SOLUTIONS MANUAL

Accounting Samole Histogram Forecasting Slope Intervals Statistio mume Mean Numayn Correlation ownow

 Standard deviation - Finance S. Aerouthy Normal distrabution Mutually exclusiveeven
 Random variable Confidence intervals Marleting Mann-Wharney U test Histogram Experiment Parameter Economics Samplo $z=(x-\mu) / a$ \qquad
8 Opive Statstic Acoounting Mean Now-way Random
8 Ogive Ordinal data Frequency distrib
Sodds Mode $8 \frac{5}{5}$ Nominal diata Slope is
Probability
$P(A)=1-P(4)$ Maiknisy
Combinations Nren Nutl hypothesis
Statistics
for Business
lum-al hat and Economics
mentiontm
Correlation

svatation Newbold Carlson Thorn

Parameter
St Mebetiog Sample Histogram Fiprnerm
 \& Ogve $z=(x-\mu) / \sigma$. Frequency distribution Oods Mode 8 St $>$ Probabity > Probability
Combinations
Normal distribution
Durbin-Watson test

Chapter 2:

Describing Data: Numerical

2.1

Cruise agency - number of weekly specials to the Caribbean: 20, 73, 75, 80, 82
a. Compute the mean, median and mode
$\bar{x}=\frac{\sum x_{i}}{n}=\frac{330}{5}=66$
median $=$ middlemost observation $=75$
mode $=$ no unique mode exists
b. The median best describes the data due to the presence of the outlier of 20. This skews the distribution to the left. The agency should first check to see if the value ' 20 ' is correct.
2.2

Number of complaints: $8,8,13,15,16$
a. Compute the mean number of weekly complaints:

$$
\bar{x}=\frac{\sum x_{i}}{n}=\frac{60}{5}=12
$$

b. Calculate the median $=$ middlemost observation $=13$
c. Find the mode $=$ most frequently occurring value $=8$
2.3

CPI percentage growth forecasts: 3.0, 3.1, 3.4, 3.4, 3.5, 3.6, 3.7, 3.7, 3.7, 3.9
a. Compute the sample mean: $\bar{x}=\frac{\sum x_{i}}{n}=\frac{35}{10}=3.5$
b. Compute the sample median $=$ middlemost observation: $\frac{3.5+3.6}{2}=3.55$
c. Mode $=$ most frequently occurring observation $=3.7$
2.4

Department store \% increase in dollar sales: 2.9, 3.1, 3.7, 4.3, 5.9, 6.8, 7.0, 7.3, 8.2, 10.2
a. Calculate the mean number of weekly complaints: $\bar{x}=\frac{\sum x_{i}}{n}=\frac{59.4}{10}=5.94$
b. Calculate the median = middlemost observation: $\frac{5.9+6.8}{2}=6.35$
2.5 Percentage of total compensation derived from bonus payments: 10.2, 13.1, 15, 15.8, 16.9, 17.3, 18.2, 24.7, 25.3, 28.4, 29.3, 34.7
a. Median $\%$ of total compensation from bonus payments $=$
$\frac{17.3+18.2}{2}=17.75$
b. Mean $\% \bar{x}=\frac{\sum x_{i}}{n}=\frac{248.9}{12}=20.7417$
2.6

Daily sales (in hundreds of dollars): 6, 7, 8, 9, 10, 11, 11, 12, 13, 14
a. Find the mean, median, and mode for this store

Mean $=\bar{x}=\frac{\sum x_{i}}{n}=\frac{101}{10}=10.1$
Median $=$ middlemost observation $=\frac{10+11}{2}=10.5$
Mode $=$ most frequently occurring observation $=11$
b. Find the five-number summary
$\mathrm{Q} 1=$ the value located in the $0.25(\mathrm{n}+1)^{\text {th }}$ ordered position
$=$ the value located in the $2.75^{\text {th }}$ ordered position
$=7+0.25(8-7)=7.25$
$\mathrm{Q} 3=$ the value located in the $0.75(\mathrm{n}+1)^{\text {th }}$ ordered position
$=$ the value located in the $8.25^{\text {th }}$ ordered position

$$
=12+0.75(13-12)=12.75
$$

Minimum $=6$
Maximum $=14$
Five - number summary:
minimum < Q1 < median < Q3 < maximum $6<7.25<10.5<12.75<14$
2.7

Find the measures of central tendency for the number of imperfections in a sample of 50 bolts
Mean number of imperfections $=\frac{0(35)+1(10)+2(3)+3(2)}{50}=0.44$ imperfections per bolt
Median $=0$ (middlemost observation in the ordered array)
Mode $=0$ (most frequently occurring observation)
2.8

Ages of 12 students: 18, 19, 21, 22, 22, 22, 23, 27, 28, 33, 36, 36
a. $\bar{x}=\sum \frac{x_{i}}{n}=\frac{307}{12}=25.58$
b. Median $=22.50$
c. \quad Mode $=22$
2.9
a. First quartile, $\mathrm{Q} 1=$ the value located in the $0.25(\mathrm{n}+1)^{\text {th }}$ ordered position

$$
=\text { the value located in the } 39.25^{\text {th }} \text { ordered position }
$$

$$
=2.98+0.25(2.98-2.99)=2.9825
$$

Third quartile, $\mathrm{Q} 3=$ the value located in the $0.75(\mathrm{n}+1)^{\text {th }}$ ordered position
$=$ the value located in the $117.75^{\text {th }}$ ordered position

$$
=3.37+0.75(3.37-3.37)=3.37
$$

b. $30^{\text {th }}$ percentile $=$ the value located in the $0.30(\mathrm{n}+1)^{\text {th }}$ ordered position
$=$ the value located in the $47.1^{\text {th }}$ ordered position

$$
=3.10+0.1(3.10-3.10)=3.10
$$

$80^{\text {th }}$ percentile $=$ the value located in the $0.80(n+1)^{\text {th }}$ ordered position
$=$ the value located in the $125.6^{\text {th }}$ ordered position
$=3.39+0.6(3.39-3.39)=3.39$
2.10
a. $\bar{x}=\sum \frac{x_{i}}{n}=\frac{282}{33}=8.545$
b. Median $=9.0$
c. The distribution is slightly skewed to the left since the mean is less than the median.
d. The five-number summary
$\mathrm{Q} 1=$ the value located in the $0.25(\mathrm{n}+1)^{\text {th }}$ ordered position
$=$ the value located in the $8.5^{\text {th }}$ ordered position
$=6+0.5(6-6)=6$
$\mathrm{Q} 3=$ the value located in the $0.75(\mathrm{n}+1)^{\text {th }}$ ordered position
$=$ the value located in the $25.5^{\text {th }}$ ordered position
$=10+0.5(11-10)=10.5$
Minimum $=2$
Maximum $=21$
Five - number summary:
minimum < Q1 < median $<\mathrm{Q} 3<$ maximum

