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Solutions to the Exercises

I have given all numerical answers to two significant figures, for consistency. Note that I have assumed that all
“difficult” definite integrals will be solved by looking them up in a table; most of these are ultimately derived using
contour integration, but I certainly don’t expect the students to solve them that way.

Chapter 1

1.1 (a) The power emitted by the human body is:

P =oAT*
so the total energy radiated in a time ¢ is

E =cAT*t

The surface area A of the human body is between 1 m? and 2 m? (depending on the person in question). Students
should at least be able to estimate the order of magnitude of this number correctly. I will solve for the range A = 1—2
m?. The temperature of the human body is:

T =98.6°F =310 K
So the total energy radiated in one hour is:
E=(567x10"% Jsec™! m™2 K~*)(1 — 2m?)(310 K)*(3600 sec) = 1.9 — 3.8 x 10%J
(b) Wien’s law gives:

Mpeak = w/T = (2.90 x 107°m K) /310K = 9.4 x 107°m = 9.4 x 10*A

1.2 Wien’s law gives Apeqr = w/T so that
T = w/Apear, = (2.90 x 107°m K)/3.5 x 10~ "m = 8300K

(Note the errata that this is not a red star - an error in the text of the problem! This is corrected in the second
printing).

1.3 (a) The total energy density is given by

p=aTl* = (756 x 107 T m=3 K=*)(2.7 K)* =4.0 x 107J m~3.

(b) The total energy density p between 1 mm and 1.01 mm is

_["* 8xh V3 d
P=], & enT — 1%
where v; = ¢/(1.01 mm) = 2.97 Hz and v5 = ¢/(1 mm) = 3.00 Hz. This integral cannot be performed analytically,

but because the range of integration is so small, it is a good approximation to take it to be given by

_8h v (vs — 1)
P =73 hwjkT _1 W2 11):



One could just as easily have substituted vy instead of v» in the integrand. The error in making this approximation
is only about 1%. Note that hve = 1.99 x 10722J and kT = 3.73 x 10723J. Then the desired density is:

_ (87)(6.63 x 10731J sec) (3.0 x 10'! Hz)? 1 1
p = (3 x 10°m sec—1)7 T (3 x 10" Hz — 2.97 x 10" "' Hz)

= 24x1071% Jm3

The Rayleigh-Jeans formula is not a good approximation at these wavelengths. The easiest way to see this is to
note that hv/kT = 5, and the Rayleigh-Jeans formula is only a good approximation when hv/kT <« 1. Alternatively,
one can re-do the calculation using the Rayleigh-Jeans formula

V2 8wkT
= d
p /yl a Vv

8nkT
= 37(’/3 - V13)

—23
= f;rf"f;s; ls(:,clig [(3 x 10" Hz)® — (2.97 x 10" Hz)"]

=93x107%Jm3

which disagrees significantly with the result obtained using the Planck spectrum.

1.4 Note that the Rayleigh-Jeans formula always gives a larger energy density than the Planck formula, so for 10%
agreement between the two, we require

Pv(Rayleigh—Jeans) /pu(Planck) <11

Inserting the actual formulas gives
Pu(Rayleigh—Jeans) | Pu(Planck) = (KT /hv)(e"™/¥T = 1) < 1.1
This expression is a function only of z = hv/kT, so we want to solve
(e*=1)/xz =11

This equation can be solved numerically by plugging in numbers, but we can also note that e —1 =142z +22/2+...,
so that (e* —1)/z =~ 1+ z/2 = 1.1, which gives z = 0.2. A numerical calculation gives an answer of roughly 0.19. So
the correct result is v < 0.19(kT/h).

1.5 We need to evaluate
vo
p(< ) :/ p(v)dv.
v=0

Since hvy < kT, we know that hv < kT over the entire range of integration, so we can just use the Rayleigh-Jeans
formula:

Yo 8wkT
p(< VO) — / 3 1j2d 5
v=0 C
8w w3
= 5 (2)

1.6 The desired quantity is

=g

*©  8mh V3
p(> 1) = /,, 5 oot — W



3
Following the hint in the back of the book, we take e"/¥T — 1 x e"/kT which is a good approximation for hv > kT.
This gives
8

p() 1/0) = / c_3hy3eth/deV

—vo
We substitute hv/kT = z, giving
o sr (kT\"
p(> 1) = / —h (—) e %dx
z=hvo/kT c h

