

2

Syntax

Exercises

2.1

Integer ⇒ Integer Digit ⇒ Integer Digit Digit ⇒ Integer Digit Digit Digit

⇒ Digit Digit Digit Digit ⇒ 4 Digit Digit Digit ⇒ 4 5 Digit Digit

⇒ 4 5 2 Digit ⇒ 4 5 2 0

2.2 This has the same number of steps as above, except that each digit is
immediately derived when it appears. E.g., Integer ⇒ IntegerDigit ⇒
Integer 0 ⇒ ...

2.3 Identifier ⇒ Letter Digit Letter ⇒ a Digit Letter ⇒ a 2 Letter ⇒ a 2 i

2.4 Identifier ⇒ Letter Digit Letter ⇒ Letter Digit i ⇒ Letter 2 i ⇒ a 2 i

2.5 The solution to part (a) appears below. The solutions to parts (b) and
(c) are simple variations of this one.

5

6 2. SYNTAX

1

=Identifier

Assignment

Conjunction

Equality

Relation

Addition

Term

Expression ;

Term AddOp

Factor

Primary

Identifier

x

Term TermAddOp

Factor+ !

x

Factor

Primary

Identifier

Primary

Literal

a

2.6 The solution to part (a) appears below. The solutions to parts (b) and
(c) are simple variations of this one.

7

*

5

4

3

Expr

Expr

Term

Term

Term

Expr

+

2.7 The solution to part (a) appears below. The solutions to parts (b) and
(c) are simple variations of this one.

3

4

Term

Expr

Term Expr

5

+

Expr

Term

*

2.8 The solution to part (a) appears below. The solutions to parts (b) and
(c) are simple variations of this one.

8 2. SYNTAX

5

Expr Term

Expr

+

Term Term * Factor

FactorFactor 3

4

2.9 There are two solutions to part (a), one of which appears below. The other
is a simple variation of this one. (Note that this grammar is ambiguous.)
The solutions to parts (b) and (c) are also similar.

5

Expr

Expr

Expr

4

Expr

+

*

3Expr

2.10 The solution to part (a) appears below. The solutions to parts (b) and
(c) are simple variations of this one.

9

Expr

Expr

5 Expr

4 3

Expr

+ Expr

*

2.11 To derive the Expression 5 - 4 + 3, we must use the rules Expression →
Expression− Term and Expression → Expression + Term. (These are
the only ones that generate the - and + signs, respectively.) So the first
three steps in the derivation give:

Expression ⇒ Expression + Term ⇒ Expression − Term + Term ⇒
Term− Term + Term

Since no later step in the derivation can reduce the length of this string,
each of the three instances of Term must derive one of the constants 5, 4,
and 3, respectively.

2.12 Consider the Java rules:

IfThenStatement → if (Expression) Statement

IfThenElseStatement → if (Expression) StatementNoShortIf else Statement

These rules force the innermost IfStatement in

if (x < 0) if (x == 0) y = y - 1; else y = 0;

not to have an else part, so that the only feasible parse tree for this state-
ment is has the following shape:

10 2. SYNTAX

2.13 The rules can be changed by adding the delimiter fi as shown below:

IfStatement → if (Expression) Statement fi |
→ if (Expression) Statement else Statement fi

2.14 (a) Perl if statements (from perl.com)

IfStatement → if (Expression) BLOCK

{ elsif (Expression) BLOCK }
[else BLOCK]

Here, BLOCK is a sequence of statements (enclosed in curly braces).

(b) Python if statements (from python.org)

IfStatement → if Expression : BLOCK

{ elif Expression : BLOCK }
[else BLOCK]

(c) Ada if statements (from www.adahome.com/rm95)

IfStatement → if Expression then BLOCK

{ elsif Expression then BLOCK }
[else BLOCK]

end if;

2.15 The rule a → b { c } is equivalent to:

a → b | b d

d → c | d c

The rule a → b [c] is equivalent to:

a → b | b c

2.16 The diagram below omits the syntax of Integer.

11

**

Expr Expr ExprOp

Expr)(

Integer

Op +

!

*

/

%

2.17 This should be an essay question if it is answered carefully.

2.18 This type of information can usually be found in an on-line language
reference for each language. The number of reserved words we found for
each language is: Python 28, Ada95 69, C 32, C++ 67, and Java 50.
Because Perl prefixes identifiers with a symbol such as $, @, %, or &,
there are no reserved words in Perl. Except for subroutine calls, Perl does
not permit “bareword” identifiers.

2.19 See Section 12.7 for an introduction to Perl. In particular, see the program
in Figure 12.13 for an example of a variable declaration, which you can
use to define a grammar rule like the following:

variableDeclaration → my variableName [= value] ;

2.20 The solution to part (a) appears below. The solutions to parts (b) and
(c) are simple variations of this one.

12 2. SYNTAX

Assignment

Operator

x

! 1

Operator Identifier

x a+

Identifier

LiteralBinary

BinaryIdentifier