$$
2<6<9<10.5<21
$$

2.11
a. $\bar{x}=\sum \frac{x_{i}}{n}=\frac{23,699}{100}=236.99$. The mean volume of the random sample of 100 bottles $(237 \mathrm{~mL})$ of a new suntan lotion was 236.99 mL .
b. Median $=237.00$
c. The distribution is symmetric. The mean and median are nearly the same.
d. The five-number summary
$\mathrm{Q} 1=$ the value located in the $0.25(\mathrm{n}+1)^{\text {th }}$ ordered position
$=$ the value located in the $25.25^{\text {th }}$ ordered position
$=233+0.25(234-233)=233.25$
$\mathrm{Q} 3=$ the value located in the $0.75(\mathrm{n}+1)^{\text {th }}$ ordered position
$=$ the value located in the $75.75^{\text {th }}$ ordered position
$=241+0.75(241-241)=241$

$$
\begin{aligned}
& \text { Minimum }=224 \\
& \text { Maximum }=249
\end{aligned}
$$

Five - number summary:
minimum < Q1 < median < Q3 < maximum

$$
224<233.25<237<241<249
$$

2.12

The variance and standard deviation are

x_{i}	DEVIATION ABOUT THE MEAN, $\left(x_{i}-\bar{x}\right)$	QQUARED DEVIATION ABOUT THE MEAN, $\left(x_{i}-\bar{x}\right)^{2}$
6	-1	1
8	1	1
7	0	0
10	3	9
3	-4	16
5	-2	4
9	2	4
8	1	1
$\sum_{i=1}^{8} x_{i}=56$	$\sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)=0$	$\sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)^{2}=36$

Sample mean $=\bar{x}=\frac{\sum_{i=1}^{8} x_{i}}{n}=\frac{56}{8}=7$
Sample variance $=s^{2}=\frac{\sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{36}{8-1}=5.143$
Sample standard deviation $=s=\sqrt{s^{2}}=\sqrt{5.143}=2.268$
2.13

The variance and standard deviation are

x_{i}	DEVIATION ABOUT THE MEAN, $\left(x_{i}-\bar{x}\right)$	SQUARED DEVIATION ABOUT THE MEAN, $\left(x_{i}-\bar{x}\right)^{2}$
3	0.5	0.25
0	-2.5	6.25
-2	-4.5	20.25
-1	-3.5	12.25
5	2.5	6.25
10	7.5	56.25
$\sum_{i=1}^{6} x_{i}=15$	$\sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)=0$	$\sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)^{2}=101.5$

Sample mean $=\bar{x}=\frac{\sum_{i=1}^{6} x_{i}}{n}=\frac{15}{6}=2.5$
Sample variance $=s^{2}=\frac{\sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{101.5}{5}=20.3$

Sample standard deviation $=s=\sqrt{s^{2}}=\sqrt{20.3}=4.5056$
2.14

x_{i}	DEVIATION ABOUT THE MEAN, $\left(x_{i}-\bar{x}\right)$	SQUARED DEVIATION ABOUT THE MEAN, $\left(x_{i}-\bar{x}\right)^{2}$
10	1	1
8	-1	1
11	2	4
7	-2	4
9	0	0
$\sum_{i=1}^{5} x_{i}=45$	$\sum_{i=1}^{5}\left(x_{i}-\bar{x}\right)=0$	$\sum_{i=1}^{5}\left(x_{i}-\bar{x}\right)^{2}=10$

Sample mean $=\bar{x}=\frac{\sum_{i=1}^{5} x_{i}}{n}=\frac{45}{5}=9$
Sample variance $=s^{2}=\frac{\sum_{i=1}^{5}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{10}{4}=2.5$
Sample standard deviation $=s=\sqrt{s^{2}}=\sqrt{2.5}=1.581$
Coefficient of variation $=C V=\frac{s}{x} \times 100 \%=\frac{1.581}{9} \times 100 \%=17.57 \%$
2.15

Minitab Output:

Descriptive Statistics: Ex2.15

Variable	Mean	SE Mean	StDev	Variance	CoefVar	Minimum	Q1	Median
Ex2.15	28.77	2.15	12.70	161.36	44.15	12.00	18.00	27.00
Variable	Q3	Maximum						
Ex2.15	38.00	65.00						

a. \quad Mean $=2.15$
b. Standard deviation $=12.70$
c. $\mathrm{CV}=44.15$
2.16

Minitab Output
Stem-and-Leaf Display: Ex2.16
Stem-and-leaf of Ex2.16 N = 35
Leaf Unit $=1.0$
31234

1015577889
1720012333
(4) 27799

1431
133557788
74002
4459
3

5
$\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}$
$\mathrm{Q}_{1}=$ the value located in the $0.25(35+1)^{\text {th }}$ ordered position
$=$ the value located in the $9^{\text {th }}$ ordered position
$=18$
$\mathrm{Q}_{3}=$ the value located in the $0.75(35+1)^{\text {th }}$ ordered position
$=$ the value located in the $27^{\text {th }}$ ordered position
$=38$
$\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}=38-18=20$ years
2.17

Mean $=75$, variance $=25, \sigma=\sqrt{\sigma^{2}}=\sqrt{25}=5$
Using the mean of 75 and the standard deviation of 5, we find the following interval: $\mu \pm 2 \sigma=75 \pm(2 * 5)=(65,85)$, hence we have $\mathrm{k}=2$
a. According to the Chebyshev's theorem, proportion must be at least $100\left[1-\left(1 / k^{2}\right)\right] \%=100\left[1-\left(1 / 2^{2}\right)\right] \%=75 \%$. Therefore, approximately 75% of the observations are between 65 and 85
b. According to the empirical rule, approximately 95% of the observations are between 65 and 85
2.18

Mean $=250, \sigma=20$
a. To determine k, use the lower or upper limit of the interval:

Range of observation is 190 to 310.

