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PREFACE

This manual contains solutions to all end-of-chapter problems and all computer exercises
contained in the Fourth Edition of Signals and Systems: Continuous and Discrete. The
manual is divided into two separate parts. Part I contains solutions to the end-of-chapter
problems and Part II contains solutions to the computer exercises.

All computer exercises are developed using MATLAB as are all end-of-chapter problems
specifying the use of MATLAB. In several parts of this manual, especially in Chapters 8
and 9, MathCAD is used for a little variety in a few problems.

Thanks go to Carol Baker for her expert typing skills and for her help in assembling the
final product.

While we have done our best to insure that the problem solutions contained herein are
correct, it is inevitable that manuals such as this are never perfect. We apologize in
advance for any frustration caused by such errors.

REZ.
W.H.T.
DRF.
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PART I

SOLUTIONS TO
END-OF-CHAPTER PROBLEMS



CHAPTER 1
Problem 1-1

(a) Write the acceleration as

af, t <t

a(t) =
0,1>1,

Thus the velocity and position are, respectively, given by

t 06t2/2, t < Z,
W) = fa(A)dA =
0 ary/2, 1> 1
and
t ot3/6, <,
x(t) = f v(A)dA = .
0 ato/6 + atg(t - 1)/2, t > 1,

For £, =72 s and o = 5/9 m/s?, we have x(f) = (5/54)F,t < 72's. Att= t, =72 s (burnout), we have
x(ty) = 35.56 km.
(b) See the figure below for the integrator.

\ / L\ /
Integrafor V\oltageﬁﬁiv_. /" Integtator




t

1
v = oo [ v,(A)dA

Assume that R, << R. The input impedance to the op-amp integrator is therefore much larger than
the output impedance of the previous stage, and

R,

vi(0) = vo(®)

1Py
From Example 1-2,
1| Be? t?
PRI N

RC\ 2 " 2RC

Therefore,

(__B )A?d/\

t
1 2
V() = —— -
0 Rchl+R2k 2RC
0

Integrating and setting ¢ = ¢, we obtain

2
V2(to) = R2 ( Bt() ]( ‘o ] =10V

R, +R,\ 2RC)\ 3RC

The second factor on the right is 10 V because of the maximum output limitation on the first
integrator. Thus, we require that

R2 tO -1
R, +R,\ 3RC

For example, from Example 1-2 we have RC = 0.36 s. With #,=72s and R, = 10 k ohms, we get
R, =152 ohms.




Problem 1-2

(a)Letn=0,1,2,3,...,N. Then

w(I) = v0) + Ta(T) (a)
v2T) = w(T) +Ta(2T) (b)
VINT) = v[(N - DT] + Ta(NT) (c)

Substitute (a) into (b) and so on until (c is reached. This gives

N
VINT) = v(0) + Ty a(nT)
n=1

(byLetn=0,1,2,3,..,N. Then

w(I) = v(0) + (172)[a(0) + a(D)] (a)
v2T) = w(T) + (T1)[a(T) + a2D)] (b)
VINT) = v[(N - DT] + (T12){al(N - DT] + a(NT)} (c)

Substitute (a) into (b) and so on until (¢ ) is reached. The result is as given in the problem statement.
Problem 1-3

(a) A maximum departure of the weight from equilibrium of 1 cm requires a spring constant of

Ma,,, _ (0.002)(20)
x 0.01

max

K - = 4 kg/s?

(b) For a minimum increment of 0.5 mm = 0.0005 m, we have

KAx_
Ag o KBt _ 40.0005) _

i 1 m/s?
M 0.002

(c ) The velocity is given by

' t

201, 0 < 50
v(®) = fa(l)d)» - f 20dA = {1006 t : go 2
0

0



Problem 1-4

K is the same as in Example 1-1 because M, x,,,, and a,,,, are the same. Also, Aa,;, is the same. The
velocity profile is

t

fzodx =201, 0 <t< 10
0

b = 200, 1? <t<?20

200 + f 20dA = 200 +20(z - 20), 20 < ¢ < 30

20
| 400, ¢ > 30

Problem 1-5

From (1-15) and using the x() given in the problem, we have

s(1)

1

cos(w ) + afcos[w,(t - 27)]

[1+ chos(Z(oot)]cos((oot) +af sin(2w,T) sin(w)¥)
A(T)cos[w,yt - O(1)]

= A(t)cos B(t)cos(w,t) + A(T)sin O(t) sin(w,f)

Set coefficients of like sin/cos terms equal on each side of the identity to obtain

A(T)cos (1)
A(T)sin (1)

1 + afcos(Rw,T)
«f sin(2w,T)

Square and add to obtain

A1) = ‘/1 + 2P cos(2w,7) + (af)?

