, so we may assume, without loss of generality, that $D \neq P$.

Suppose $B \neq P$ and $f(B)=B$. Then, since f is an isometry, $|P A|=$ $\left|P A^{\prime}\right|$, so by $\mathrm{SSS}, \triangle P A D \equiv \triangle P A^{\prime} D$. Hence, $\angle A D P \equiv \angle A^{\prime} D P$, and since they sum to a straight line, they must both be right angles. Similarly, using B in place of P, we get that $\angle A D B$ is a right angle. Thus, P, D and B are collinear. Since this is true for any B such that $f(B)=B$, it is in particular true for $B=Q$. Thus, $f(B)=B$ only if B is on the line $P Q$.

Now suppose B is on the line $P Q$. Let $B^{\prime}=f(B)$. Then we consider three cases. Either B is between P and Q, P is between B and Q, or Q is between P and B. Let us assume B is between P and Q. Then $|P B|+$ $|B Q|=|P Q|$. Since f is an isometry, we therefore also have $\left|P B^{\prime}\right|+\left|B^{\prime} Q\right|=$
$|P Q|$, which implies B^{\prime} is on the segment $P Q$ (by Exercise 1.11). Finally, since both B and B^{\prime} are on the segment $P Q$, and since $\left|P B^{\prime}\right|=|P B|$, the points B and B^{\prime} must be equal. The other two cases are similar, so $f(B)=B$ if B is on the line $P Q$.

Thus, we have shown that f is an isometry which fixes every point on the line $P Q$, and fixes no other points. That is, f is a reflection through the line $P Q$.

Exercise 1.16. Suppose f is a reflection. Prove that f is not a direct isometry.

Solution. Let f be the reflection through the line $P Q$, and let A be a point not on $P Q$. Then $A^{\prime}=f(A) \neq A$. Let D be the midpoint of $A A^{\prime}$. Then D lies on $P Q$ (see the solution to the previous exercise). But then $\triangle P Q D$ and $\triangle P Q D^{\prime}$ have opposite orientations, so f is not a direct isometry.

Exercise 1.17. Prove that if a line $l_{1} \neq l$ is sent to itself under a reflection through l, then l_{1} and l intersect at right angles.

Solution. Let A be a point on l_{1} such that A is not on l. Then $A^{\prime}=f(A) \neq$ A. Let D be the midpoint of $A A^{\prime}$. Note that D is on l_{1}, since both A and A^{\prime} are on l_{1}. Let $P \neq D$ be a point on l. Then $\Delta A D P \equiv \Delta A^{\prime} D P$ by SSS, so in particular, $\angle A D P=\angle A^{\prime} D P$. Since they sum to a straight line, they are right angles. That is, $l_{1}=A D$ is perpendicular to $l=P D$.

Exercise 1.18. Suppose that f is an isometry for which there exists exactly one point P such that $f(P)=P$. Prove that f is a rotation. That is, prove that f is a direct isometry.

Solution. If an isometry preserves the orientation of one nondegenerate triangle, then it preserves the orientation of all nondegenerate triangles. This is shown in Exercise 9.12 and I do not think we can show this with any rigor without first coming up with a better set of axioms. So let us accept it as fact. As a corollary, if f reverses the orientation of any triangle, then it reverses the orientation of all (nondegenerate) triangles.