$$
\mu+\sigma k=310 \quad \text { or } \quad \mu-\sigma k=190
$$

$250+20 k=310 \quad$ or $\quad 250-20 k=190$
Solving both the equations we arrive at $k=3$.
According to the Chebyshev's theorem, proportion must be at least
$100\left[1-\left(1 / k^{2}\right)\right] \%=100\left[1-\left(1 / 3^{2}\right)\right] \%=75 \%$. Therefore, approximately 88.89% of the observations are between 190 and 310 .
b. To determine k, use the lower or upper limit of the intervals:

Range of observation is 190 to 310.
$\mu+\sigma k=290 \quad$ or $\quad \mu-\sigma k=210$
$250+20 k=290 \quad$ or $\quad 250-20 k=210$
Solving both the equations we arrive at $k=2$.
According to the Chebyshev's theorem, proportion must be at least
$100\left[1-\left(1 / k^{2}\right)\right] \%=100\left[1-\left(1 / 2^{2}\right)\right] \%=75 \%$. Therefore, approximately 75% of the observations are between 210 and 290.
2.19

Since the data is Mound shaped with mean of 450 and variance of 625 , use the empirical rule.
a. Greater than 425: Since approximately 68% of the observations are within 1 standard deviation from the mean that is 68% of the observations are between $(425,475)$.
Therefore, approximately 84% of the observations will be greater than 425 .
b. Less than 500: Approximately 97.5% of the observations will be less than 500 .
c. Greater than 525: Since all or almost all of the distribution is within 3 standard deviations from the mean, approximately 0% of the observations will be greater than 525.
2.20

Compare the annual \% returns on common stocks vs. U.S. Treasury bills
Minitab Output:
Descriptive Statistics: Stocks_Ex2.20, TBills_Ex2.20

Variable	N	N^{*}	Mean	SE Mean	TrMean	StDev	Variance	CoefVar	Minimum
Stocks_Ex2.20	7	0	8.16	8.43	$*$	22.30	497.39	273.41	-26.50
TBills_Ex2.20	7	0	5.786	0.556	$*$	1.471	2.165	25.43	3.800
Variable		Q1	Median	23	Maximum	Range	IQR		
Stocks_Ex2.20	-14.70	14.30	23.80	37.20	63.70	38.50			
TBills_Ex2.20	4.400	5.800	6.900	8.000	4.200	2.500			

a. Compare the means of the populations

Using the Minitab output
$\mu_{\text {stocks }}=8.16, \mu_{\text {Tbills }}=5.786$
Therefore, the mean annual \% return on stocks is higher than the return for U.S. Treasury bills
b. Compare the standard deviations of the populations

Using the Minitab output,
$\sigma_{\text {stocks }}=22.302, \sigma_{\text {Tbills }}=1.471$
Standard deviations are not sufficient for comparision.
We need to compare the coefficient of variation rather than the standard deviations.
$C V_{\text {Stocks }}=\frac{s}{x} \times 100=\frac{8.16}{22.302} \times 100=70.93 \%$
$C V_{\text {Tbills }}=\frac{s}{x} \times 100=\frac{5.79}{1.471} \times 100=6.60 \%$
Therefore, the variability of the U.S. Treasury bills is much smaller than the return on stocks.
2.21

x_{i}	x_{i}^{2}	DEVIATION ABOUT THE MEAN, $\left(x_{i}-\bar{x}\right)$	SQUARED DEVIATION ABOUT THE MEAN, $\left(x_{i}-\bar{x}\right)^{2}$
20	400	-6.8	46.24
35	1225	8.2	67.24
28	784	1.2	1.44
22	484	-4.8	23.04
10	100	-16.8	282.24
40	1600	13.2	174.24
23	529	-3.8	14.44
32	1024	5.2	27.04
28	784	1.2	1.44
30	900	3.2	10.24
$\sum_{i=1}^{10} x_{i}=268$	$\sum_{i=1}^{10} x_{i}^{2}=7830$	$\sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)=-7.1 \times 10^{-15} \approx 0$	$\sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)^{2}=647.6$

a. Sample mean $=\bar{x}=\frac{\sum_{i=1}^{10} x_{i}}{n}=\frac{268}{10}=26.8$
b. Using equation 2.13:

Sample standard deviation $=s=\sqrt{s^{2}}=\sqrt{\frac{\sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\sqrt{\frac{647.6}{9}}=8.483$
c. Using equation 2.14 :

Sample standard deviation $=s=\sqrt{\frac{\sum_{i=1}^{10} x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}}{n-1}}=\sqrt{\frac{7830-\frac{71824}{10}}{9}}=8.483$
d. Using equation 2.15:

Sample standard deviation $=s=\sqrt{\frac{\sum_{i=1}^{10} x_{i}^{2}-n \bar{x}^{2}}{n-1}}=\sqrt{\frac{7830-(10)(26.8)^{2}}{9}}=8.483$
e. Coefficient of variation $=C V=\frac{s}{\bar{x}} \times 100=\frac{8.483}{26.8} \times 100=31.65 \%$

2.22

Minitab Output:
Descriptive Statistics: Weights

Variable	N	N^{*}	Mean	SE Mean	StDev	Variance	CoefVar	Minimum	Q1
Weights	75	0	3.8079	0.0118	0.1024	0.0105	2.69	3.5700	3.7400
Variable	Median		Maximum	Range					
Weights	3.7900	3.8700	4.1100	0.5400					

a. Using the Minitab output, range $=4.11-3.57=0.54$, standard deviation $=0.1024$, variance $=0.010486$
b. $\mathrm{IQR}=\mathrm{Q} 3-\mathrm{Q} 1=3.87-3.74=.13$. This tells that the range of the middle 50% of the distribution is 0.13
c. Coefficient of variation $=C V=\frac{s}{x} \times 100=\frac{0.1024}{3.8079} \times 100=2.689 \%$
2.23

Minitab Output:
Descriptive Statistics: Time (in seconds)

Variable	Mean	StDev	Variance	CoefVar	Q1	Median	Q3
Time (in seconds)	261.05	17.51	306.44	6.71	251.75	263.00	271.25

Using the Minitab output
a. Sample mean $=\bar{x}=261.05$
b. Sample variance $=s^{2}=306.44 ; ~ s=\sqrt{306.44}=17.51$
c. Coefficient of variation $=C V=\frac{s}{\bar{x}} \times 100=\frac{17.51}{261.05}=6.708$
2.24
a. Standard deviation (s) of the assessment rates:
$s=\sqrt{s^{2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\sqrt{\frac{583.75}{39}}=\sqrt{14.974}=3.8696$
b. The distribution is approximately mounded. Therefore, the empirical rule applies. Approximately 95% of the distribution is expected to be within $+/-2$ standard deviations of the mean.
2.25

Mean dollar amount and standard deviation of the amounts charged to a Visa account at Florin's Flower Shop.

