

1
© Pearson Education Limited 2005

Solutions Manual

Software Quality
Assurance

From Theory to Implementation

Daniel Galin

For further instructor material
please visit:

www.booksites.net/galin

ISBN 0273705660

© Pearson Education Limited 2005
Lecturers adopting the main text are permitted to download and photocopy the manual
as required.

2
© Pearson Education Limited 2005

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies around the world

Visit us on the World Wide Web at:
http://www.pearsoned.co.uk

First published 2005
© Pearson Education Limited 2005

The right of Daniel Galin to be identified as author of
this Work has been asserted by him in accordance with
the Copyright, Designs and Patents Act 1988.

ISBN: 0273705660

All rights reserved. Permission is hereby given for the material in this
publication to be reproduced for OHP transparencies and student handouts,
without express permission of the Publishers, for educational purposes only.
In all other cases, no part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise without either the prior
written permission of the Publishers or a licence permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Ltd.,
90 Tottenham Court Road, London W1T 4LP. This book may not be lent,
resold, hired out or otherwise disposed of by way of trade in any form
of binding or cover other than that in which is it is published, without the
prior consent of the Publishers.

http://www.pearsoned.co.uk/

Galin: Software Quality Assurance, 1/E – Solutions Manual

3
© Pearson Education Limited 2005

Contents

Part I: Introduction 5

Chapter 1: The software quality challenge 6
Chapter 2: What is software quality? 15
Chapter 3: Software quality factors 25
Chapter 4: The components of the software quality assurance system – overview 40

Part II: Pre-project software quality components 41

Chapter 5: Contract review 42
Chapter 6: Development and quality plans 57

Part III: SQA components in the project life cycle 72

Chapter 7: Integrating quality activities in the project life cycle 73
Chapter 8: Reviews 86
Chapter 9: Software testing – strategies 95
Chapter 10: Software testing – implementation 108
Chapter 11: Assuring the quality of software maintenance components 000
Chapter 12: Assuring the quality of external participants' contributions 000
Chapter 13: CASE tools and their effect on software quality 000

Part IV: Software quality infrastructure components 000

Chapter 14: Procedures and work instructions 000
Chapter 15: Supporting quality devices 000
Chapter 16: Staff training, instructing and certification 000
Chapter 17: Corrective and preventive actions 000
Chapter 18: Configuration management 000
Chapter 19: Documentation control 000

PART V: Management components of software 000

Chapter 20: Project progress control 000
Chapter 21: Software quality metrics 000
Chapter 22: Costs of software quality 000

PART VI: Standards, certification and assessment 000

Chapter 23: Quality management standards 000
Chapter 24: SQA project process standards – IEEE software engineering standards 000

Galin: Software Quality Assurance, 1/E – Solutions Manual

4
© Pearson Education Limited 2005

PART VII: Organizing for quality assurance 000

Chapter 25: Management and its role in software quality assurance 000
Chapter 26: The SQA unit and other actors in the SQA system 000

Galin: Software Quality Assurance, 1/E – Solutions Manual

5
© Pearson Education Limited 2005

Part I

Introduction

Galin: Software Quality Assurance, 1/E – Solutions Manual

6
© Pearson Education Limited 2005

C H A P T E R 1

The software quality challenge

Review questions

1.1

There are three major differences between software products and other industrial
products.

1. Identify and describe the differences.

2. Discuss the ways in which these differences affect SQA.

Solution

1. Software products differ from other industrial products with respect to the
following characteristics:

– Product complexity – a typical software product allows tens of thousands of
operational options. Typical industrial products and even advanced industrial
products do not reach this level of variety of options.

– Product visibility – since software products are invisible, defects in the
software are not visible unless testing procedures are applied. In contrast,
industrial products are visible and most defects are visible to the production
team by changes in color or shape. Even non-professionals can observe color
changes that reveal defects in chemical and food products, or the changes in
shape or structure that reveal defects in household products.