Divide the second equation by the first to obtain

afsin(2w,T)

_Sin& = tane(T) =
cos 0(7) 1 + afcos(2w,T)



Problem 1-6

Sketches of the analog and sampled signals for both cases are shown below[(a) top and (b) bottom]:

15 I T T T | T I T T T
—— sampled signal
-------- cont. time signal
1k ...
¥

| Il
2 3 4 5 6 7 8 9 10
t
1.5 T T T T ' ! I l l I
——  sampled signal
) R cont. time signall
“;: .
0.5 -0y T T
0 , I I I I
0 . ] 5 3 4 5 6 7 8 9 10
t



Problem 1-7

(a) The impulse-sampled signal is

Ximp. samp(®) = €OS27) Y 8( - 0.1n)

o

)" cos(2nt)d(r - 0.1n)

n = -oco

oo

Y cos(0.2mn)d(t - 0.1n)

n = -oo

1l

where property (1-59) for the unit impulse has been used to get the last result.
(b) The unit-pulse train sampled signal is

Xunit pulse samp(t) = COS(ZTI:t) E 6[f - Oln]

oo

Y cos(2mt)d[z - 0.1n]

n = -oco

oo

= Y cos(0.27mn) [z - 0.1n]

n = —oco

where the fact that the unit pulse is 1 for its argument 0 and O otherwise has been used.
Problem 1-8

(a) The signal can be developed in terms of equations as follows:

{1, (0.1 < 172
H©.17) = {O, otherwise

_ 1, |f| <102 =5
0, otherwise

This is a rectangular pulse of amplitude 1 between -5 and 5 and O otherwise. A sketch will be given

at the end of the problem solution.

(b) Following a procedure similar to that of (a) one finds that this is a rectangular pulse of amplitude
1 between -0.05 and 0.05 and O otherwise. A sketch will be given at the end of the problem solution.
(c ) This is a rectangular pulse of amplitude 1 between 0 and 1 and O otherwise. A sketch will be

given at the end of the problem solution.

(d) This is a rectangular pulse of amplitude 1 between 0.5 and 4.5 and 0 otherwise. A sketch will

be given at the end of the problem solution.



(e) The first term of this signal is a rectangular pulse of amplitude 1 between 0 and 2 and 0
otherwise. The second term is a rectangular pulse of amplitude 1 between 0.5 and 1.5 and O
otherwise. Where both pulses are nonzero, the total amplitude is 2; where only one pulse is nonzero
the amplitude is 1. A sketch is provided below.

The MATLAB program below uses the special function given in Section 1-6 (page 32) of the text
to provide the plots.

% Sketches for Problem 1-8

%

t=-6:0.0015:6;

xa = pls_fn(0.1%*t);

xb = pls_fn(10*t);

xc = pls_fn(t - 0.5);

xd = pls_fn((t - 2)/5);

xe = pls_fn((t - 1)/2) + pls_fn(t - 1);

subplot(3,2,1),plot(t, xa,'-w"), axis([-6 6 0 1.5]),x]abel('t"),ylabel('xa(t)")
subplot(3,2,2),plot(t, xb,-w"), axis([-.1 .1 0 1.5]),xlabel('t"),ylabel('xb(t)")
subplot(3,2,3),plot(t, xc,'-w"), axis([-1 2 0 1.5]),xlabel('t"),ylabel('xc(t)")
subplot(3,2,4),plot(t, xd,-w"), axis([-1 5 0 1.5]),xlabel('t"),ylabel('xd(t)")
subplot(3,2,5),plot(t, xe,'-w"), axis([-1 3 0 2.5]),xlabel('t"),ylabel('xe(t)")

1.5 1.5
= 1 1 = 1
g =
0.5 1 =05
o) 0
-5 0 5 -0.1 -0.05 0 0.05 0.1
t t
1.5 1.5
= 1 — 1
T £S1
< 0.5} >o05
0 0
-1 0 1 2 0 2 4
t t
2 L
21
0
-1 0 1 2 3



Problem 1-9

(a) 27tfy = 507, so T = 1/f, = 1/25 = 0.04 s. (b) 27f, = 607, so T, = 1/f, = 1/30 = 0.0333 s.

(¢)27f, =707, so T, = 1/f, = 1/35 = 0.0286 s. (d) We have 507 = 2nmf, and 607 = 27tnf,, where m
and n are integers and f; is the largest constant that satisfies these equations. The largest f; is 5 Hz
withm =5 and n = 6. (¢) We have 507 = 2nmf, and 70m = 27tnf,, where m and n are integers and
Jo1s the largest constant that satisfies these equations. The largest f,is 5 Hz withm =5 andn="7.

Problem 1-10

(a) |Al = 4.2426; angle(A) = 0.7854 radians; B = 5.0 + 8.6603, so Re(B) = 5 and Im(B) = 8.6603.
(b) A+B =8.0+,11.6603. (c)A - B=-2.0-;5.6603. (d) A*B =-10.9808 + j40.9808. (¢) A/B =
0.4098 - j0O.1098.