Descriptive Statistics: Cost of Flowers

	Method of	N	N	Mean	StDev	Median
Variable	Payment	23	0	52.99	10.68	50.55
Cost of Flowers	American Express	26	0	51.34	16.19	50.55
	Cash	164	0	54.58	15.25	55.49
	Master Card	23	0	53.42	14.33	54.85
	Other	39	0	52.65	12.71	50.65

Mean dollar amount $=\$ 52.65$, standard deviation $=\$ 12.71$
2.26
a. mean without the weights $\bar{x}=\sum \frac{x_{i}}{n}=\frac{21}{5}=4.2$
b. weighted mean

w_{i}	$\underline{x_{i}}$	$\underline{w_{i} x_{i}}$
8	4.6	36.8
3	3.2	9.6
6	5.4	32.4
2	2.6	5.2
$\underline{5}$	5.2	$\underline{26.0}$
24		110.0

$$
\bar{x}=\frac{\sum w_{i} x_{i}}{\sum w_{i}}=\frac{110}{24}=4.583
$$

2.27
a. Calculate the sample mean of the frequency distribution for $\mathrm{n}=40 \quad$ observations

Class	$\frac{m_{i}}{2}$	f_{i}	$f_{i} m_{i}$
$0-4$	2	5	10
$5-9$	7	8	56
$10-14$	12	11	132
$15-19$	17	9	153
$20-24$	22	$\underline{7}$	$\underline{154}$
		40	505

$$
\bar{x}=\frac{\sum f_{i} m_{i}}{n}=\frac{505}{40}=12.625
$$

b. Calculate the sample variance and sample standard deviation

Class	m_{i}	f_{i}	$f_{i} m_{i}$	$\left(m_{i}-\bar{x}\right)$	$\left(m_{i}-\bar{x}\right)^{2}$	$f_{i}\left(m_{i}-\bar{x}\right)^{2}$
$0-4$	2	5	10	-10.625	112.8906	564.4531
$5-9$	7	8	56	-5.625	31.64063	253.125
$10-14$	12	11	132	-0.625	0.390625	4.296875
$15-19$	17	9	153	4.375	19.14063	172.2656
$20-24$	22	$\underline{7}$	$\underline{154}$	9.375	87.89063	$\underline{615.2344}$
		40	505			1609.375

$$
\begin{aligned}
& s^{2}=\frac{\sum_{i=1}^{K} f_{i}\left(m_{i}-x_{i}\right)^{2}}{n-1}=\frac{1609.375}{39}=41.266 \\
& s=\sqrt{s^{2}}=\sqrt{41.266}=6.424
\end{aligned}
$$

2.28

Class	m_{i}	f_{i}	$m_{i} f_{i}$	$\left(m_{i}-\bar{x}\right)$	$\left(m_{i}-\bar{x}\right)^{2}$	$f_{i}\left(m_{i}-\bar{x}\right)^{2}$
$4<10$	7	8	56	-8.4	70.56	564.48
$10<16$	13	15	195	-2.4	5.76	86.4
$16<22$	19	10	190	3.6	12.96	129.6
$22<28$	25	7	175	9.6	92.16	645.12
		$\sum f_{i}=40$	$\sum m_{i} f_{i}=616$			$\sum f_{i}\left(m_{i}-\bar{x}\right)^{2}=1425.6$

a. Sample mean $=\bar{x}=\frac{\sum m_{i} f_{i}}{n}=\frac{616}{40}=15.4$
b. Sample variance $=s^{2}=\frac{\sum_{i=1}^{K} f_{i}\left(m_{i}-x_{i}\right)^{2}}{n-1}=\frac{1425.6}{39}=36.554$

Sample standard deviation $=s=\sqrt{s^{2}}=\sqrt{36.554}=6.046$
2.29

Calculate the standard deviation for the number of defects per $\mathrm{n}=50 \quad$ radios

$\begin{gathered} m_{i} \\ \text { \# of Defects } \end{gathered}$	$\begin{gathered} f_{i} \\ \text { \# of Radios } \\ \hline \end{gathered}$	$f_{i} m_{i}$	$\left(m_{i}-\bar{x}\right)$	$\left(m_{i}-\bar{x}\right)^{2}$	$f_{i}\left(m_{i}-\bar{x}\right)^{2}$
0	12	0	-1.34	1.7956	21.5472
1	15	15	-0.34	0.1156	1.734
2	17	34	0.66	0.4356	7.4052
3	6	18	1.66	2.7556	16.5336
	50	67			47.22

$$
s^{2}=\frac{\sum f_{i}\left(m_{i}-\bar{x}\right)^{2}}{n-1}=\frac{47.22}{49}=.96367 ; s=\sqrt{s^{2}}=.9817
$$

2.30

Based on a sample of $n=50$:

m_{i}	f_{i}	$f_{i} m_{i}$	$\left(m_{i}-\bar{x}\right)$	$\left(m_{i}-\bar{x}\right)^{2}$	$f_{i}\left(m_{i}-\bar{x}\right)^{2}$
0	21	0	-1.4	1.96	41.16
1	13	13	-0.4	0.16	2.08
2	5	10	0.6	0.36	1.8
3	4	12	1.6	2.56	10.24
4	2	8	2.6	6.76	13.52
5	3	15	3.6	12.96	38.88
6	2	12	4.6	21.16	42.32
Sum	$\mathbf{5 0}$	$\mathbf{7 0}$			$\mathbf{1 5 0}$

a. Sample mean number of claims per day $=\bar{X}=\frac{\sum f_{i} m_{i}}{n}=\frac{70}{50}=1.40$
b. Sample variance $=s^{2}=\frac{\sum f_{i}\left(m_{i}-\bar{x}\right)^{2}}{n-1}=\frac{150}{49}=3.0612$