– Development and production process – Defects in industrial products usually
occur during each stage through which the product has to pass, namely
development, product production planning, and manufacturing. At each stage the
product is examined and tested independently by a different team. In contrast,
software products are examined and tested during the development stage only.
The product production planning and the manufacturing stages deal mainly with
the duplication and packaging of the software product without contributing to
the detection of software defects.

2. The first characteristic, product complexity, makes the task of quality assurance for
software much more difficult, as the product must function correctly for all of the
defined options, even those that are highly complicated and rarely used. The other
two characteristics make software defects more difficult to detect. The combined
effect of these software characteristics creates a situation in which software
developers cannot be certain that the software product they supply is defect-free.

Galin: Software Quality Assurance, 1/E – Solutions Manual

7
© Pearson Education Limited 2005

1.2

It is claimed that no significant SQA activities are expected to take place during the
phase of production planning for software products.

1. Discuss this claim.

2. Compare the required production planning for a new automobile model with the
production planning efforts required for the new release of a software product.

Solution

This review question refers mainly to the issues discussed in review question 1.1, but
whereas question 1.1 compares a software product to an industrial product, this review
question focuses on a comparison between the software product development process
and the development process of an industrial product.

1. This claim is correct. The product production planning stage and the manufacturing
stage in the case of software products deal mainly with duplication and packaging of
the product, with no activities of review or testing of the software code. Therefore, it
is not expected that software defects will be detected at these stages.

2. There is considerable similarity between the development of a new automobile
model and a new software project. Both processes are characterized by creativity
and require specific reviewing and testing procedures. It should be noted that many
of the complicated operational options of automobiles are controlled by software
(operated by the car’s computer or computers).

1.3

Seven issues characterize the professional software development and maintenance
environment.

1. Identify and describe these characteristics.

2. Which of these environmental characteristics mainly affect the professional efforts
required for carrying software development and maintenance projects. List the
characteristics and explain why a professional effort is needed.

3. Which of these environmental characteristics mainly affect the managerial efforts
required for carrying out software development and maintenance projects. List the
characteristics and explain why such efforts are needed.

Solution

1. The characteristics of the software development and maintenance environment are:

– Contract conditions and commitments defining content and timetable.

Galin: Software Quality Assurance, 1/E – Solutions Manual

8
© Pearson Education Limited 2005

– Conditions of the customer−supplier relationship, as exemplified by the need for
consultation with customers and securing of their approval.

– Teamwork requirements.

– Need for cooperation and coordination with other software and hardware
development teams both internally and externally.

– Need for interfaces with other software systems.

– Need for continuity in carrying out a project when team members change.

– Need for ongoing maintenance of the software system over several years.

2. Each of the abovementioned characteristics affects both the professional and the
managerial efforts, though usually to differing extents. The following characteristics
affect mainly the professional side:

– Contract conditions defining content – the need to prepare a document listing
functional and other requirements of the project.

– Conditions of the customer−supplier relationship – the need to maintain
ongoing contacts with the customer’s professionals for presentations of
development products, consultations with the customer, and securing customer
approval of the development products.

– Teamwork requirements – the need for the team leader to take responsibility
for professional instruction of the team members and checking of their products.

– Cooperation and coordination with other software and hardware
development teams both internally and externally – the need to understand
the tasks performed by other teams to the extent that enables proper professional
communication.

– Interfaces with other software systems – the need to acquire familiarity with
the interfacing standards or interfacing design of equipment units and/or
software packages.

3. The following characteristics affect mainly the managerial side:

– Contract conditions defining timetable – the commitments relating to
completion of a project and usually also to completion of each stage of the
development process.

– Teamwork requirements – the need to recruit a team and appoint a team leader
to manage and to supervise the work of each of the team members.

– Continuity in carrying out a project when team members change – the need to
recruit, sometimes at short notice, a replacement team member having the
professional knowledge and experience similar to those of the departing member.

