## SOLUTIONS MANUAL



## CHAPTER 2

P2.1. A W $24 \times 192$ of A242 steel is to be used as a beam in a building structure. What are the values of the yield stress, $F_{y}$, ultimate tensile stress, $F_{u}$, and modulus of elasticity, $E$ to be used in the design of this beam.

## Solution

Enter LRFDM Table 2-4, and note that a W $24 \times 192$ shape belongs to Group 3. In LRFDM Table 2-1, for W-shapes in A242 steel, the only alloy available for Group 3 shapes is of Grade 46 (see note k). Also, from this table, observe that A242 steel of Grade 46 has a yield stress $F_{y}$ of 46 ksi and an ultimate tensile stress $F_{u}$ of 67 ksi . Modulus of elasticity for all steels, $E=29,000 \mathrm{ksi}$.

P2.2. A PL3 $\times 8$ of A514 steel is to be used as a tension member in a truss. What are the values of the yield stress, $\mathrm{F}_{\mathrm{y}}$, and ultimate tensile stress, $\mathrm{F}_{\mathrm{u}}$, to be used in the design of this member?

## Solution

Enter LRFDM Table 2-2, and note that a 3 in. thick A514 plate is available in Grade 90 only. Also, from this table, observe that A514 steel of Grade 90 has a yield stress $F_{y}$ of 90 ksi and a minimum specified ultimate tensile stress $F_{u}$ of 100 ksi .

P2.3. A chandelier weighing 2 kips hangs from the dome of a theater. The rod from which it hangs is 20 ft long and has a diameter of $1 / 2$ in. Calculate the stress and strain in the rod and its elongation. Neglect the weight of the rod it self in the calculations.

## Solution

$$
\text { Tensile force, } T=2 \mathrm{kips} ; \quad \text { Length, } L \quad=20 \mathrm{ft}=240 \mathrm{in} .
$$

Diameter, $d \quad=1 / 2 \mathrm{in} . ; \quad$ Modulus of elasticity, $\mathrm{E}=29,000 \mathrm{ksi}$
Cross-sectional area, $A=\pi d^{2} / 4=0.196$ in. ${ }^{2}($ LRFDM Table 1-21 $)$
Stress, $f=T / A=2.00 \div 0.196=10.2 \mathrm{ksi}$
(Ans.)
Strain, $\epsilon=f / E=10.2 \div 29,000=0.000352$ in. $/ \mathrm{in}$.
(Ans.)

$$
\text { Elongation, } \mathrm{e}=\epsilon \mathrm{L}=0.000352(240)=0.0845 \mathrm{in} .
$$

(Ans.)

P2.4. The rod in Problem P2.3 is of A36 steel having a stress-strain diagram (see Figs. 2.6.1 and 2.6.2) with $\epsilon_{\text {st }}=$ 0.012 and $\epsilon_{u}=0.18$. Determine the load that causes the rod to yield; and the load that causes the rod to fracture. Also, determine the elongation of the bar corresponding to strains of $\epsilon_{\mathrm{y}}, \epsilon_{\mathrm{st}}$, and $\epsilon_{\mathrm{u}}$. Comment on your results.

## Solution

For A36 steel: $F_{y}=36 \mathrm{ksi}$, and $F_{u}=58 \mathrm{ksi}$ (from LRFDM Table 2-1)
Load that causes the rod to yield in tension, $T_{y}=A F_{y}=0.196(36.0)=7.06 \mathrm{kips}$
Load that causes the rod to fracture in tension, $T_{u}=A F_{u}=0.196(58.0)=11.4 \mathrm{kips}$
Elastic strain, $\epsilon_{y}=F_{y} \div E=36.0 \div 29,000=0.00124 \mathrm{in} . / \mathrm{in}$.
Elongation of the rod corresponding to $\epsilon_{y}$ (maximum elastic elongation),

$$
\Delta_{y}=\epsilon_{y} L=0.00124(240)=0.298 \mathrm{in} .
$$

(Ans.)
Strain hardening strain, $\boldsymbol{\epsilon}_{s t}=0.012 \mathrm{in} . / \mathrm{in}$.
Elongation of the rod at onset of strain hardening, $\Delta_{s t}=\epsilon_{s t} L=0.012(240)=2.88 \mathrm{in}$.
Fracture strain, $\epsilon_{u}=0.18 \mathrm{in} . / \mathrm{in}$.
Elongation of the rod at fracture, $\Delta_{\mathrm{f}}=\epsilon_{\mathrm{u}} \mathrm{L}=0.18(240)=43.2 \mathrm{in}$.
The maximum elastic elongation of the member ( 0.3 in .) is (tolerably) small. The large elongations (43 in.) that precede the fracture give a visual warning of the impending failure of the member.