Sample standard deviation $=s=\sqrt{s^{2}}=1.7496$
2.31

Estimate the sample mean and standard deviation

Class	m_{i}	f_{i}	$f_{i} m_{i}$	$\left(m_{i}-\bar{x}\right)$	$\left(m_{i}-\bar{x}\right)^{2}$	$f_{i}\left(m_{i}-\bar{x}\right)^{2}$
$0<4$	2	3	6	-7.36	54.1696	162.5088
$4<8$	6	7	42	-3.36	11.2896	79.0272
$8<12$	10	8	80	0.64	0.4096	3.2768
$12<16$	14	5	70	4.64	21.5296	107.648
$16<20$	18	2	36	8.64	74.6496	149.2992
Sum		$\mathbf{2 5}$	$\mathbf{2 3 4}$			$\mathbf{5 0 1 . 7 6}$

a. Sample mean $=\bar{X}=\frac{\sum f_{i} m_{i}}{n}=\frac{234}{25}=9.36$
b. Sample variance $=s^{2}=\frac{\sum f_{i}\left(m_{i}-\bar{x}\right)^{2}}{n-1}=\frac{501.76}{24}=20.9067$

Sample standard deviation $=s=\sqrt{s^{2}}=4.572$
2.32

Estimate the sample mean and sample standard deviation

Class	m_{i}	f_{i}	$f_{i} m_{i}$	$\left(m_{i}-\bar{x}\right)$	$\left(m_{i}-\bar{x}\right)^{2}$	$f_{i}\left(m_{i}-\bar{x}\right)^{2}$
$9.95-10.45$	10.2	2	20.4	-0.825	0.681	1.361
$10.45-10.95$	10.7	8	85.6	-0.325	0.106	0.845
$10.95-11.45$	11.2	6	67.2	0.175	0.031	0.184
$11.45-11.95$	11.7	3	35.1	0.675	0.456	1.367
$11.95-12.45$	12.2	1	12.2	1.175	1.381	1.381
Sum		$\mathbf{2 0}$	$\mathbf{2 2 0 . 5}$			$\mathbf{5 . 1 3 8}$

a. \quad sample mean $=\bar{X}=\frac{\sum f_{i} m_{i}}{n}=\frac{220.5}{20}=11.025$
b. sample variance $=s^{2}=\frac{\sum f_{i}\left(m_{i}-\bar{x}\right)^{2}}{n-1}=\frac{5.138}{19}=0.2704$ sample standard deviation $=s=\sqrt{s^{2}}=0.520$
2.33

Find the mean and standard deviation of the number of errors per page

m_{i}	f_{i}	$f_{i} m_{i}$	$\left(m_{i}-\bar{x}\right)$	$\left(m_{i}-\bar{x}\right)^{2}$	$f_{i}\left(m_{i}-\bar{x}\right)^{2}$
0	102	0	-1.654	2.735716	279.043
1	138	138	-0.654	0.427716	59.02481
2	140	280	0.346	0.119716	16.76024
3	79	237	1.346	1.811716	143.1256
4	33	132	2.346	5.503716	181.6226
5	8	40	3.346	11.19572	89.56573
Sum	$\mathbf{5 0 0}$	$\mathbf{8 2 7}$			$\mathbf{7 6 9 . 1 4 2}$

$\begin{aligned} \mu & =\frac{\sum f_{i} m_{i}}{n}=\frac{827}{500}=1.654 \\ \sigma^{2} & =\frac{\sum f_{i}\left(m_{i}-\bar{x}\right)^{2}}{n}=\frac{769.142}{500}=1.5383\end{aligned}$
Sample standard deviation $=\sigma=\sqrt{\sigma^{2}}=1.240$
2.34

Using Table 1.7 Minutes	m_{i}	f_{i}	$f_{i} m_{i}$	$\left(m_{i}-\bar{x}\right)$	$\left(m_{i}-\bar{x}\right)^{2}$	$f_{i}\left(m_{i}-\bar{x}\right)^{2}$
$220<230$	225	5	1125	-36.545	1335.57	6677.851
$230<240$	235	8	1880	-26.545	704.6612	5637.289
$240<250$	245	13	3185	-16.545	273.7521	3558.777
$250<260$	255	22	5610	-6.5455	42.84298	942.5455
$260<270$	265	32	8480	3.45455	11.93388	381.8843
$270<280$	275	13	3575	13.4545	181.0248	2353.322
$280<290$	285	10	2850	23.4545	550.1157	5501.157
$290<300$	295	7	2065	33.4545	1119.207	7834.446
		110	28770			32887.27

a. Using Equation 2.21, Sample mean, $\bar{x}=\frac{\sum f_{i} m_{i}}{n}=\frac{28770}{110}=261.54545$
b. Using Equation 2.22, sample variance
$s^{2}=\frac{\sum f_{i}\left(m_{i}-\bar{x}\right)^{2}}{n-1}=\frac{32887.27}{109}=301.718 ; s=\sqrt{s^{2}}=17.370$
c. From Exercise $2.23, \bar{x}=261.05$ and $s^{2}=306.44$. Therefore, the mean value obtained in both the Exercises are almost same, however variance is slightly lower by 4.7219 compared to Exercise 2.23 .
2.35
a. Compute the sample covariance

x_{i}	y_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	$\left(y_{i}-\bar{y}\right)$	$\left(y_{i}-\bar{y}\right)^{2}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
1	5	-3	9	-1.85714	3.4489796	5.571428571
3	7	-1	1	0.14286	0.0204082	-0.142857143
4	6	0	0	-0.85714	0.7346939	0
5	8	1	1	1.14286	1.3061224	1.142857143
7	9	3	9	2.14286	4.5918367	6.428571429
3	6	-1	1	-0.85714	0.7346939	0.857142857
$\underline{5}$	$\underline{7}$	$\underline{1}$	$\underline{1}$	$\underline{0.14286}$	$\underline{0.0204082}$	$\underline{0.142857143}$
28	48	0	22	$2.7 \mathrm{E}-15$	10.857143	14
$\bar{x}=4.0$	$\bar{y}=6.8571$		$s_{x}^{2}=3.667$		$s_{y}^{2}=1.8095$	$\operatorname{Cov}(\mathrm{x}, \mathrm{y})=2.333$
			$s_{x}=1.9149$		$s_{y}=1.3452$	