– Ongoing maintenance of the software system over several years – the need to
ensure the constant availability of updated documentation on the software
system, and to maintain a professional team well acquainted with the software
system and capable of providing support at short notice.

Galin: Software Quality Assurance, 1/E – Solutions Manual

9
© Pearson Education Limited 2005

Topics for discussion

1.1

Educational systems are assumed to prepare the students to cope with real life
conditions. Examine the procedural requirements of a software development project or
final software project, and determine what of the requirements could be considered as
preparatory to professional life situations as discussed above.

Solution

Only part of the software development environment can be practiced within the
framework of educational systems.

Let us examine this issue with reference to each of the seven environmental
characteristics:

• Contract conditions and commitments defining content and timetable. Students’
projects simulate contract conditions to some extent. A typical students’ project
includes definitions of the required functions as well as the time schedule for
completion. Budget commitments are naturally not applicable.

• Conditions of the customer−supplier relationship, as exemplified by the need for
consultation with customers and securing of their approval. The instructor–student
relationship simulates to some extent the relationship between customer and
supplier.

• Teamwork requirements. Projects done by student teams incorporate some aspects
of team work, but are usually carried out without an appointed team leader.

• Need for cooperation and coordination with other software and hardware
development teams both internally and externally. This is usually not applicable in
students’ projects.

• Need for interfaces with other software systems. This is applicable in some cases.

• Need for continuity in carrying out a project when team members change. This is
usually not applicable in students’ projects.

• Need for ongoing maintenance of the software system over several years. This is
usually not applicable in students’ projects.

1.2

Referring to the seven environmental characteristics of software development and
maintenance, consider the characteristics of future software products, discussing
whether the professional and managerial burden of coping with these characteristics in

Galin: Software Quality Assurance, 1/E – Solutions Manual

10
© Pearson Education Limited 2005

future is expected to be higher or lower when compared with the current performance of
these activities.

Solution

• Contract conditions and commitments defining content and timetable.
Customers can be expected to be much more demanding with respect to full
implementation of functional and other requirements. Typical time schedules for
similar development projects are expected to be substantially shorter than those
currently allowed.

• Conditions of the customer−supplier relationship. The nature of future projects is
likely to demand a much closer relationship between client and supplier.

• Teamwork requirements. Teamwork will continue to be required, though it is
expected that new technologies will be implemented to support teamwork.

• Need for cooperation and coordination with other software and hardware
development teams both internally and externally. These characteristics will
become increasingly critical for the successful handling of projects. More
comprehensive standardization will facilitate more effective coordination and
cooperation.

• Need for interfaces with other software systems. The number of interfaces and
the intensity of their use can be expected to increase. More comprehensive
standardization of interfaces between software systems and between software and
hardware will facilitate more effective development of interfaces.

• Need for continuity in carrying out a project when team members change. No
significant change is expected.

• Need for ongoing maintenance of the software system over several years. No
significant change is expected.

1.3

The interfaces of a salary processing system are exhibited in Frame 1.2.

1. Suggest what are the main benefits of applying computerized interfaces instead of
transferring printouts.

2. Give two additional examples where input interfaces are applied.

3. Give two additional examples where output interfaces are applied.

4. Suggest additional situations where the use of input and output interfaces is not
applied and should be recommended.

Galin: Software Quality Assurance, 1/E – Solutions Manual

11
© Pearson Education Limited 2005

5. Would you advise all information transfers from one organization to another be
performed by computerized interface? Discuss the reasons behind your answer.

Solution

1. The main benefits are:

– Reducing the time period required to handle the input and update the system’s
database, and contributing to better up-to-dateness of the information provided
by the system.

– Drastically reducing the percentage of input errors, thus significantly improving
the accuracy and completeness of the system’s outputs.

– Drastically reducing the human resources required to handle the input, both for
keying in the input data and for correcting identified errors. This reduction will
significantly reduce the costs of handling the input.