Problem 1-11

(@) 27tfy = 10w, so Ty = 1/f, = 1/5=0.2 5. (b) 2nfy = 177, so T, = 1/f, = 1/8.5=0.1176 s.

(¢)2nfy =197, s0 Ty = 1/f, = 1/9.5 = 0.1053 5. (d) We have 10w = 2nmf; and 177 = 27nf,, where
m and n are integers and f; is the largest constant that satisfies these equations. The largest f; is 0.5
Hz with m = 10 and n = 17. (¢) We have 107 = 2numf; and 197 = 27tnf,, where m and n are integers
and f, is the largest constant that satisfies these equations. The largest f; is 0.5 Hz with m = 10 and
n=19.(f) We have 177 = 2numf, and 197 = 2nnf;, where m and n are integers and f; is the largest
constant that satisfies these equations. The largest f, is 0.5 Hz with m = 17 and n = 19.

Problem 1-12

(a) Written as the real part of rotating phasors:

xa(t) - Re[zej(IO‘n:t + 11:/6)]; xb(t) — Re[sej(”m - Tt/4)]
X (t) - Re[3ej(10m -n/3 - Tt/Z)] _ Re[3ej(10m - 51:/6)]
¢
xd(t) - Re[2ef“°’” +Tl6) | §e/(Tmt - n/4)]; xe(t) - Re[zej(IOnt +7/6) 3 /(10ms - 51r/6)]
xf(t) — Re[sej(l7nt—n/4) + 3ej(10nt—511:/6)]

(b) In terms of counter rotating phasors, the signals are:

xa(t) - [ej(IOm+n/6) + e—j(lOnt+n/6)]; xb(t) — [2.5ej(l7m—n/4) + 2.Sej(17m~n/4)]
xc(t) - [l.sej(IOnt—Sn/6) +1.5¢ —j(lOm—Sn/6)]
x,(t) = [e/A0m +7/6) o ~(10RL + /) | 9 5, jTHE=T4) | o 5, (1T -]

xe(t) — [ej(IO‘nt+‘r|:/6) + e—j(lO‘n:t+n/6) + l.sej(IOnt—S‘n/6) +1.5¢ —j(IOm—Sn/G)]

xf(t)

[2 Sej(l7m‘ - /4) +2.5¢ -j(17mt ~ m/4) +1 5ej(10m - 5m/6) +1.5¢ -j(10met - 511:/6)]



(¢ ) Single-sided spectra are plotted below. Double-sided amplitude spectra are obtained by halving
the lines and taking mirror image; phase spectra are obtained by taking antisymmetric mirror image.

4 1 . 2
— = °
[N pad
- 0
%2 T =
Qo
2t
o
(0] 5 10 (6] 5 10
4 . 27
= i
o pag
- 0
52 < )
_2t
(0]
o 5 10 (o] 5 10
4 .2t
= K
[=% —
= 0
§2 <
[=%
—_2t
(0]
(o) 5 10 (o] 5 10
f, Hz f, Hz
4 2t
— g ®
o —
~ 0
52' T = &)
o
-2
0
0 5 10 0 5 10
4t
_ b= °
[N pd
2 T <
o
-2
o | [0}
0 5 10 (o} 5 10
4t .2t
5 B
[N fad
- 0
=P = b
-2
0
(o] 5 10 0 5 10
f, Hz f, Hz

10



Problem 1-13

(a) Written as the real part of rotating phasors:

x,(0)
x ()

Re[ej(SOTEt - Tl:/2)]; xb(t) _ Re[€j60m]; xc(t) _ Re[ej70m]
Re[ej(SO‘m - 1/2) + €j60m]; Xe(t) — Re[ej(SOm - m/2) + ej70‘n:t]

(b) In terms of counter rotating phasors, the signals are:

x,(1) = Re[0.5¢/0M ™2 +0.5¢ SOOI x (1) = Re[0.5¢/5™ +0.5¢ J50™]
x () = Re[0.5¢/79™ + 0.5¢ /70
xd(t) - Re[O.Sef(so’” - 1/2) +0.5¢ -j(507t - m/2) + 0~5€j60m + 0.56 —j60m]
X (t) _ RC[0.5€j(50m -n2) 4 0.5¢ ~j(50mt - m/2) O‘Seﬂom + +0.5¢ ~j70m]
e

(¢ ) The single-sided amplitude and phase spectra are shown below. See Prob. 1-12¢ for comments
on obtaining double-sided spectra from single-sided spectra.