Suppose now that f is not a direct isometry. Then it reverses the orientation of all triangles. Consider a point $Q \neq P$ and its image $Q^{\prime}=$ $f(Q)$. If $\triangle P Q Q^{\prime}$ is not degenerate, then consider the image of $\triangle P Q Q^{\prime}$ under f. Note that $f(P)=P, f(Q)=Q^{\prime}$. Let $f\left(Q^{\prime}\right)=Q^{\prime \prime}$. Note that $Q^{\prime \prime}$ lies on the circle centered at P with radius $|P Q|$, and also on the circle centered at Q^{\prime} with center $\left|Q^{\prime} Q\right|$. There are two points of intersection, one of which is Q. If it is the other point, then $\triangle P Q Q^{\prime}$ has the same orientation as $\triangle P Q^{\prime} Q^{\prime \prime}$. Since we assumed f reverses orientation, we get $f\left(Q^{\prime}\right)=Q$. Finally, let M be the midpoint of $Q Q^{\prime}$. Then $f(M)$ is a distance $|M Q|$ from Q^{\prime}, and a distance $\left|M Q^{\prime}\right|$ from Q. Since $|M Q|=\left|M Q^{\prime}\right|$, these two circles intersect at exactly one point, M. Thus, $f(M)=M$. But this means $M=P$, so $\triangle P Q Q^{\prime}$ is degenerate, a contradiction. Thus, f is orientation preserving.

Now, suppose there does not exist a Q such that $\triangle P Q Q^{\prime}$ is nondegenerate. Then P, Q, and Q^{\prime} are collinear, and since $Q \neq Q^{\prime}, P$ must be the midpoint of $Q Q^{\prime}$. Then it is clear that f is rotation by 180°.

Exercise 1.19†. Suppose f and g are two isometries such that $f(A)=$ $g(A), f(B)=g(B)$, and $f(C)=g(C)$ for some nondegenerate triangle $\triangle A B C$. Show that $f=g$. That is, show that $f(P)=g(P)$ for any point P.

Solution. Consider the isometry $h=g^{-1} f$. Note that $h(A)=A, h(B)=B$, and $h(C)=C$. By Exercise 1.15, h is either the identity, or a reflection which fixes the line $A B$, since $h(A)=A$ and $h(B)=B$. But since $h(A)=A$ and $h(C)=C$, it is also either the identity or a reflection which fixes the line $A C$. Since $\triangle A B C$ is nondegenerate, the lines $A B$ and $A C$ are distinct, so h cannot fix both of them, so it must be the identity. Thus, $f=g$.

Exercise 1.20*. Suppose P and Q are two distinct points. Prove that there exists exactly one translation which sends P to Q.

Solution. There are two questions here - existence and uniqueness. I will ignore the question of existence. The only way I see of doing it is constructive, and in passing shows that Axioms 6 and 7 follow from Axiom 8.

Let f be a translation which sends P to Q. Let $Q^{\prime}=f(Q)$, and let us now show that Q^{\prime} is on the line $P Q$. Suppose it is not. Let M and M^{\prime} be the midpoints of the segments $P Q$ and $Q Q^{\prime}$, respectively. Consider the perpendicular l to $P Q$ through M, and the perpendicular l^{\prime} to $Q Q^{\prime}$ through M^{\prime}. These lines intersect (and this is where we use the parallel postulate).

To see this, consider the line $l^{\prime \prime}$ which is perpendicular to $P Q$ at Q. If l and $l^{\prime \prime}$ intersect on one side of $P Q$, then the must intersect on the other side too, contradicting Axiom 1 (actually, we have just assumed that there are two sides to a line, a concept not covered by our current set of axioms). Thus, l and $l^{\prime \prime}$ cannot intersect. Similarly, consider the line $l^{\prime \prime \prime}$ perpendicular to $Q Q^{\prime}$ and through Q. This line is parallel to l^{\prime}. Since $P Q$ and $Q Q^{\prime}$ are distinct lines, the lines $l^{\prime \prime}$ and $l^{\prime \prime \prime}$ are distinct. Thus, $l^{\prime \prime}$ must intersect l^{\prime}, since by Axiom 5, there is only one line (namely $l^{\prime \prime \prime}$) through Q which is parallel to l^{\prime}. Let this point of intersection be R. Then $l^{\prime \prime}$ is the unique line, through R, which is parallel to l, so since $l^{\prime} \neq l^{\prime \prime}$ and l^{\prime} goes through R, it cannot be parallel to l. Thus, l and l^{\prime} intersect.