$\operatorname{Cov}(x, y)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}=\frac{14}{6}=2.3333$
b. Compute the sample correlation coefficient
$r_{x y}=\frac{\operatorname{Cov}(x, y)}{s_{x} s_{y}}=\frac{2.3333}{(1.9149)(1.3452)}=.9059$
2.36
a. Compute the sample covariance

x_{i}	y_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	$\left(y_{i}-\bar{y}\right)$	$\left(y_{i}-\bar{y}\right)^{2}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
12	200	-7	49	-156	24336	1092
30	600	11	121	244	59536	2684
15	270	-4	16	-86	7396	344
24	500	5	25	144	20736	720
$\underline{14}$	$\underline{210}$	$\underline{-5}$	$\underline{25}$	$\underline{-146}$	$\underline{21316}$	$\underline{730}$
95	1780	0	236	0	133320	5570
$\bar{x}=19.00$	$\bar{y}=356.00$		$s_{x}^{2}=59$		$s_{y}^{2}=33330$	$\operatorname{Cov}(\mathrm{x}, \mathrm{y})=1392.5$
			$s_{x}=7.681146$		$s_{y}=182.5650569$	

$$
\operatorname{Cov}(x, y)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}=\frac{5570}{4}=1392.5
$$

b. Compute the sample correlation coefficient
$r=\frac{\operatorname{Cov}(x, y)}{s_{x} s_{y}}=\frac{1392.5}{(7.6811)(182.565)}=0.9930$
2.37
a. Compute the sample covariance

x_{i}	y_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	$\left(y_{i}-\bar{y}\right)$	$\left(y_{i}-\bar{y}\right)^{2}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
6	80	-2	4	30	900	-60
7	60	-1	1	10	100	-10
8	70	0	0	20	400	0
9	40	1	1	-10	100	-10
$\underline{10}$	$\underline{0}$	$\underline{2}$	$\underline{4}$	$\underline{-50}$	$\underline{2500}$	$\underline{-100}$
40	250	0	10	0	4000	-180
$\bar{x}=8.00$	$\bar{y}=50.00$		$s_{x}^{2}=2.5$		$s_{y}^{2}=1000$	$\operatorname{Cov}(\mathrm{x}, \mathrm{y})=-45$
			$s_{x}=1.5811$		$s_{y}=31.623$	

$\operatorname{Cov}(x, y)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}=\frac{-180}{4}=-45$
b. Compute the sample correlation coefficient
$r_{x y}=\frac{\operatorname{Cov}(x, y)}{s_{x} s_{y}}=\frac{-45}{(1.58114)(31.6228)}=-.90$
2.38 Minitab output

	x	
	\times Ex2.38	Y_Ex2.
Ex2.3	4.268	34.

Correlations: x_Ex2.38, y_Ex2.38

Pearson correlation of $x_{_}$Ex2.38 and y_Ex2.38 $=0.128$
Using Minitab outputa. $\operatorname{Cov}(x, y)=4.268$
b. $r=0.128$
c. Weak positive association between the number of drug units and the number of days to complete recovery. Recommend low or no dosage units.
2.39 Minitab output

Covariances: x_Ex2.39, y_Ex2.39

	X_Ex2.39	Y_Ex2.39
X_Ex2.39	$\overline{9} .28571$	
$Y_{-} E x 2.39$	-5.50000	5.40952

Correlations: x_Ex2.39, y_Ex2.39
Pearson correlation of $x_{E} E x 2.39$ and $y_{E} E x 2.39=-0.776$
Using Minitab output
a. $\operatorname{Cov}(x, y)=-5.5, \quad r=-.776$
b. Higher prices are associated with fewer days to deliver, i.e., faster delivery time.
2.40
a. Compute the covariance

x_{i}	y_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	$\left(y_{i}-\bar{y}\right)$	$\left(y_{i}-\bar{y}\right)^{2}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
5	55	-2	4	12.4	153.76	-24.8
6	53	-1	1	10.4	108.16	-10.4
7	45	0	0	2.4	5.76	0
8	40	1	1	-2.6	6.76	-2.6
$\underline{9}$	$\underline{20}$	$\underline{2}$	$\underline{4}$	-22.6	$\underline{510.76}$	-45.2
35	213	0	10	0	785.2	-83
$\mu_{x}=7.00$	$\mu_{y}=42.60$		$\sigma_{x}^{2}=2.0$		$\sigma_{y}^{2}=157.04$	$\operatorname{Cov}(x, y)=-16.6$
			$\sigma_{x}=1.4142$		$\sigma_{y}=12.532$	
$=$						
$\operatorname{Cov}\left(x_{i} y\right)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{V}=\frac{-83}{5}=-16.6$						

b. Compute the correlation coefficient
$r_{x y}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}}=\frac{-16.6}{(1.4142)(12.5316)}=-.937$
2.41

Minitab output
Covariances: Temperature (F), Time(hours)
Temperature (F)
Time (hours)
$\begin{array}{lrr}\text { Time (hours) } & 2.80136 & 0.05718\end{array}$

Correlations: Temperature (F), Time(hours)

Pearson correlation of Temperature (F) and Time (hours) $=0.971$
Using Minitab output
a. Covariance $=2.80136$
b. Correlation coefficient $=0.971$
2.42

Scatter plot - Advertising expenditures (thousands of \$s) vs. Monthly Sales (thousands of units)

x_{i}	y_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	$\left(y_{i}-\bar{y}\right)$	$\left(y_{i}-\bar{y}\right)^{2}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
10	100	-1.6	2.56	-30	900	48
15	200	3.4	11.56	70	4900	238
7	80	-4.6	21.16	-50	2500	230
12	120	0.4	0.16	-10	100	-4
14	$\underline{150}$	$\underline{2.4}$	$\underline{5.76}$	$\underline{20}$	$\underline{400}$	$\underline{48}$
58	650		41.2		8800	560
$\bar{x}=11.60$	$\bar{y}=130.00$		$s_{x}^{2}=10.3$		$s_{y}^{2}=2200$	$\operatorname{Cov}(x, y)=140$
			$s_{x}=3.2094$		$s_{y}=46.9042$	

$$
\begin{aligned}
& \text { Covariance }=\operatorname{Cov}(x, y)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}=560 / 4=140 \\
& \text { Correlation }=\frac{\operatorname{Cov}(x, y)}{s_{x} s_{y}}=\frac{140}{(3.2094)(46.9042)}=.93002
\end{aligned}
$$