The integral of z3e~® can be obtained by repeated integration by parts or (better) looking it up in a table:

/x3e_””dx = —e ?[2° + 327 + 62 + 6]
SO

8 kT
p(> o) = ) (T

= ) e /KT [(hug JKT)? + 3(hvo /kT)? + 6(hwo/kT) + 6]

but hvg/kT > 1, so the first term dominates, giving

8TkTvd\
oy (1)

1.7 (a) We have v = ¢/), and dv = —(c/A\?)d)\. Substituting these expressions into Equation (1.7) in the book gives

8rhe  dA

p(A)dA = ehe/RKTx — 1 X6

(b) We set dp/dX = 0 at A = Apeqr, Which gives

he
—5 ehc/kT/\pmk, +5=0.
(kT)\peak )

The solution can be found numerically; it is he/kT Apeqr = 4.965, so
Apeak = 0.20(he/KT)
(c) Using the expression for Apeqr from part (b), and the expression for vpeqr from page 9 of the book [Vme, =
2.8(kT/h)], we get
ApeakVpeak = [0.20(hc/kT)][2.8(kT/h)] = 0.56¢,

so it is not the case that ApeqrVpear = C-

1.8 We have
Em,“; = 6(130 = hv — EB
Solving for Ep gives

Ep = hv —edg

he/ X — e®q

= (6.6 x 10734J sec)(3 x 10%m/sec)/(4000 x 10™'%m) — (1.6 x 107*°C)(0.5 V),
= 4.15x1071°].



Photoelectric current flows when hv > Ep, so we set hv = Ep to find the longest possible wavelength. Since hv = Ep
and A = ¢/v, we have

A= Ch/EB

(3 x 108m/sec) (6.6 x 10734J sec)/4.15 x 1071°]
48 %10 "m

= 4800 A.

1.9 We do part (b) first. The energy of a photon with a wavelength A = 6.0 x 10~7 m is:
E =hv = he/X = (6.6 x 1072*J sec)(3 x 108m sec™)/(6.0 x 107" m) = 3.3 x 10719 J

Now we can solve part (a). Let N be the number of photons emitted per second. Then N =power emitted/energy
per photon. So

N =40 W/3.3 x 107*° J = 1.2 x 10?°photons/sec.

Note that this represents an idealization. A real lightbulb emits radiation over a range of frequencies, not just a single
frequency. But it’s OK for an order of magnitude estimate.

1.10 (a) The desired expression is

n(v)dv = (1/hw)p(v)dv

8mh v
= (l/hl/)c—:;ieh”/kT _ ldl/

8w v?

T 8 ehv/kT _ 79

(b) To find the total number, we integrate the expression in part (a) over frequency:
[e’e] 8 [es} 2
n =/ n(v)dv = _;r/ hyidy.
v=0 c v=0 € v/kT — 1

This is most easily simplified (and the dependence on the various physical parameters is most obvious) if we make
the change of variables z = hv/kT, which gives
L=
=0 et —1 )

_ 8 (KT
3 \Uh
The integral cannot be done analytically. It can be expressed as a zeta function [it is a multiple of {(3)] by multiplying

numerator and denominator by e~ %, expanding out the denominator in a power series, and integrating term by term.
But you probably don’t want to go there. Instead, we use the recommendation in the exercises and simply set it equal

to 2.4. This gives
8t (kT\® kT ®

1.11 The derivation of the Compton scattering formula can be applied to any particle; there is nothing unique about
electrons. Thus, we have

h
Ar— A= —(1 - 0
F= A= (1 - cost)



where myg is the mass of the unknown particle. Expressing Ay and A; in terms of the photon energies gives: Ey =
hvy = he/A; and E; = hv; = he/);. Substituting these expressions for the Ay and A; in the Compton scattering
formula, and solving for mgc?, we get

e — 1—cos@
°" T 1/E; —1/E;

Backward scattering corresponds to a scattering angle of 180°, so we have

1 — cos(180°)

2

- = 98 MeV.
Mo = 176,98 MoV — 1/1.0 Mev 0 MV

Note that this does not correspond to the mass of any known particle; I did not want the students randomly guessing
the masses of such particles.