Let the point of intersection of l and l^{\prime} be S. Let us now show that $|M S|=\left|M^{\prime} S\right|$. Note that $|M Q|=|M P|=\left|M^{\prime} Q\right|$ (the first equality follows since M is the midpoint of $P Q$, and the second equality follows since M^{\prime} and Q are the images of M and P under the isometry f). Though we know the triangles $\triangle M Q S$ and $\Delta M^{\prime} Q S$ are congruent by the Pythagorean theorem, we really shouldn't use that result, since we haven't proved it (recall that the proof we gave used results from Euclidean geometry which we had not yet proved, and motivated our discussion of axioms). So, let
us instead reflect $\triangle M Q S$ through l. Since the angle at M is a right angle, the point Q is sent to P, and the angle $\angle Q M P$ is a straight line, giving us the triangle $\triangle P Q S$ with M on the side $P Q$. Further, $|P S|=|Q S|$. Do the same for $\Delta M^{\prime} Q^{\prime} S$ to get $\triangle Q Q^{\prime} S$, which is congruent to $\triangle P Q S$ and $\triangle Q P S$ by SSS. Now we know $\angle M Q S=\angle P Q S=\angle Q P S=\angle Q^{\prime} Q S=\angle M^{\prime} Q S$, and we get $\Delta M Q S \equiv \Delta M^{\prime} Q S$ by SAS. Thus, $|M S|=\left|M^{\prime} S\right|$.

We will now show that $f(S)=S$. Since S is on l, and l^{\prime} is the image of l under f, we know $f(S)$ lies on l^{\prime}. Since $f(M)=M^{\prime}$, there are only two possibilities for $f(S)$, one of which is S, the other is the reflection of S through the line $Q Q^{\prime}$. Since f is a translation, it preserves orientation, so the image of S must be S. Thus, we have shown that f has a fixed point, a contradiction. Thus, the assumption that $f(Q)$ is not on $P Q$ is false.

Now, suppose that there exists another translation g such that $g(P)=$ Q. Let $h=g^{-1} f$. Then $h(P)=P$ and $h(Q)=Q$. By Exercise 1.15, h is either the identity or a reflection. Since h is the composition of two translations, it preserves orientations, so it cannot be a reflection. Thus, it is the identity. Hence $g=f$, and the translation which sends P to Q is therefore unique.

1.4 Parallel Lines

Exercise 1.21*. Show that Euclid's version of Axiom 5 implies our version of Axiom 5.

Solution. Let l be a line and P a point not on l. We wish to show that there exists a unique line l^{\prime} through P which does not intersect l. Let us first show that l^{\prime} exists. By Lemma 1.4.2, there exists a point Q on l such that l and $P Q$ intersect at right angles. Let l^{\prime} be the line through P which is perpendicular to $P Q$. If l and l^{\prime} intersect, say at R, then by Axiom 8, there exists an isometry which fixes the line $P Q$ and sends R to a point $R^{\prime} \neq R$. But since the angles at P and Q in $\triangle P Q R$ are both right angles, the angles at P and Q in $\triangle P Q R^{\prime}$ are also right angles, so the angles $\angle R P R^{\prime}$ and $\angle R Q R^{\prime}$ are both straight lines. That is, l and l^{\prime} intersect at two points R and R^{\prime}, a contradiction of Axiom 1. Thus, R cannot exist, so l and l^{\prime} are parallel.

Now, suppose $l^{\prime \prime}$ is any other line through P. Then the angles $l^{\prime \prime}$ makes with $P Q$ are not right angles, so one of those angles is less than a right angle. The line $P Q$ therefore meets l and $l^{\prime \prime}$ so that the sum of the angles on one side is less than a straight line, so l and $l^{\prime \prime}$ intersect. Thus, the line l^{\prime} is unique.

