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Chapter 1 Problems 
 

1.1. Plot the NRTS roadmap data from Table 1.1 (feature size vs. time) on an expanded 

scale version of Fig. 1.2. Do all the points lie exactly on a straight line? If not what 

reasons can you suggest for any deviations you observe? 

 

Answer: 
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 Interestingly, the actual data seems to consist of two slopes, with a steeper slope for the 

first 2 years of the roadmap. Apparently the writers of the roadmap are more confident of 

the industry's ability to make progress in the short term as opposed to the long term. 

 

1.2. Assuming dopant atoms are uniformly distributed in a silicon crystal, how far apart 

are these atoms when the doping concentration is a). 1015 cm-3, b). 1018 cm-3, c). 5x1020 

cm-3. 

 

Answer: 

 

The average distance between the dopant atoms would just be one over the cube root of the 

dopant concentration: 

 

     x  NA
1 / 3  
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cm  0.0013m  1.3nm  



 

1.3. Consider a piece of pure silicon 100 µm long with a cross-sectional area of 1 µm2. How 

much current would flow through this “resistor” at room temperature in response to 

an applied voltage of 1 volt? 

 

Answer: 

 

 If the silicon is pure, then the carrier concentration will be simply ni. At room temperature, 

ni ≈ 1.45 x 1010 cm-3. Under an applied field, the current will be due to drift and hence,  
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 4.64x1012 amps or 4.64pA

 

 

1.4. Estimate the resistivity of pure silicon in   ohm cm at a) room temperature, b) 77K, 

and c) 1000 ˚C. You may neglect the temperature dependence of the carrier mobility in 

making this estimate. 

 

Answer: 

 

 The resistivity of pure silicon is given by Eqn. 1.1 as 

 

 
1

q nn  pp 


1

qni n  p 
 

 

 Thus the temperature dependence arises because of the change in ni with T. Using Eqn. 1.4 

in the text, we can calculate values for ni at each of the temperatires of interest. Thus 

 

n i  3.1x10
16

T
3/ 2

exp 
0.603eV

kT







 

 

which gives values of ≈ 1.45 x 1010 cm-3 at room T, 7.34 x 10-21 cm-3 at 77K and 5.8 x 1018 

cm-3 at 1000 ˚C. Taking room temperature values for the mobilities , µn = 1500 cm2 volt-1 

sec-1 and , µp = 500 cm2 volt-1 sec-1, we have, 

 

  2.15x105cm at room T

   4.26x10
35
cm at 77K

   5.39x10
4
cm at 1000 ÞC

 

 

 Note that the actual resistivity at 77K would be much lower than this value because trace 

amounts of donors or acceptors in the silicon would produce carrier concentrations much 

higher than the ni value calculated above. 



 
1.5. a). Show that the minimum conductivity of a semiconductor sample occurs when 

n  ni

p

n

.  

b). What is the expression for the minimum conductivity? 

c). Is this value greatly different than the value calculated in problem 1.2 for the 

intrinsic conductivity? 

 

Answer: 

 

a).  

 
1


 q nn  pp  

 To find the minimum we set the derivative equal to zero. 
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b). Using the value for n derived above, we have: 
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c).    The intrinsic conductivity is given by 

 

i  qni n  p  
 

Taking values of ni = 1.45 x 1010 cm-3, µn = 1500 cm2 volt-1 sec-1 and , µp = 500 cm2 volt-1 

sec-1, we have: 

 

i  4.64x10
6
cm   and   min  4.02x10

6
cm  

 

 Thus there are not large differences between the two. 

 



1.6. When a Au atom sits on a lattice site in a silicon crystal, it can act as either a donor or 

an acceptor. ED and EA levels both exist for the Au and both are close to the middle of 

the silicon bandgap. If a small concentration of Au is placed in an N type silicon 

crystal, will the Au behave as a donor or an acceptor? Explain. 

 

Answer: 

 

In N type material, the Fermi level will be in the upper half of the bandgap as shown in the 

band diagram below. Allowed energy levels below EF will in general be occupied by 

electrons. Thus the ED and EA levels will have electrons filling them. This means the donor 

level will not have donated its electron whereas the acceptor level will have accepted an 

electron. Thus the Au atoms will act as acceptors in N type material.  

 

 
 

1.7. Show that EF is approximately in the middle of the bandgap for intrinsic silicon.  

 

Answer: 

 

 Starting with Eqn. 1.9 and 1.10 in the text, we have 

 

n NC exp 
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 In intrinsic material, n = p = nI, so we have 
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