2., 3. A software interface serves two software systems, since it serves as an output
interface for one and as an input interface for the other. Let us examine the
following two examples:

Example 1: A monthly procedure of money transfers from the bank account of an
employer to the employees’ bank accounts. The required interface is between the
software system for calculation of salaries and the bank’s system for transferring
money to customers’ accounts.

Example 2: A centralized price update procedure for a network of stores. This
procedure distributes the price updates and sale prices fixed by the network’s head
office, thus ensuring that all stores apply a uniform pricelist. Efficient operation of
this procedure requires an interface between the price and sales management system
of the head office and the point-of-sale system of the store.

 The following table summarizes the two examples presented above:

Procedure carried out by
the interface

Software system for
which it serves as an
output interface

Software system for
which it serves as an
input interface

Procedure for money
transfers from the
employer’s bank account to
employees’ bank accounts

Employer’s software system
for salary calculation

Bank’s system for
transferring money to
customers’ accounts.

Centralized price update
procedure for a network of
stores

Head office price and sales
management system

Store’s point-of-sale system

4. Another example: Interface between a personal computerized health log system and
a clinic’s computerized information system. The computerized personal health
system would probably be encapsulated as a “smart card”, whose database includes

Galin: Software Quality Assurance, 1/E – Solutions Manual

12
© Pearson Education Limited 2005

personal medical records. The clinic’s system allows the medical staff to decide on
the treatment needed by the patient, and to record diagnoses, medical treatments,
medications, etc. A standard interface between personal health log systems and the
clinic’s information system, stationed in clinics, hospitals, first aid centers, etc., is
required in order to benefit from the medical information it provides. The service
provided by this two-way interface is summarized in the following table:

Procedure carried out by
the interface

Software system for
which it serves as an
output interface

Software system for
which it serves as an
input interface

Transfer of patient’s
medical information to the
clinic system

Personal computerized
health log system

Clinic’s computerized
information system

Transfer of records of
current medical treatment to
update the patient’s health
log system

Clinic’s computerized
information system

Personal computerized
health log system

5. In some situations an automatic computerized transfer of data may be not desirable.

– Where an interface is hardly used, the expense is not economically justifiable.

– If the data sources are of low quality, the transfer of information will be
inaccurate and incomplete. In such cases the data and any necessary corrections
should be checked manually before any input into the database of the recipient
can be considered reliable.

1.4

The need to carry out work by a team demands additional investment in coordination of
the team members. Discuss whether these managerial efforts could be saved if the work
were performed as a “one-man job”.

Solution

Teamwork obviously requires a team leader, who needs to spend much time on
coordination among the team members, so that the work done by each of them can be
assembled into a unified software system. The costs of these activities are overheads to
software development costs. Obviously these extra costs are negligible by operating via
a “one-man show”. It should be emphasized, however, that a substantial part of a team
leader’s time is invested in checking the work of the team members. If the project is “a
one-man show” the task of checking still needs to be performed by another member of
the staff, possibly the head of department.

Galin: Software Quality Assurance, 1/E – Solutions Manual

13
© Pearson Education Limited 2005

1.5

It is clear that a software development project carried out by a software house for a
specific customer is carried out under content and timetable obligations, and is subject
to the customer–supplier relationship.

1. Discuss whether a customer–supplier relationship is expected when the software
developed is to be sold to the public as a software package.

2. Discuss whether a customer–supplier relationship is expected when software is
developed for “in-house” use, as in the case where a software development
department develops an inventory program for the company’s warehouses.

3. Some managers claim that the closer relationships are to a formal pattern, the greater
the prospects are for the project’s success. Discuss whether implementing customer-
supplier relationships in the situations mentioned in (1) and (2) are a benefit for the
company (referring to the internal customer and supplier) or an unnecessary burden
to the development team.

Solution

1. In the development of COTS (commercial off the shelf) software packages, the
customer is the marketing department that initiates and approves the development
project.