1.12 (a) Since the kinetic energy in this case is much less than the rest energy of the proton we have E = p?/2m,,

5o p = /2mpE, where m,, is the proton mass. Then the de Broglie wavelength is
A= h/p
= h/\/2m,E = 6.6 x 1073* J sec/+/(2)(1.67 x 10—27 kg)(0.1 x 10%eV)(1.6 x 10-19J/eV)
= 9.0x10"" m.

(b) The relation between total energy E and momentum p is

E? = p*c + mict

Then

pe = /B> —m2c* = \/(3 x 103 MeV)?2 — (938 MeV)? = 2850 MeV

Converting to MKS units and solving for p gives pc = 4.56 x 1071° J, and p = 1.52 x 1078 kg m sec™!. Then the de
Broglie wavelength is

A=h/p=6.6x10"%"T sec/1.52 x 10" ®kg m sec™' = 4.3 x 107'm

1.13 The Balmer series lies in the visible. The Lyman series (for example) lies in the ultraviolet.

1.14 Note that 7 has units of (energy)(time), but energy has units of (mass)(velocity)? = (mass) (distance)?/(time)?.
Thus, & has units of (mass)(distance)?/(time). Now recall that angular momentum is (momentum)(distance), which
has units of (mass)(velocity)(distance) = (mass)(distance)? /(time).

1.15 The wavelengths of the spectral lines are given by

= V/C: (E'nl _Enz)/hc

>| =

Inserting the energies given by equation (1.24

~—

in the book gives

1_1m (&N (1 1
A he2n? \4reg nz n?



This looks just like equation (1.18) in the book with m = ny and n = ny, and R given by

Rolm (2N _ m (&
T heon? \4dmeg ) 4nhde \dmeg

Plugging in the values of all of the constants gives

R=

9.11 x 10 3kg (1.6 x 10-1°C)?2
4 (

2
=11x10"
47(1.05 x 107347 sec)?(3 x 108m/sec) 8.85 x 1012fara,d/m)) x o

which is the desired answer.

1.16 Following Bohr’s argument for the Coulomb potential, we set centripetal force equal to the attractive force:

o — mo?
ooy

Also, the Bohr quantization rule gives
L = mur = nh

so that

nh
mr

v =

Substituting this expression for v in the first equation above gives

2
kP =m _nh 1
mr) r

n2h2 1/(B+3)
T:(km)

E = kinetic energy + potential energy

and solving for r gives

Now the total energy is

The kinetic energy is just mv?/2. Substituting our expression for v from the equation above, the kinetic energy

becomes (1/2)m(nk/mr)?. To find the potential energy, we use V.= — [ Fdr. Note also that since the force is
attractive, we must take F' = —kr? in this integral, giving
V:—/—krﬂz LIRS
B+1

This assumes that 8 # 1, as given in the problem. (Note that many students will forget that an attractive force
should have a minus sign, and they may also forget the minus sign in going from force to potential. Unfortunately, a
student making both mistakes will obtain the correct result). Then the total energy is

1 (nh\> &k
E == i B+1
2™ (mr) * B+ 1

We substitute our expression for r into this equation and get




Why does this answer break down for 8 = —3?7 Going back to the equation in which we set centripetal force equal to
the attractive force, and setting 8 = —3, we get
2
mu
kr3 = —
r

which can be written as
k=mv’r? = L?/m

Thus, in this case, L = Vkm is a constant, and all of the orbits have the same angular momentum. Hence, we cannot
apply the Bohr quantization condition (L = nh), since there is only one L.



Chapter 2

2.1 (a) Brute force multiplication yields
i(2 = 30)(3 + 5) = §(6 — 9i + 107 + 15) = i(21 +4) = —1 + 21

(b) Here it is easier to do the problem in polar form: i = /2 and i — 1 = v/2e™/4, 50

i ei7r/2 1
= = —e

i—1  J2eidr/a 3

—in/4

Converting back to the form a + bi:

i/t = L [cos(—m/4) + isin(~m/4)] = —= ( iy ) - % 3

. 1
V2 V2 V2\v2 'V 2

(c) This could be solved by expanding out using the binomial theorem, but that would be a Bad Idea. Instead, we
use the polar form: 1+ 4 = v/2¢™/*. Then
(1 + i)30 — (\/56”/4)30 — 215ei157r/2

i127/2

Using e??™ = 1, we can factor out e =1, giving

(1 +)%° = 32768¢>™/2 = —32768i

2.2 One fifth root of ¢ has a polar angle of 27/5, and the others have polar angles that are all integer multiples of
27/5. So the 5 different fifth roots are:

6227r/576247r/576167r/5,6187r/57 1
2.3

2 =1+e ¥
22 = (1+e") (1 +e?) =1+ 2% + ¥

ZP=z22=14+e )1 +e) =1+e? +e7¥ +1=242cosh

2.4 Suppose z = a + bi. Then a —bi = a+ bi so b =0, and z is real.
2.5 Note that i = ei™/2, So i = (ei™/2)" = ¢~ ™/2  0.21

2.6 The problem arises because every complex number has two different square roots. In going from the second line
to the third line of the argument, if we take v/—1 = —i instead of v/—1 = i, then the final result makes sense.

2.7 (a)
[f(2) + 9(x)] = f(==2) + g(—=) = [ (z)] + N[g(=)]



and
fef(z)] = cf (—z) = cll[f(z)]
so II is linear.
(b)
T[f(z) + g(2)] = f(z + 1) + g(z + 1) = T[f(z)] + T'[g(z)]

and

Tlef(2)] = cf(z + 1) = T'[f(z)]
so T is linear.
(<)

L{f(z) + g(z)] = f(z) + g(z) + 1
and

L{f(@)] + Llg(z)] = f(z) + 1 + g(z) + 1
)
L{f(z) + g(z)] # L[f(z)] + L[g(z)]

and L is not linear.

2.8 (a) For any functions f(z) and g(z) and constant ¢, we have

I1f(2) + 9(2)] = f(z) + g(2) = I[f ()] + I[g(<)]

and

Ief(z)] = cf () = cI[f(2)]

(b) We need to solve the equation I[f(z)] = c¢f(z). Applying the identity operator gives I[f(z)] = f(z) = cf(z).
This is satisfied for ¢ = 1 and for any function f(z). Thus, all functions are eigenfunctions of the operator I, and
they all have eigenvalue of 1.

2.9

PQ[f(2)] = Plaf(x)] = ¢P[f(z)] = apf(x)
and

QP[f(z)] = Qlpf(2)] = pQlf ()] = paf(=)
and gpf(z) = pgf(z), so PQ[f(z)] = QP[f(z)].

2.10 (a) For any functions f(z) and g(z) and constant ¢, we have

dgy _ @1 P9 _ parsioy) + Do)

D1 () +g(@)] = DIDIf (&) + 9(a)]] = DID + W)= 8T 1 28
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and
D?[cf(2)] = D[D[cf (2)]] = DleD[f (z)] = cD[D[f (z)]] = cD?[f(x)]
(b) We need to solve D?[f(z)] = cf(x), which can be written as
&f
dzz cf(z)
The general solution to this equation is
f(x) = A1eVe® + Ay Ve

where A; and Ay are arbitrary constants. This gives the most general possible eigenfunction of D? with eigenvalue c,
and any complex number ¢ can be an eigenvalue.

(c) Examples include the sine and cosine functions, e.g.,
D?[sin(azx)] = —a®sin(az)
but
D[sin(az)] = acos(azx)

and similarly for the cosine function.

2.11 Let f(z) be an eigenfunction of L with eigenvalue a, so that L[f(z)] = af(z). Now consider what happens when
L operates on c¢f(z), where ¢ is a constant:

Lcf(2)] = cL{f(2)] = c(af(z)) = a(cf(x))

Thus, ¢f(x) is also an eigenfunction of L with eigenvalue a.

2.12 (a)

Luwwwmn=Awﬂ@+mgyw=Aﬂmuyﬁfh@szuwn+mmm
and

MﬂM=A%NMVWA3®%=dWM

(b) Suppose that f(z) is an eigenfunction of L, with eigenvalue a. Then we have

LWM=AU@%=d@

Taking the derivative of both sides gives

_ .Y
flz) = ‘Iz
The general solution is
f@) = Aer/e

However, substituting this back into our original eigenfunction equation gives
X
L[Ae™/] = / Ae®/°ds = cA(e®/® — 1) # cAe®/*
0

so L has no eigenfunctions. Note that the case A = 0 does give a trivial eigenfunction (the “zero function”) but this
is not normally considered a legitimate eigenfunction.
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