P2.5. Locate the principal axes for the beam sections given in Fig. P2.5. Also, calculate the cross-sectional area, weight per linear foot, and moment of inertia, and section moduli about the $x$ - and $y$-axes.

See Figure P2.5 of text book

## Solution

$$
\begin{array}{ll}
\mathrm{W} 24 \times 68: & A=20.1 \mathrm{in.} .^{2} ; \quad d=23.7 \mathrm{in} . ; \quad I_{x}=1830 \mathrm{in} .^{4} ; \quad I_{y}=70.4 \mathrm{in} .^{4} \\
\text { PL } 1 / 2 \times 12: & A=6.00 \mathrm{in.}^{2} ; \quad I_{x}=(1 / 12) b t^{3}=(1 / 12)(12.0)(1 / 2)^{3}=0.125 \mathrm{in} .^{4} \\
& I_{y}=(1 / 12) t b^{3}=(1 / 12)(1 / 2)(12.0)^{3}=72.0 \mathrm{in} .^{4}
\end{array}
$$

Built-up section
$A=A_{1}+A_{2}=20.1+6.00=26.1 \mathrm{in} .^{2}$
(Ans.)
Weight of the built-up section $=26.1(3.40)=88.7$ plf
(Ans.)
The centers of gravity $G_{1}, G_{2}$ and $G$ all lie on the vertical axis of symmetry.
Assume reference axis $x^{\prime}-x^{\prime}$ at top fiber of the built-up section.

$$
\begin{aligned}
& \bar{y}=\frac{(20.1)(11.85)+(6.00)(23.7+0.25)}{26.1}=14.63 \mathrm{in} . \\
& d_{1}=14.63-11.85=2.78 \mathrm{in} . ; \quad d_{2}=23.95-14.63 \mathrm{in} .=9.32 \mathrm{in} . \\
& I_{x}=\left[1830+20.1(2.78)^{2}\right]+\left[0+6.00(9.32)^{2}\right]=2510 \mathrm{in.}{ }^{4} \\
& c_{t}=14.63 \mathrm{in} . ; \quad c_{b}=23.7+0.5-14.63=9.57 \mathrm{in} . \\
& \mathrm{S}_{\mathrm{xt}}=2510 \div 14.63=172 \mathrm{in} .^{3} ; \quad \mathrm{S}_{\mathrm{xb}}=2510 \div 9.57=262 \mathrm{in} . .^{3}
\end{aligned}
$$

(Ans.)
(Ans.)

As $G_{1}, G_{2}$ and $G$ are all located on the symmetry line,

$$
\begin{align*}
& I_{y}=[70.4+0]+[72.0+0]=142 \mathrm{in.} .^{4}  \tag{Ans.}\\
& c=6.00 \mathrm{in} . \\
& S_{y}=142 \div 6.00=23.7 \mathrm{in} .^{3} \tag{Ans.}
\end{align*}
$$

P2.6. Locate the principal axes for the beam sections given in Figs. P2.6. Also, calculate the cross-sectional area, weight per linear foot, and moment of inertia, and section moduli about the $x$ - and $y$-axes.

See Figure P2.6 of text book.

## Solution

The centers of gravity $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$ and G all lie on the vertical axis of symmetry. To locate G , take an arbitrary axis $\mathrm{x}^{\prime}-\mathrm{x}$ ' coinciding with the bottom fibers of the bottom glange plate.

$$
A=A_{1}+A_{2}+A_{3}=2.00(8.00)+1.00(16.0)+2.00(12.0)=56.0 \mathrm{in.}^{2}
$$

(Ans.)
Weight of the built-up section $=56.0(3.40)=190$ plf
(Ans.)