2. In the development of an internal project, the customer is the initiating department,
the finance department, or the logistics department.

3. A formal relationship between an internal supplier (systems development
department) and an internal customer can be expected to be beneficial for both
parties by:

– Providing more realistic project planning for scheduling and budgeting.

– Providing more comprehensive and realistic plans with respect to functionality
of the software products.

– Contributing to better scheduling and budgetary control of the project.

 It might be claimed that a formal atmosphere among the internal parties to the
project will reduce the creativity of the development team.

1.6

It has been claimed that environmental characteristics create the need for intensive and
continuous managerial efforts parallel to the professional efforts that have to be invested
in order to ensure the project’s quality or, in other words, to assure the project’s success.
Discuss the reasons behind this claim, including an analysis of the managerial effort
created by each of the SQA environmental characteristics.

Galin: Software Quality Assurance, 1/E – Solutions Manual

14
© Pearson Education Limited 2005

Solution

The characteristics of the managerial environment in software development and
maintenance are discussed in Review question 1.3, section (3).

The following characteristics require effort mainly on the part of management:

– Contract conditions defining timetable. The possibility of schedule failures can be
minimized only by continuous and intensive follow-up of a project’s progress at the
management level, especially in problematic cases where additional team members
are needed or in a situation that needs to be resolved by negotiation with the
customer. Rigorous follow-up procedures will ensure earlier detection by
management of deviations from schedule and their easier correction.

– Teamwork requirements. Teamwork requires managerial abilities in addition to
professional qualities on the part of the team leader. One of the managerial aspects
of teamwork is the need to recruit and instruct team members.

– Need for continuity in carrying out a project when team members change.
Management needs to recruit, sometimes at short notice, a replacement team
member having the professional knowledge and experience similar to those of a
departing team member.

– Need for ongoing maintenance of the software system over several years.
Whereas professionals engaged in a development process may resign from the
company without being obliged to complete their work, management personnel are
usually committed to these projects over relatively long periods. It is the duty of
management to ensure the constant availability of updated documentation on the
software system during this period, and to keep the professional team well
acquainted with the software system and capable of carrying out maintenance tasks
at short notice.

Proper managerial support, as discussed above, allows the professional teams to focus
on the functional requirements of the project.

Galin: Software Quality Assurance, 1/E – Solutions Manual

15
© Pearson Education Limited 2005

C H A P T E R 2

What is software quality?

Review questions

2.1

A software system comprises of four main components.

1. List the four components of a software system.

2. How does the quality of each component contribute to the quality of the developed
software?

3. How does the quality of each component contribute to the quality of the software
maintenance?

Solution

1. The four components of a software system are:
• Computer programs (the “code”)
• Procedures
• Documentation
• Data necessary for operating the software system.

2. The contributions of these components to the quality of developed software are:
• Computer programs (the “code”) – obviously, its quality is the basic component

for the quality of services and functionality of the software product.
• Procedures which define the methods of the program development process, i.e.

software development planning procedure, design review procedure, software
testing procedure and progress control procedure, contribute to the quality of the
software product.

• Development documentation (the requirements report, design reports, program
descriptions, software testing plan, etc.) allows efficient cooperation and
coordination amongst the development team members, easier replacement of any
team member who leaves the team and efficient reviews and inspections of the
design and programming products.

• Data, including parameters and code lists that adapt the software to the
specifications as well as test case files are necessary for testing the software
before completion of the development process is possible.

3. The contributions of these components to the quality of maintenance services are:

Galin: Software Quality Assurance, 1/E – Solutions Manual

16
© Pearson Education Limited 2005

• Computer programs (the “code”) – obviously, its quality is the basic component
for the quality of services and functionality of the software product.