2.43

Compute covariance and correlation between retail experience (years) and weekly sales (hundreds of dollars)

x_{i}	y_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	$\left(y_{i}-\bar{y}\right)$	$\left(y_{i}-\bar{y}\right)^{2}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
2	5	-1.875	3.515625	-5.75	33.0625	10.78125
4	10	0.125	0.015625	-0.75	0.5625	-0.09375
3	8	-0.875	0.765625	-2.75	7.5625	2.40625
6	18	2.125	4.515625	7.25	52.5625	15.40625
3	6	-0.875	0.765625	-4.75	22.5625	4.15625
5	15	1.125	1.265625	4.25	18.0625	4.78125
6	20	2.125	4.515625	9.25	85.5625	19.65625
2	4	$\underline{-1.875}$	$\underline{3.515625}$	$\underline{-6.75}$	$\underline{45.5625}$	$\underline{12.65625}$
31	86		18.875		265.5	69.75
$\bar{x}=3.875$	$\bar{y}=10.75$		$s_{x}^{2}=2.6964$		$s_{y}^{2}=37.9286$	$\operatorname{Cov}(\mathrm{x}, \mathrm{y})=9.964286$
			$s_{x}=1.64208$		$s_{y}=6.15862$	

Covariance $=\operatorname{Cov}(x, y)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}=69.75 / 7=9.964286$
Correlation $=\frac{\operatorname{Cov}(x, y)}{s_{x} s_{y}}=\frac{9.964286}{(1.64208)(6.15862)}=.9853$
2.44

Air Traffic Delays (Number of Minutes Late)

m_{i}	f_{i}	$f_{i} m_{i}$	$\left(m_{i}-\bar{x}\right)$	$\left(m_{i}-\bar{x}\right)^{2}$	$f_{i}\left(m_{i}-\bar{x}\right)^{2}$
5	30	150	-13.133	172.46	5173.90
15	25	375	-3.133	9.81	245.32
25	13	325	6.867	47.16	613.11
35	6	210	16.867	284.51	1707.07
45	5	225	26.867	721.86	3609.30
55	4	220	36.867	1359.21	5436.84
	83	1505			16785.54
\bar{x}					
	18.13			variance $=$	204.7017

a. Sample mean number of minutes late $=1505 / 83=18.1325$
b. Sample variance $=16785.54 / 82=204.7017$

Sample standard deviation $=\mathrm{s}=14.307$

2.45

Minitab Output

Descriptive Statistics: Cost (\$)

	Total								
Variable	Count	Mean	StDev	Variance	Minimum	Q1	Median	Q3	Maximum
Cost (\$)	50	43.10	10.16	103.32	20.00	35.75	45.00	50.25	60.00

Using the Minitab output
a. Mean charge $=\$ 43.10$
b. Standard deviation $=\$ 10.16$
c. Five - number summary:

$$
\text { minimum }<\mathrm{Q} 1<\text { median }<\mathrm{Q} 3<\text { maximum }
$$

$$
20<35.75<45<50.25<60
$$

2.46

For Location 2:

x_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$
1	-9.2	84.64
19	8.8	77.44
2	-8.2	67.24
18	7.8	60.84
11	0.8	0.64
$\underline{10}$	$\underline{-0.2}$	$\underline{0.04}$
3	-7.2	51.84
17	6.8	46.24
4	-6.2	38.44
17	6.8	46.24
102		473.6

Mean $=\bar{x}=\frac{\sum x_{i}}{n}=\frac{102}{10}=10.2$
Variance $=s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{473.6}{9}=52.622$
Standard deviation $=s=\sqrt{s^{2}}=7.254$

For Location 3:

$$
\begin{aligned}
& \text { Mean }=\bar{x}=\frac{\sum x_{i}}{n}=\frac{184}{10}=18.4 \\
& \text { Variance }=s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{682.4}{9}=75.822
\end{aligned}
$$

Standard deviation $=s=\sqrt{s^{2}}=8.708$

For Location 4:

x_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$
22	9.5	90.25
20	7.5	56.25
10	-2.5	6.25
13	0.5	0.25
12	-0.5	0.25
10	-2.5	6.25
11	-1.5	2.25
9	-3.5	12.25
10	-2.5	6.25
$\underline{8}$	$\underline{-4.5}$	$\underline{20.25}$
125		200.5

Mean $=\bar{x}=\frac{\sum x_{i}}{n}=\frac{125}{10}=12.5$

Variance $=s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{200.5}{9}=22.278$
Standard deviation $=s=\sqrt{s^{2}}=4.720$
2.47

Describe the data numerically

Covariances: X_Ex2.47, Y_Ex2.47

```
X_Ex2.47 - %.81046 Y_Ex2.47
Y-Ex2.47 5.18954 50.92810
```

Correlations: X_Ex2.47, Y_Ex2.47
Pearson correlation of X_Ex2.47 and Y_Ex2.47 = 0.245
P -Value $=0.327$
There is a very weak positive relationship between the variables.
2.48
a. Describe the data graphically between graduating GPA vs. entering SAT Verbal scores

b.

Correlations: GPA, SATverb

Pearson correlation of GPA and SATverb $=0.560$
P -Value $=0.000$
2.49

Arrange the populations according to their variances and calculate the variances manually (a) has the least variability, then population (c), followed by (b) and then (d)

Population standard deviation $\sigma^{2}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{N}}$

$\underline{\mathrm{a}}$	$\underline{\mathrm{b}}$	$\underline{\mathrm{c}}$	$\underline{\mathrm{d}}$	$\underline{(a-\bar{a})^{2}}$	$\underline{(b-\bar{b})^{2}}$	$\underline{(c-\bar{c})^{2}}$	$\underline{(d-\bar{d})^{2}}$
1	1	1	-6	12.25	12.25	12.25	110.25
2	1	1	-3	6.25	12.25	12.25	56.25
3	1	4	0	2.25	12.25	0.25	20.25
4	1	4	3	0.25	12.25	0.25	2.25
5	8	5	6	0.25	12.25	0.25	2.25
6	8	5	9	2.25	12.25	0.25	20.25
7	8	8	12	6.25	12.25	12.25	56.25
$\underline{8}$	$\underline{8}$	$\underline{8}$	$\underline{15}$	$\underline{12.25}$	12.25	$\underline{12.25}$	$\underline{110.25}$
36	36	36	36	42	98	50	378
$\bar{x}=4.5$	$\bar{x}=4.5$	$\bar{x}=4.5$	$\bar{x}=4.5$	$\sigma^{2}=5.25$	$\sigma^{2}{ }_{b}=12.25$	$\sigma^{2}{ }_{c}=6.25$	$\sigma^{2}{ }_{d}=47.25$

2.50

Mean of \$295 and standard deviation of \$63.
a. Find a range in which it can be guaranteed that 60% of the values lie.