$$
\begin{gathered}
\bar{y}=\frac{16.0(19.0)+16.0(10.0)+24.0(1.00)}{56.0}=8.71 \mathrm{in} . \\
d_{1}=19.0-8.71=10.3 \mathrm{in} . ; \quad d_{2}=10.0-8.71=1.29 \mathrm{in} . ; \quad d_{3}=8.71-1.00=-7.71 \mathrm{in} . \\
I_{x}=\left[(1 / 12)(8.00)(2.00)^{3}+16.0(10.3)^{2}\right]+\left[(1 / 12)(1.00)(16.0)^{3}+16.0(1.29)^{2}\right]
\end{gathered}
$$

$$
\begin{gathered}
+\left[(1 / 12)(12.0)(2.00)^{3}+24.0(7.71)^{2}\right]=3510 \mathrm{in} .{ }^{4} \\
c_{t}=20.0-8.71=11.3 \mathrm{in} . ; \quad c_{b}=8.71 \mathrm{in} . \\
S_{x t}=3510 \div 11.3=311 \mathrm{in} .^{3} ; \quad S_{x b}=3510 \div 8.71=403 \mathrm{in} .^{3} \\
I_{y}=(1 / 12)(2.00)(8.00)^{3}+0.0+(1 / 12)(2.00)(12.0)^{3}=373 \mathrm{in} .^{4} \\
S_{y}=373 \div 6.00=62.2 \mathrm{in}^{3}{ }^{3}
\end{gathered}
$$

(Ans.)
(Ans.)
(Ans.)
(Ans.)

P2.7. Locate the principal axes for the beam sections given in Fig. P2.7. Also, calculate the cross-sectional area, weight per linear foot, and moment of inertia, and section moduli about the $x$ - and $y$-axes.

See Figure P2.7 of text book.

## Solution

As the built-up section has two axes of symmetry, the center of gravity $G$ of the built-up section coincides with the point of intersection of these two axes.

$$
\begin{aligned}
& A=2(36.0)(4.00)+2(2.00)(36.0)=432 \text { in. }^{2} \\
& \text { Weight }=432(3.40) \div 1000=1.47 \mathrm{klf} \\
& \mathrm{I}_{\mathrm{x}}=2\left[(1 / 12)(36.0)(4.00)^{3}+144(20.0)^{2}\right]+2\left[(1 / 12)(2.00)(36.0)^{3}+0\right]=131,000 \mathrm{in} .^{4} \\
& I_{y}=2\left[(1 / 12)(4.00)(36.0)^{3}+0\right]+2\left[(1 / 12)(36.0)(2.00)^{3}+72.0(15.0+1.0)^{2}\right] \\
& \quad=68,000 \text { in. }^{4} \\
& S_{x}=131,000 \div 22.0=5960 \text { ins. }^{4} ; \quad S_{y}=68,000 \div 18.0=3780 \text { in. }^{3}
\end{aligned}
$$

P2.8. Locate the principal axes for the column section given in Fig P2.8. Also, calculate the cross-sectional area, weight per linear foot, and moment of inertia, and radius of gyration about the $x$ - and $y$-axes.

See Figure P2.8 of text book.

## Solution

As the built-up section has two axes of symmetry, the center of gravity $G$ of the built-up section coincides with the point of intersection of these two axes.
$A=2[28.0(7.125)]+5.0(16.5)=482 \mathrm{in}^{2}{ }^{2}$
(Ans.)
Weight $=482(3.40) \div 1000=1.64 \mathrm{klf}$
(Ans.)

$$
\begin{align*}
I_{x}= & 2\left[(1 / 12)(28.0)(7.125)^{3}+28.0(7.125)(8.25+0.5 \times 7.125)^{2}\right]+(1 / 12)(5.00)(16.5)^{3} \\
& =59,200 \mathrm{in} .^{4}  \tag{Ans.}\\
I_{y}= & \left.2\left[(1 / 12)(7.125)(28.0)^{3}\right]+(1 / 12) 16.5\right)(5.00)^{3}=26,200 \mathrm{in} . .^{4} \\
r_{x}= & \sqrt{\frac{59,200}{482}}=11.1 \mathrm{in} . ; \quad r_{y}=\sqrt{\frac{26,200}{482}}=7.37 \mathrm{in} . \tag{Ans.}
\end{align*}
$$

(Ans.)