• The procedures that accompany the software system deal with both, the regular
operation of the software system and its maintenance. The regular software
operational procedures define the method of program employment and the
responsibilities for performing input processing, output processing and control
activities. The maintenance procedures define the processes and responsibilities
for the correction of “bugs”. Another group of procedures deals with changes
and improvements of programs, their approval and performance. The quality of
these types of procedures contributes to the quality of services the software
system provides.

• Documentation supports both users and maintenance professionals. The user’s
documentation (the “user’s manual” etc.) provides a description of the available
applications and the appropriate method for their use. Their quality is a major
factor regarding the ability of users to successfully and efficiently apply the
software applications. The maintenance documentation (the “programmer’s
software manual”, etc.) provides the maintenance team with all the required
information about the code and the structure and tasks of each software module.
This information is used when trying to locate causes of software failures
(“bugs”) or to change or improve an existing software system.

• Data including parameters code lists that adapt the software to the needs of the
specific user are necessary for operating the software. Another type of essential
data is the standard test data, used to ascertain that no undesirable changes in the
code or software data have occurred and to determine what kind of software
malfunctioning can be expected.

2.2

1. Define software error, software fault and software failure. Explain the differences
between these undesirable software statuses.

2. Suggest a situation where a new type of software failure (“bug”) appears in a
software package that has been serving 300 clients for the first time six years since
the software package was first sold to the public.

Solution

1. A software error can be a grammatical or logical error in trying to comply with one
or more of the client’s requirements included in one or more of the code lines.

 A software fault is a software error which can cause improper functioning of the
software in general or of a specific application.

 A software failure is a failure that has been “activated” and causes improper
functioning of the software as a whole or of a specific, faulty application.

2. Let’s refer to a meteorological application based on remote measuring stations; in this
case the remote unit is required to initiate a protective closing operation that prevents

Galin: Software Quality Assurance, 1/E – Solutions Manual

17
© Pearson Education Limited 2005

damage being caused to cold-sensitive measuring equipment each time the
temperature drops below minus 20ºC. The programmer’s software error defines the
lower temperature limit as minus 30ºC. The meteorological information system
purchased by several Spanish organizations was installed in various sites in Spain,
none of which suffers from low temperatures. The fault only turned into a failure once
a Russian version of the system had been developed and installed in various northern
sites of Russia, causing severe damage to the measuring stations’ equipment.

2.3

1. List and briefly describe the various causes of software errors.

2. Classify the causes of error according to the groups responsible for the error: the
client’s staff, the systems analysts, the programmers, the testing staff – or is it a
shared responsibility belonging to more than one group?

Solution
1. Nine causes of software errors are listed:

a. Faulty definition of requirements
 The faulty definition of requirements, usually prepared by the client, is one of

the main causes of software errors. The most common errors of this type are:
erroneous definition of requirements, absence of vital requirements, incomplete
definition of requirements and inclusion of unnecessary requirements.

b. Client-developer communication failures
 Misunderstandings resulting from defective client-developer communication are

additional causes of errors. Typical situations: Misunderstanding of the client’s
instructions relating to the requirement document and to changes requested
either written or orally by the client. Additional misunderstandings are failures
to understand and to give the needed attention to the client’s response to design
problems raised by the development team.

c. Deliberate deviations from software requirements
 In several circumstances, developers may deliberately deviate from the

documented requirements, often causing software errors. Common situations of
this type: reuse of software modules taken from an earlier project, omission of part
of the required functions in an attempt to cope with time or budgetary pressures
and developer-initiated improvements, introduced without the client’s approval.

d. Logical design errors
 Software errors of this type are mainly failures of systems architects, software

engineers, systems analysts, etc., to formulate the software requirements into the
proper algorithms, boundary conditions, omission of required system states, etc.

e. Coding errors
 The reasons that cause programmers to make coding errors include

misunderstanding the design documentation, linguistic errors, errors in the
application of CASE, other development tools, and so forth.

f. Noncompliance with documentation and coding instructions
 One may ask why noncompliance with coding instructions should cause

	sm.pdf