Use Chebyshev's theorem: at least $60 \%=\left[1-\left(1 / k^{2}\right)\right]$. Solving for $k, k=1.58$. The interval will range from $295+/-(1.58)(63)=295+/-99.54 .195 .46$ up to 394.54 will contain at least 60% of the observations.
b. Find the range in which it can be guaranteed that 84% of the growth figures lie Use Chebyshev's theorem: at least $84 \%=\left[1-\left(1 / k^{2}\right)\right]$. Solving for $k, k=2.5$. The interval will range from $295+/-(2.50)(63)=295+/-157.5$. 137.50 up to 452.50 will contain at least 84% of the observations.
2.51

Growth of 500 largest U.S. corporations had a mean of 9.2%, standard deviation of 3.5%.
a. Find the range in which it can be guaranteed that 84% of the growth figures lie.

Use Chebyshev's theorem: at least $84 \%=\left[1-\left(1 / k^{2}\right)\right]$. Solving for $k, k=2.5$. The interval will range from $9.2+/-(2.50)(3.5)=9.2+/-8.75 .0 .45 \%$ up to 17.95% will contain at least 84% of the observations.
b. Using the empirical rule, approximately 68% of the earnings growth figures lie within $9.2+/-(1)(3.5) .5 .7 \%$ up to 12.7% will contain at least 68% of the observations.
2.52

Tires have a lifetime mean of 29,000 miles and a standard deviation of 3,000 miles.
a. Find a range in which it can be guaranteed that 75% of the lifetimes of tires lies

Use Chebyshev's theorem: at least $75 \%=\left[1-\left(1 / k^{2}\right)\right]$. Solving for $k=2.0$. The interval will range from $29,000 \pm(2.0)(3,000)=29,000 \pm 6,00023,000$ to 35,000 will contain at least 75% of the observations .
b. 95% : solve for $k=4.47$. The interval will range from $29,000 \pm(4.47)(3000)=29,000$ $\pm 13,416.41$. $15,583.59$ to $42,416.41$ will contain at least 95% of the observations.
2.53

Minitab Output:
Descriptive Statistics: Time (in seconds)

	Total						
Variable	Count	Mean	StDev	Variance	Minimum	Q1	
Time (in seconds)	110	261.05	17.51	306.44	222.00	251.75	
	Median	Q3	Maximum	IQR			
Variable	263.00	271.25	299.00	19.50			

Using the Minitab output
a. Interquartile Range $=19.50$. This tells that the range of the middle 50% of the distribution is 19.50 .
b. Five - number summary:
minimum < Q1 < median < Q3 < maximum
$222<251.75<263<271.25<299$
2.54

Minitab Output:
Descriptive Statistics: Time

	Total							
Variable	Count	Mean	StDev	Variance	CoefVar	Minimum	Q1	Median
Time	104	41.68	16.86	284.35	40.46	18.00	28.50	39.00
Variable	Q3	Maximum						
Time	56.50	73.00						

Using the Minitab output
a. Mean shopping time $=41.68$
b. Variance $=284.35$

Standard deviation $=16.86$
c. $95^{\text {th }}$ percentile $=$ the value located in the $0.95(\mathrm{n}+1)^{\text {th }}$ ordered position
$=$ the value located in the $99.75^{\text {th }}$ ordered position
$=70+0.75(70-70)=70$.
d. Five - number summary:
minimum < Q1 < median < Q3 < maximum
$18<28.50<39<56.50<73$
e. Coefficient of variation $=40.46$
f. Find the range in which ninety percent of the shoppers complete their shopping. Use Chebyshev's theorem: at least $90 \%=\left[1-\left(1 / k^{2}\right)\right]$. Solving for $k, k=3.16$. The interval will range from $41.68+/-(3.16)(16.86)=41.88+/-53.28$. -11.60 up to 94.96 will contain at least 90% of the observations.
2.55

x_{i}	y_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(y_{i}-\bar{y}\right)$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	$\left(y_{i}-\bar{y}\right)^{2}$
3.5	88	0.3	7.8	2.34	0.09	60.84
2.4	76	-0.8	-4.2	3.36	0.64	17.64
4	92	0.8	11.8	9.44	0.64	139.24
5	85	1.8	4.8	8.64	3.24	23.04
1.1	60	-2.1	-20.2	42.42	4.41	408.04
16	401			66.2	9.02	648.8
$\bar{x}=3.2$	$\bar{y}=80.2$				$s_{x}^{2}=2.255$	$s_{y}^{2}=162.2$
					$s_{x}=1.5017$	$s_{y}=12.7358$

Covariance $=\operatorname{Cov}(x, y)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}=\frac{66.2}{4}=16.55$
Correlation coefficient $=\frac{\operatorname{Cov}(x, y)}{s_{x} s_{y}}=\frac{16.55}{(1.5017)(12.7358)}=0.8654$
2.56

x_{i}	y_{i}	$\left(x_{i}-\bar{x}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	$\left(y_{i}-\bar{y}\right)$	$\left(y_{i}-\bar{y}\right)^{2}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
12	20	-9.3	86.49	-21.20	449.44	197.16
30	60	8.7	75.69	18.80	353.44	163.56
15	27	-6.3	39.69	-14.20	201.64	89.46
24	50	2.7	7.29	8.80	77.44	23.76
14	21	-7.3	53.29	-20.20	408.04	147.46
18	30	-3.3	10.89	-11.20	125.44	36.96
28	61	6.7	44.89	19.80	392.04	132.66
26	54	4.7	22.09	12.80	163.84	60.16
19	32	-2.3	5.29	-9.20	84.64	21.16
$\underline{27}$	$\underline{57}$	$\underline{5.7}$	$\underline{32.49}$	$\underline{15.80}$	$\underline{\underline{249.64}}$	$\underline{\underline{90.06}}$
213	412		378.1		2505.6	962.4
			$s_{x}^{2}=42.01$		s_{y}^{2}	
$\bar{x}=21.3$	$\bar{y}=41.2$		$s_{x}=6.4816$		$s_{y}=16.6853$	

$$
\begin{aligned}
& \text { Covariance }=\operatorname{Cov}(x, y)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}=\frac{962.4}{9}=106.9333 \\
& \text { Correlation coefficient }=\frac{\operatorname{Cov}(x, y)}{s_{x} s_{y}}=\frac{106.9333}{(6.4816)(16.6853)}=0.9888
\end{aligned}
$$