1 ©
.17
A s
£0.5 S0
© =
o
-1t
0 ' &
0 10 20 30 40 0 10 20 30 40
1 q
oA
= ®
£0.5 S0 &
@ =
o
-1t
0
0 10 20 30 40 0 10 20 30 40
1 @
.17
= ®
£0.5 S0 o
© e
[oR
—1
O "
0 10 20 30 40 0 10 20 30 40
f, Hz f, Hz

11



5 E
£05 =0 =
© =
Q
-1}
0 : : —
0 10 20 30 40 0 10 20 30 40
1 Q O
.1y
3 g
£05 =0 S
« <
Q
-1}
O 2 " " L " n
0 10 20 30 40 0 10 20 30 40
Problem 1-14
(a) A sketch is given below:
From the figure, it is evident that x(£) = u(f) + u(t-3)- u(t-5)- u(t- 6).
3
2.5 .
2 -
=1.5F —
1l i
0.5 -
—1 [o] ‘; é Ctli 4‘1- é 6 7

(b) The derivative of x() is dx(£)/dt=0(t) + & (t-3)- 6 (t-5)- & (¢- 6)

12




Problem 1-15

Note that
. 1 g I i
Sln((;.)ot + e) = —761‘33/“’{)’ -—e jee Jwyt
2 2j
_ % /@ = T2) %! | l e 1O -2, T

Thus we conclude the following:
(1) The amplitude spectrum does not change;
(2) The phase spectrum has a -7t/2 radian phase shift with respect to the cosine-convention
phase spectrum. This destroys the odd symmetry present in the phase spectrum using the real
part convention.

Problem 1-16
A MATLAB script is provided below to show all the plots:

%0 Plots for Problem 1-16

%

t =-5:.001:5;

xa = stp_fn((t-2)/4);

xb = rmp_fn((t+1)/3);

xc = rmp_fn(-2*t+3);

xd = pls_fn(-3*t+1);

xe = pls_fn((t-3)/2);

subplot(3,2,1),plot(t,xa,-w'),xlabel('t'),ylabel(‘u((t-2)/4)"),...
axis([0501.5))

subplot(3,2,2),plot(t,xb,'-w"),xlabel('t"),ylabel('r((t+1)/3)")

subplot(3,2,3),plot(t,xc,'-w"),xlabel('t),ylabel('r(-2t+3)"),...
axis([-520 10}

subplot(3,2,4),plot(t,xd,'-w"),xlabel('t"),ylabel('PI(-3t+1)",...
axis([0 10 1.5])

subplot(3,2,5),plot(t,xe,-w"),xlabel('t"),ylabel('PI((t-3)/2)",...
axis([0501.5))

13



1.5 2

0.5

u((t-2)/4)

0 1 2 3 4 -5 0
t t
10 1.5
() :f 1
§ s 5
+ =0.5
0 - 0
-4 -2 0 2 0 0.5
t t
1.5
S
?
o5
o
0
0 1 2 3 4
t
Problem 1-17
From (1-37)
() - 172, r>0
-3 0, otherwise

Therefore, from (1-35a) with i = -3,

u_ (1) = f%kzu(k)d)» = {

In general,

“ () - {t”'ll(n “DL =0

0, otherwise

14

t3(2x3), t > 0
0, otherwise




Problem 1-18

A MATLARB script is given below for making the plots. Note that use was made of functions to plot
the repetitive signals in (c ) and (d).

% Plots for Problem 1-18 % Function to compute xa for problem 1-18

% %

clf function x = xa_fn(t)

t =-1:.005:20; x =rmp_fn(t). *stp_fn(2 - t);

xa = xa_fn(t); % Function to compute xb for problem 1-18

xb = xb_fn(t); %

XC = Xa; function x = xb_fn(t)

xd = xb; x = rmp_fn(t)-rmp_fn(t-1)-rmp_fn(t-2)+rmp_fn(t-3);
forn=1:10

xc = xc + xa_fn(t - 2*n);
xd = xd + xb_fn(t - 3*n);
end
subplot(2,2,1),plot(t,xa),xlabel('t"),ylabel('xa(t)"),...
axis([-12002))
subplot(2,2,2),plot(t,xb),xlabel('t"),ylabel("xb(t)"),...
axis([-1 20 0 2])
subplot(2,2,3),plot(t,xc),xlabel('t"),ylabel('xc(t)"),...
axis([-12002])
subplot(2,2,4),plot(t,xd),xlabel('t"),ylabel('’xd(t)"),...
axis([-1 200 2))

2 2
1.5} 1 1.5}
0.5} ] o5}
o o
o 5 10 15 20 o 5 10 15 20
t t
2 2
1.5} 4 1.5}
E)’ 1 § 1
0.5} 1 0.5
(o] (o]
(o] 5 10 15 20 (o} 5 10 15 20
t t

15



Problem 1-19

(a) Note that for n = 0 the summand can be written as II(#- 1/2). The MATLAB script below
provides the plots for parts (a) and (c ). The signal in part (a) is not periodic because it starts at ¢ =
0. The signal of part (c ) is periodic because it starts at ¢ = -o.