P2.9. Locate the principal axes for the column section given in Fig P2.9. Also, calculate the cross-sectional area, weight per linear foot, and moment of inertia, and radius of gyration about the $x$ - and $y$-axes.

## See Figure P2.9 of text book.

## Solution

As the built-up section has two axes of symmetry, the center of gravity $G$ of the built-up section coincides with the point of intersection of these two axes.

## Built-up section

$$
\begin{equation*}
\mathrm{A}=(24.0)^{2}-(15.0)^{2}=351 \mathrm{in} .^{2} \tag{Ans.}
\end{equation*}
$$

Weight $=351(3.40) \div 1000=1.19 \mathrm{klf}$

$$
\begin{equation*}
\mathrm{I}_{\mathrm{x}}=(1 / 12)(24.0)(24.0)^{3}-(1 / 12)(15.0)(15.0)^{3}=23,400 \mathrm{in} .^{4}=I_{y} \tag{Ans.}
\end{equation*}
$$

$$
\begin{equation*}
r_{x}=\sqrt{\frac{23,400}{351}}=8.17 \mathrm{in} .=r_{y} \tag{Ans.}
\end{equation*}
$$

(Ans.)

P2.10. Locate the principal axes for the column section given in Fig P2.10. Also, calculate the cross-sectional area, weight per linear foot, and moment of inertia, and radius of gyration about the $x$ - and $y$-axes.

See Figure P2.10 of text book.

## Solution

$$
\mathrm{W} 14 \times 730: A=215 \mathrm{in.}^{2} ; \quad \mathrm{b}_{\mathrm{f}}=17.9 \mathrm{in} . ; \quad I_{x}=14,300 \mathrm{in}^{4} ; \quad I_{y}=4720 \mathrm{in.}^{4}
$$

PL $3 \times 24: \quad A=3.00(24.0)=72.0 \mathrm{in} .^{2} ; \quad I_{x}=(1 / 12)(3.00)(24.0)^{3}=3456 \mathrm{in} .{ }^{4}$

$$
I_{y}=(1 / 12)(24.0)(3.00)^{3}=54.0 \mathrm{in}^{4}
$$

Built-up section
As the built-up section has two axes of symmetry, the center of gravity $G$ of the built-up section coincides with the point of intersection of these two axes.
$A=215+2(72.0)=359$ in. $^{2}$
(Ans.)
Weight $=359(3.40) \div 1000=1.22 \mathrm{klf}$
(Ans.)
$I_{x}=14,300+2(3456)=21,200 \mathrm{in} .{ }^{4}$
(Ans.)
$I_{y}=4720+2\left[54.0+72.0(0.5 \times 17.9+1.5)^{2}\right]=20,600 \mathrm{in}^{4}$
$r_{x}=\sqrt{\frac{21,200}{359}}=7.68 \mathrm{in} ; \quad r_{y}=\sqrt{\frac{20,600}{359}}=7.58 \mathrm{in}$.
(Ans.)

P2.11. Locate the principal axes for the column section given in Fig P2.11. Also, calculate the cross-sectional area, weight per linear foot, and moment of inertia, and radius of gyration about the $x$ - and $y$-axes.

See Figure P2.11 of text book.

## Solution

$$
\text { W } 14 \times 145: \quad A=42.7 \mathrm{in.}^{2} ; \quad \mathrm{b}_{\mathrm{f}}=15.5 \mathrm{in} . ; \quad d=14.8 \mathrm{in} .
$$

$$
I_{x}=1710 \mathrm{in} .^{4} ; \quad I_{y}=677 \mathrm{in} .^{4}
$$

## Built-up section

As the section has two axes of symmetry, the center of gravity $G$ of the built-up section coincides with the point of intersection of these two axes.

$$
\begin{align*}
& A=4(42.7)=171 \mathrm{in}^{2}  \tag{Ans.}\\
& \text { Weight }=171(3.40) \div 1000=0.581 \mathrm{klf}  \tag{Ans.}\\
& I_{x}=2\left[1710+42.7(0.5 \times 15.5+0.5 \times 14.8)^{2}+2[677+0]=24,400 \mathrm{in}^{4}=I_{y}\right.  \tag{Ans.}\\
& \quad r_{x}=r_{y}=\sqrt{\frac{24,400}{\mathbf{1 7 1}}}=12.0 \mathrm{in} .
\end{align*}
$$