Exercise 1.22. Prove that the angles in a quadrilateral sum up to 360°. Generalize this result to an n-sided polygon.

Solution. For a quadrilateral $A B C D$, draw the diagonal $A C$, creating two triangles $\triangle A B C$ and $\triangle B C D$. The sum of the angles in these two triangles
are each 180°, giving a total of 360°. The sum of these angles is also equal to the sum of the angles in the quadrilateral.

In general, if we label the vertices of an n-gon $P_{1}, P_{2}, \ldots P_{n}$, then we can 'triangulate' it by drawing the segments $P_{1} P_{3}, P_{1} P_{4}, \ldots, P_{1} P_{n-1}$. By doing so, we have drawn $n-3$ segments, and created $n-2$ triangles. Thus, the sum of the angles in an n-gon is $(n-2) 180^{\circ}$.

Exercise 1.23. What is the sum of the exterior angles of a triangle? What is the sum of the exterior angles of a quadrilateral? What is the sum of the exterior angles of an n-gon?

Solution. The exterior angle for any angle is the difference of 180° less the interior angle. Thus, using the result in Exercise 1.22, the sum of the exterior angles of an n-gon is

$$
n\left(180^{\circ}\right)-(n-2) 180^{\circ}=360^{\circ}
$$

1.5 Pons Asinorum

Exercise $1.24 \dagger$. Prove the converse of pons asinorum. That is, show that if in $\triangle A B C$ we have $\angle A B C=\angle A C B$, then $|A B|=|A C|$.

Solution. By ASA, $\triangle A B C \equiv \triangle A C B$, so $|A B|=|A C|$.
Exercise $1.25 \dagger$. Prove that if a diameter of a circle bisects a chord which itself is not a diameter, then the diameter is perpendicular to the chord. Also, prove that the perpendicular bisector of a chord goes through the center of the circle. And finally, prove that if a diameter is perpendicular to a chord, then the diameter bisects the chord.

1.6 The Star Trek Lemma

Exercise 1.26. Prove the Star Trek lemma for an acute angle for which the center O is outside the angle.

Solution. The proof is almost identical to the one in the book, so let us repeat it here, and point out how it differs. Note that $O A, O B$, and $O C$ are radii, so we have several isosceles triangles. We have continued the segment $O A$ to intersect the circle at D. Since $\triangle A O B$ is isosceles, $\angle B A O=\angle O B A$. Since the sum of angles in a triangle is 180°,

$$
\angle B O D=\angle O B A+\angle B A O=2 \angle B A O
$$

Similarly,

$$
\angle D O C=2 \angle O A C
$$

Figure 1.4

And now for the difference. Rather than adding these two angles, it is clear we want to taker the difference, which gives

$$
\angle B O C=\angle B O D-\angle D O C=2(\angle B A O-\angle O A C)=2 \angle B A C
$$

Exercise 1.27. Prove the Star Trek lemma for an obtuse angle.
The proof is identical to the one in the text. Just draw a different diagram.

Exercise $1.28 \dagger$. Suppose $\angle A B C$ is a right angle inscribed in a circle. Prove that $A C$ is a diameter.

Exercise 1.29 \dagger (Bow Tie Lemma). Let A, A^{\prime}, B, and C lie on a circle, and suppose $\angle B A C$ and $\angle B A^{\prime} C$ subtend the same arc (as in Figure 1.5(a)). Show that

$$
\angle B A C=\angle B A^{\prime} C
$$

Again, because of the diagram, this lemma is sometimes known as the Bow Tie lemma. We say 'The angles at A and A ' are equal since they subtend the same arc.'

Solution. By the Star Trek lemma, $\angle B A C$ is half the measure of the arc $B C$ that it subtends. Also by the Star Trek lemma, $\angle B A^{\prime} C$ is half the measure of the arc $B C$ that it subtends. Thus, the two angles are equal.

Exercise 1.30. If $|A B|=|A C|=|B C|$, what is the angle at D ? (See Figure 1.5(b).)