% Plots for Problem 1-19

%

clg

t =-20:.005:20;

ya = pls_fn(t - 0.5);

yb = pls_fn(t - 0.5);

forn=1:10
ya = ya + pls_fn(t-.5-2%n);
yb = yb + pls_fn(t-.5-2*n)+ pls_fn(t-.5+2%n);

end

subplot(2,1,1),plot(t, ya, -w'),xlabel('t"),ylabel('ya(t)"),...
axis([-20 20 0 2])

subplot(2,1,2),plot(t, yb, '-w'),xlabel('t"),ylabel('ya(t)"),...
axis([-20 20 0 2])

ya(t)

yo(t)
|
|
1
]
|
il
|
|
|

16



Problem 1-20

Representations for the signals are given below (others may be possible):

o0

x(1) = Z; r(t = 3n)u(2 - t - 3n)
x,(1) = io u(t - 4n)u(2 - t - 4n)
x() = i;) 28(t - 2.5n)

x () - .,00 -g-u(t “3m)r(3 - 1 - 3n)

Problem 1-21

One possible representation for each (these follow from the results of Prob. 1-17) is:
x, (1) = 2u@ - Du@ - 1) +u(t-2)u(4 -1 + 2u (5 -Du(t-4)
x,() = %u_4(t) u@ -1 + %u_3(5 - Hu(t - 2)

Problem 1-22

One possible representation for each is

x, () = u@® +rt-1)-2r(t-2) +r(t -3) -u(t - 4)
X0 = u(@®) - 2u(t - 1) +2u(t - 2) - u(t - 3)

X0 =r)-rt-1)-r@t-3)+r(t-4)

x,(0) = r(@® -2u(t-1) -r(t-2)

Problem 1-23

(a) First note that the integral of the function is 1, no matter what the value for €:

o0

:"" _ _l_—tle — _,te|® _
1 _fﬁs(t)dt [ee dt = -e €|, =1

Second, note that the pulse becomes infinitely narrow and infinitely high as € ~ .

17



(b) Use the integral

to show that the area under the given function is 1. Then note that as o - 0, the function becomes
infinitely narrow and infinitely high. Thus the properties of a delta function are satisfied.

Problem 1-24
A MATLAB script using symbolic operations is given below for plotting the desired functions:

% Plots for Problem 1-24

%
format short
sigma = 0.05;

y = 'exp(-t"2/(2*0.052))/sqrt(2*pi*0.0512)";
y_prime = diff(y)
y_dbl_prime = diff(y_prime)
subplot(2,1,1),ezplot(y_prime),...
title(['Plot of the derivative of a Gaussian pulse; sigma = ,num2str(sigma)])
subplot(2,1,2),ezplot(y_dbl_prime),...
title(['Plot of the 2nd derivative of a Gaussian pulse; sigma = ,num2str(sigma)])

Plot of the derivative of a Gaussian pulse; sigma = 0.05

100

Plot of the 2nd derivative of a Gaussian pulse; sigma = 0.05

1000

—1000

—2000

—-3000

18



Problem 1-25

Using the stated rules, the first derivative is

dh(t) _ o du(t)

o " oe “u(t) = 1x6(f) - ae “u(f)

The second derivative is

2
dh (t) — dé(t) + aZe —alu(t) - e Awdu(t) — da(t) + aZe —atu(t) _ aé(t)
dr? dt dt dt

Problem 1-26

(a) The integral is zero because the delta function is outside the range of integration.
(b) The integral evaluates as follows:

5
fcos(27tt)6(t -2)dt = cos(4m) =1
0

(c ) This integral can be evaluated as

5
fcos(2m)6(t -0.5)dt = cos(m) = -1
0

(d) The value of this integral is O:

f(t—2)26(t—2)dt =2-2?%=0

(e) This integral evaluates to

ftzé(t—Z)dt =22 =4

19



Problem 1-27

(a) Using (1-66), this integral becomes

oo

e 2
fe3’6(t—2)dt = (—1)21_«33’ = 9ef
—o0 dtz t=2
(b) Again applying (1-66), we have
10 d3
f cos(2mn) 6(t - 0.5)dt = (-1’ “—cos(2mr) = -@2m)’sin@nt)|, ,5 = 0
0 dt3 t=05 '

(c) Using (1-66) we get
[ e 3 + cos2mt)| 6 dr - (—1)%[e e cos@mn),_, = [-3e ¥ - 2msin@2ms), , - 3

-o0

Problem 1-28

Match coefficients of like derivatives of 8(7) on either side of the given equations:
(a) In this case, we obtain

10=3+CyorC,=7C =52+C,=60rC, -4

(b) The resulting equations are

3+Cl=00rC1=-3;C2=O;C3=0;C =0, C. =0

Problem 1-29

(a) €Y This plots to a triangle 2 units high, centered on ¢ = 0, and going from ¢ = -2 to 2.
(2) This is a rectangle of unit height starting at # = 0 and ending at ¢ = 10.
3) This is a step of height 2 starting at # = 0 with an impulse of unit area at ¢ = 2
superimposed.
(CY) This an impulse of area 2 at ¢t = 2.
(b) One possible representation is

x(@®) =r(t+4) -r(t+2) +u@®) -3r(t -4) +3r(t - 5)
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Problem 1-30

A possible representation is

x(H) = 2u(®) —u(t -2) +u(t -4) -r(t - 6) +r(t - 8)

Problem 1-31

(a) Using the sifting property of the delta function, we get

ft36(t—3)dt =1, _, =27

(b) Using (1-66), we get

f [3t + cos(2n)]6(¢ - 5)dt = (—1)%[3: +cos(2m)], s = -[3 - 2msin@2nn)],

(c ) From (1-66) we have
m(l +19)8(r - 1.5)dr = (—1)i(1 +12)] = -(21)] = -3
f . dt t=15 t=15
Problem 1-32
(a) A possible representation is

x,(8) = A[2u(t) - 2u(t - T) + u(t - 2T) - u(t - 37)]

(b) One representation of this signal is
x, (&) = r(@®) -2r(t - 1) +2r(t - 3) - r(z - 4)]

(¢ ) One way of writing this signal is
x, () = r@t-1)-2r(t -2) +r(t - 3) +0.5[u(t - 1.5) - u(t - 2.5)]
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Problem 1-33

(a) This is a decaying exponential starting at 7 = 0. Its energy is

® e—zot"’ 1
E=fe'20’dt= = —]
) -20 |, 20

(b) This is a rectangular pulse starting at # = 0 and ending at # = 15. Its energy is

P 15
E = _f[u(t) - u(t - 15)%dr = {1%& =15]J

(¢ ) This is a cosine burst starting at ¢ =0 and ending at r = 2. It contains 10 cycles. Its energy is
calculated as

o0 2 2
E = f cos’(10me) [u(®) u(2 - H)Pdt = fcosz(IO‘rtt)dt = { B +—;:cos(10m)

0

dt =11]

(d) This is a triangle going from #= 0 and ending at 7 =2 of unit height. For 0 < ¢ < lits equation is
just z. The integral of # from 0 to 1 can be doubled to yield the total energy with the result
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Problem 1-34
(a) Note that x,(¢) is symmetrical about ¢ = 2. Therefore

2 2 3
E, = Zflzdt+ft2dt = 2[r|§+%|i}= ?J
0 1

(b) Note that x,%(¢) = 1 for ¢ between 0 and 3, and is O otherwise. Therefore

3
E2=f12dt=31
0

(c ) Note that x,(#) is symmetrical about ¢ = 2 which allows the energy to be calculated as

' 8
“tj] = 3
) 3

1 2 3
E. = 2|(t2dr + [12af] = 2| =
o e [

(d) Note that x,*(#) is symmetrical about 7 = 1 which allows the energy of x,(¢) to be calculated as

1 1
) t? 2
E4:2ftdt=2— =21

) 3, 3
Problem 1-35
Only (a) and (b) are energy signals. For (a)

2 3 P

Ea = ftzdt = t_ = § J
) 3, 3

For (b), we note that it is symmetric about # = 1.5. It is a ramp from 0 to 1 and constant from 1 to
1.5, which yields

1 1.5 31
Ey, = 2f[rdi+ [Pt = 2| +e}° = 213+ 15-1) = 53 7
0 1 3o

The other functions are semi-infinite in extent, so their squares will integrate to infinity.
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Problem 1-36

The average powers of (a) - (c ) are ¥2 W; for (d) and (e), the powers are 1 W. These are obtained
by squaring the amplitudes of the separate frequency components, dividing by 2 to get power, and
adding. This is permissible since the sinusoids have frequencies that are integer multiples of a
fundamental frequency.

Problem 1-37

(@P=22=2W;(b)P=52=12.5W,;(c) P=32=45W;(d) P=22+5/2=14 5 W; (e)
P=22+3"2=6.5W; (hP=52+3%2=17W.

Problem 1-38

(a) Power:
im 1] y ! lim 16(T - 2)
1m 2 2 2 -
P = —|[1°dt + [6°dt + [4°dt| = 0+ 0 —— = =8 W
47 e gp| [Vl [67dir | U T o7
0 1 2
(b) Energy:
1 2
E, - flzdt+f62dt =377
0 1
(c ) Energy:
* -10z
Ec-felo’dt— ¢ =lJ
) 10 |, 10
(d) Power:
lim 1 -5t 2 lim 1 ~10¢ -5¢
P, = — [le ™'+ 1[dt = — +2e ™ +1|dt
¢ T-e=3rT ) T-eor ]
0 0
T
. -10 -5
_  Mim e 27 01y
T->27] 10 5 2

(e) Power: similarly to (d), it can be shown that P, =12 W. (f) Neither: it can be shown that both the
power and energy are infinite. (g) Power: P, =% W. (h) Neither: E, =  and P, = 0.
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Problem 1-39

(a) Yes. The frequencies of its separate components are commensurable: f, = 3x1 Hz and f, = 5x1
Hz. Therefore, the fundamental frequency is 1 Hz and the period is 1 s.