Solution. Since $\triangle A B C$ is an equilateral triangle, $\angle A B C=60^{\circ}$. Since $\angle A D C$ subtends the same arc, it must also be 60°.

(a)

(b)

(c)

Figure 1.5. See Exercises 1.29, 1.30, and 1.31.

Exercise 1.31. If $|A B|=12,|B D|=9,|B C|=16$, and $|A C|=20$, then what is the length of the diameter? (See Figure 1.5(c).)
Solution. Note that $\triangle A B C$ has sides of length 12,16 , and 20 , so $b^{2}=$ $a^{2}+c^{2}$. Thus, by the converse of the Pythagorean theorem, the angle at B is a right angle. It therefore subtends a diameter (see Exercise 1.28), so $A D$ is a diameter. By the Pythagorean theorem,

$$
|A D|^{2}=|A B|^{2}+|B D|^{2}=12^{2}+9^{2}=15^{2}
$$

Thus, the length of the diameter is 15 .
Exercise 1.32. If $|A B|=|A C|=|B C|$ and $A D$ is perpendicular to $B C$, then what is $\angle B C D$? (See Figure 1.6(a).)
Solution. Let $A D$ and $B C$ intersect at E. Since $|A B|=|A C|, \mid A E$ is shared, and $\angle A E C=\angle A E B=90^{\circ}$, we know $|B E|=|E C|$ by the Pythagorean theorem, and hence, $\triangle A E C \equiv \triangle A E B$ by SSS. Thus, $2 \angle B A D=$ $\angle B A C=60^{\circ}$, so $\angle B A D=30^{\circ}$. Since $\angle B A D$ and $\angle B C D$ subtend the same arc, we therefore get $\angle B C D=30^{\circ}$.

Exercise 1.33† (The Tangential Case of the Star Trek Lemma). Suppose $A T$ is a line segment that is tangent to a circle. Prove that $\angle A T B$ is half the measure of the arc $T B$ which it subtends. Do this by picking a point C on the circle such that $\angle T C B$ subtends the $\operatorname{arc} T B$ (as in Figure 1.6(b)). Show that

$$
\angle A T B=\angle T C B
$$

Solution. It doesn't matter where we pick C, since $\angle T C B$ is always half the arc it subtends. So, pick C so that $B C$ is a diameter. Then $\angle C T B=90^{\circ}$, and $\angle T C B=\angle T C O=\angle C T O$. Thus, $\angle O T B=90^{\circ}-\angle T C B$. But the radius $O T$ and the tangent $T A$ intersect at right angles, so $\angle O T B=$ $90^{\circ}-\angle B T A$. Thus,

$$
90^{\circ}-\angle B T A=90^{\circ}-\angle T C B
$$

Figure 1.6. See Exercises 1.32 and 1.33.

$$
\angle B T A=\angle T C B
$$

Hence, $\angle B T A$ is half the the measure of the arc it subtends.
Exercise $1.34 \dagger$. Suppose two lines intersect at P inside a circle and meet the circle at A and A^{\prime} and at B and B^{\prime}, as shown in Figure 1.7(a). Let α and β be the measures of the $\operatorname{arcs} A^{\prime} B^{\prime}$ and $A B$ respectively. Prove that

$$
\angle A P B=\frac{\alpha+\beta}{2} .
$$

Figure 1.7

Solution. Draw the segment $A B^{\prime}$, and consider the triangle $\Delta A B^{\prime} P$. By the Star Trek lemma, $\angle A B^{\prime} P=\beta / 2$, and $\angle B^{\prime} A P=\alpha / 2$. Since $\angle A P B$ is
the exterior angle of $\Delta A B^{\prime} P$ at P, we have

$$
\angle A P B=\angle A B^{\prime} P+\angle B^{\prime} A P=\frac{\alpha+\beta}{2}
$$