(b) Its amplitude spectrum consists of a line of height 2 at 3 Hz and a line of height 4 at 5 Hz. Its
phase spectrum consists of a line of height -71/3 at 3 Hz and a line of height -7/2 at 5 Hz.

(c ) Written as the sum of counter-rotating phasors, the signal is

x(t) = e —jﬂ/3ejﬁﬂt + ejn/3e —jont e —jn/zejIOnt + 2ej1rlze -j10mt

(d) See (b): for the amplitude spectrum, halve the lines and take the mirror image about f = 0; for the
phase spectrum, take the antisymmetric image about f=0.

(e) It is clear that it is a power signal because it is the sum of sinusoids whose frequencies are
harmonics of a fundamental frequency. The total power is 2%/2 + 4%/2 = 10 W.

Problem 1-40

(a) through (c ) are energy signals; (d) and (e) are power signals. By applying the definitions of
energy and power, (1-75) and (1-76), respectively, the energies are E, = 1J, E, = 5/3 J, E.=1/32],
P,=2W,and P, =2/9 W. The MATLARB script given below plots these signals:

%o Plots for Problem 1-40

%

t=-1:.005:20;

xa = stp_fn(t) - stp_fn(t-1);

xb = rmp_fn(t) - rmp_fn(t-1) - rmp_fn(t-2) + rmp_fn(t-3);

Xc = t.*exp(-2*t). *stp_fn(t);

xd = rmp_fn(t) - rmp_fn(t-2);

xe = stp_fn(t) - (1/3)*stp_fn(t-10);

subplot(3,2,1),plot(t,xa,-w'),xlabel('t"),ylabel('xa(t)"),...
axis([-1 50 1.5])

subplot(3,2,2),plot(t,xb),xlabel('t"),ylabel('xb(t)"),...
axis([-1 50 1.5))

subplot(3,2,3),plot(t,xc),xlabel('t"),ylabel ('xc(t)"),...
axis([-150.2)]

subplot(3,2,4),plot(t,xd),xlabel('t"),ylabel('xd(t)"),...
axis([-1 20 0 2.5])

subplot(3,2,5),plot(t,xe),xlabel('t"),ylabel('xe(t)"),...
axis([-120 0 1.5])
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Problem 1-41

(@) Only (1) is periodic; f; = 2.5 Hz = 0.5m and f, = 3 Hz = 0.5n where the integers m and n are 5 and
6, respectively. The fundamental frequency is 0.5 Hz and the period is 2 s.

(b) Signals (1) and (2) are power signals. Their powers are both 1 W.

(c) Only signal (3) is an energy signal; its energy is 1/20 J. Signal (4) is neither energy nor power.
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Problem 1-42
By definition, the average power is

lim 1

P = 2dt
oo 37 f|x(t)| d

For a periodic signal x(f) = x(¢ + T,), and the integral can be broken into segments one period long
plus the end pieces that are less than a period. Because of periodicity, these integrals are equal with
the exception of the end pieces. Thus, we can write the integral as

T o+ Ty
flx(t)|2dt = 2N f |X(®)|*dt +€_y + €y

)

where the latter two terms represent the integrals over the end intervals. Also, 2T = 2NT, +At, +At,.
The latter two time segments are the lengths of the end intervals which are less than a period. Thus,
the power expression becomes

1 +tTy
2
lim 1 lim 1 W[ xOPdreyrey L
P = x(0)|2dt = —|—25 = — [ |x(@®)|%dt
T-wor fl ol T-w2T|  ONT,+Af +At, T, [ x|
Problem 1-43

Use the tngonometrlc identity for sin® (x) = ¥ - %4 cos(2x) to write the signal as

x(®

- cos(14nt 1/3) + cos(3nt - ©/3) = 5 + %cos(14m‘ /3 + ) + cos(3nt - ©/3)

NI'—‘NI'-a

cos(14mt + 21/3) + cos(37t - m/3)

NI'—‘NI

(a) Its single-sided amplitude spectrum consists of a line of height % at f = 0, a line of height 1 at f
= 1.5 Hz, and a line of height % at f =7 Hz. Its single-sided phase spectrum consists of no line at f
= 0, a line of height -n/3 at f = 1.5 Hz, and a line of height 2nt/3 at f = 7 Hz.

(b) To get the double-sided amplitude spectrum, halve the lines in the single-sided spectrum and take
its mirror image about f'= 0. To get the double-sided phase spectrum, take the antisymmetric image
of the single-sided spectrum about f = 0.
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Problem 1-44

The signal has frequency components at 0, 1.5, and 7 Hz of amplitudes !, 1, and ¥, respectively.
The power at dc is (/4)* = 0.25 W which is placed at the single frequency f = 0 Hz. The power at the
other frequencies is split between the positive and corresponding negative frequency. Thus, at f =
1.5 Hz we have (1)%4 = 0.25 W (one 2 in the denominator is from computing power in a sinusoid and
the other 2 is from splitting it between positive and negative frequencies) and similarly at f = -1.5
Hz. Atf=7 Hz, we have a power of (1/2)/4 = 0.0625 W with a similar power at f=-7 Hz. All
these are represented by impulses of the appropriate weights, so the plot is as shown below:

S()
0.25

+0.0625

8 6 -4 2 0 2 4 6 8 fHz

Problem 1-4

(a) Following the solution to Problem 1-44, we have spectral components at f = 10, 15, and 20 Hz
of amplitudes 16, 6, and 4, respectively. The power in these components gets split between positive
and negative frequencies. Thus, and f = 10 Hz we have a power of (16)%/4 = 64 W with a
corresponding power at f = -10 Hz. At f = 15 Hz we have a power of (6)*/4 = 9 W with a
corresponding power at f = -15 Hz. Finally, at f =20 Hz we have a power of (4)%4 =4 W witha
corresponding power at f = -20 Hz. Mathematically, this can be expressed as

SN = 64[8(f - 10) + d(f + 10)] + I[O(f - 15) + &(f + 15)] + 4[8(f - 20) + 8(f + 20)]

(b) The power contained between 12 and 22 Hz is

-12 22 22
P[12 < |f| < 22 Hz] = fo(f)df+fo(f)df = 2fo(f)df =26 W
-22 12 12
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CHAPTER 2

no| [2 —1} x,(0)
Ol 15 3 [x0

Problem 2-1

Problem 2-2

(a) First order; (b) first order (differentiate once to get rid of the integral on y); (c ) zero order; (d)
first order; (e) second order.

Problem 2-3
(a), (b), (¢ ), and (e) are fixed; (d) is not because of the time-varying coefficient, .
Problem 2-4

Only (c ) and (d) are nonlinear. Superposition will not hold in (e) because of the term +10. As an
example to show linearity, consider (d):

t

w1y () = fxl(x)dx

—o0

d !
y2(t) 4 t2y2(t) _ fxz()»)d)»

—oo

dy, ()

Multiply the first equation by a constant, say a, and the second equation by another constant, say b;
add to obtain:

dlay,(?) + byy(1)]
dt

+12[ay (0 + by(1)] = f lax,(A) + bx,(A)]dA

This is of the same form as the original equation.
Problem 2-5

Noncausal. Consider ¢ = 0.25, which gives y(0.25) = x(0.5); i.e., the output depends on a future
value of the input.
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Problem 2-6

(a) Nonlinear. The proof is similar to Example 2-4 in the text. (b) Noncausal because of the +2 in
the argument of x. Consider ¢ = 0; the output at time 0 depends on the value of the input at time 2,
or a future value.

Problem 2-7

(a) Linear. Consider the responses to two arbitrary inputs:

y, @ = x,(t?
Y,(0) = x,(1?)

Multiply first by a and the second by b and add to get
ayl(t) + byz(t) = axl(tz) + bxz(tz)

That is, for the input ax,(#) + bx,(#), we replace ¢ by #* to get the new output which is the right-hand
side of the above equation.
(b) Time varying. Consider the response to the delayed input:

y () = x(t* - 1)

Now consider the delayed output due to the undelayed input:

¥t - 1) = x[(t - ©)]

Clearly the two are not the same.

(c) Noncausal. Consider ¢ =2 which gives y(2) = x(4); i.e., the output depends on a future value of
the input.

(d) Not zero memory. This follows from (c ) where it was found that the output does not depend
only on values of the input at the present time only.
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Problem 2-8

(a) Consider two inputs and the corresponding outputs:

yl(t) = x](t) + axl(t - to)
yz(t) xz(t) + (sz(t - To)

Multiply the top equation by a and the bottom by b (two constants); add to get
ay,(t) + by,(1) = ax,(t) + bx(t) + afax,(t - t,) + bx(t - T)]

This is of the same form as the original input/output relationship, so linarity is proved.

(b) The only way for the system to be zero memory is for 1, to be 0.

(c) Itis causal only if 75> O, for in that case the system doesn’t respond before the input is applied.
(d) See the MATLAB plots below (& = 0.5 and 1.5 in that order):

2 T T T T T

1.5 -

1+ -

y1(t)

0.5 —

1.5 -

y2(t)

0.5 —

31



	SM.pdf
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