Exercise $\mathbf{1 . 3 5} \dagger$. Suppose an angle α is defined by two rays which intersect a circle at four points, as in Figure 1.8(b). Suppose the angular measure of the outside arc it subtends is β, and the angular measure of the inside arc it subtends is γ. (So, in Figure 1.8(b), $\angle A O B=\beta$ and $\angle A^{\prime} O B^{\prime}=\gamma$.) Show that

$$
\begin{equation*}
\alpha=\frac{\beta-\gamma}{2} \tag{S}
\end{equation*}
$$

(a)

(b)

Figure 1.8. See Exercises 1.34 and 1.35.

Exercise 1.36. Prove that the opposite angles in a convex quadrilateral (called a convex quadrangle in the first printing) inscribed in a circle sum to 180°. Conversely, prove that if the opposite angles in a convex quadrilateral sum to 180°, then the quadrilateral can be inscribed in a circle. Such a quadrilateral is called a cyclic quadrilateral.

Solution. Let $A B C D$ be a convex quadrilateral inscribed in circle. Then the arc subtended by the angles at B and D, together, form the whole circle, so measure 360°. Thus, the sum of the angles B and D is half that, so is 180°.

Conversely, suppose the opposite angles B and D sum to 180° in a convex quadrilateral $A B C D$. Consider the circumcircle of $\triangle A B C$. If D lies inside this circle, then by Exercise 1.34, the angle D is larger than half the measure of the arc $A B C=360^{\circ}-2 \angle A B C$, so the sum of the angles at B and D is greater than 180°. Similarly, if D lies outside the circle, then by Exercise 1.35, the sum of the angles is less than 180°. Thus, D must lie on the circle. That is, the quadrilateral $A B C D$ is cyclic.

Exercise 1.37†. Let two circles Γ and Γ^{\prime} intersect at A and B, as in Figure 1.9. Let $C D$ be a chord on Γ. Let $A C$ and $B D$ intersect Γ^{\prime} again at E and F. Prove that $C D$ and $E F$ are parallel.

Figure 1.9. See Exercise 1.37.

This exercise is restated and proved in Lemma 11.2.2.
Exercise $1.38 \dagger$. Let $A B C D$ be a nonconvex cyclic quadrilateral. That is, $A B C D$ is inscribed in a circle and two of its opposite sides intersect (as in Figure 1.10(a)). Prove that $\angle A B C=\angle C D A$ and $\angle D A B=\angle B C D$. Conversely, suppose $\angle A B C=\angle D A B$ and $\angle B C D=\angle D A B$ in a quadrilateral with intersecting opposite sides. Show that $A B C D$ is cyclic.

Solution. The solution is essentially the same as the solution of Exercise 1.36. The angles are equal since they subtend the same arcs. Conversely, consider the circumcircle of $\triangle A B C$. If D is inside this circle, then by Exercise 1.34, the angle at D must be larger than the angle at B; and if D is outside this circle, then by Exercise 1.35 , the angle at D is smaller than the angle at B. Thus, D must lie on the circle.

Exercise 1.39. Suppose $A B C D E F$ is a hexagon inscribed in a circle. Show that

$$
\angle A B C+\angle C D E+\angle E F A=360^{\circ}
$$

Prove that the converse is not true. That is, find an example of a hexagon $A B C D E F$ whose angles B, D, and F sum to 360° but which cannot be inscribed in a circle.

Solution. The sum of the arcs subtended by the angles $\angle A B C, \angle C D E$, and $\angle E F A$ is twice the entire circle, so 720°. Thus, the sum of these angles is half that, or 360°.

The converse, though, is not true. To see this, let us first consider a regular hexagon $A B C D E F$ inscribed in a circle. Note that the sides $A B$ and $D E$ are parallel. Thus, we may stretch these sides without changing the angles. By doing so, we will have created a hexagon which is not inscribed in a circle, but whose angles satisfy the condition.

