PRINCIPLES OF GEOTECHNICAL ENGINEERING BRAJA M. DAS

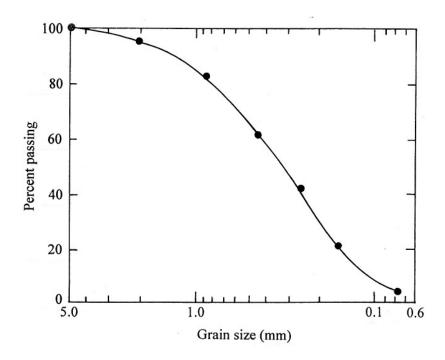
Chapter 2

2.1
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.41}{0.08} =$$
5.13

$$C_c = \frac{(D_{30})^2}{(D_{10})(D_{60})} = \frac{(0.22)^2}{(0.08)(0.41)} = 1.48$$

2.2
$$C_u = \frac{D_{60}}{D_{10}} = \frac{1.81}{0.24} = 7.54$$

$$C_c = \frac{(D_{30})^2}{(D_{10})(D_{60})} = \frac{(0.82)^2}{(0.24)(1.81)} = 1.55$$


2.3
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.78}{0.18} = 4.33$$

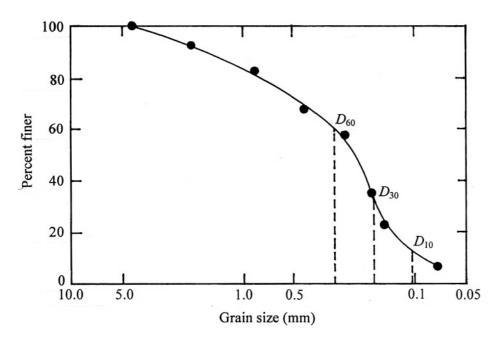
$$C_c = \frac{(D_{30})^2}{(D_{10})(D_{60})} = \frac{(0.32)^2}{(0.18)(0.78)} =$$
0.73

2.4	a.	Sieve	Mass of soil retained	Percent retained	Percent
		no.	on each sieve (g)	on each sieve	finer
		4	0.0	0.0	100.0
		10	18.5	4.4	95.6
		20	53.2	12.6	83.0
		40	90.5	21.5	61.5
		60	81.8	19.4	42.1
		100	92.2	21.9	20.2
		200	58.5	13.9	6.3
		Pan	26.5	6.3	0

 Σ 421.2 g

The grain-size distribution is shown.

b. $D_{60} =$ **0.4 mm**; $D_{30} =$ **0.22 mm**; $D_{10} =$ **0.12 mm**

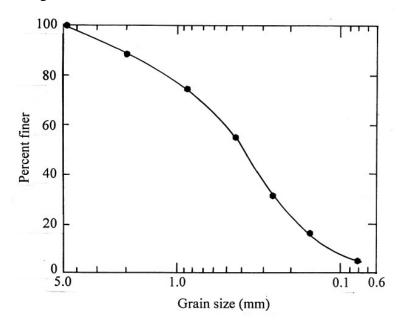

c.
$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.4}{0.12} = 3.33$$

d.
$$C_c = \frac{(D_{30})^2}{(D_{10})(D_{60})} = \frac{(0.22)^2}{(0.4)(0.12)} = 1.01$$

2.5	a.	Sieve	Mass of soil retained	Percent retained	Percent
		no.	on each sieve (g)	on each sieve	finer
		4	0	0	100
		10	44	7.99	92.01
		20	56	10.16	81.85
		40	82	14.88	66.97
		60	51	9.26	57.71
		80	106	19.24	38.47
		100	92	16.70	21.77
		200	85	15.43	6.34
		Pan	35	5.34	0
			T 1		

 Σ 551 g

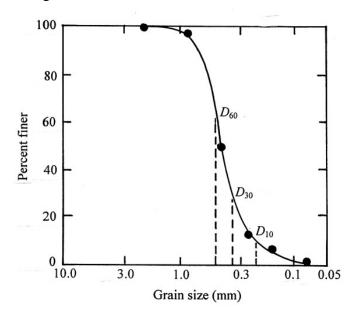
The grain-size distribution is shown in the figure.



- b. From the graph: $D_{60} = 0.3 \text{ mm}$; $D_{30} = 0.17 \text{ mm}$; $D_{10} = 0.11 \text{ mm}$
- c. $C_u = \frac{0.3}{0.11} = 2.73$
- d. $C_c = \frac{(0.17)^2}{(0.11)(0.3)} = 0.88$

2.6	a.	Sieve	Mass of soil retained	Percent retained	Percent
		no.	on each sieve (g)	on each sieve	finer
		4	0	0	100
		10	41.2	10.7	89.3
		20	55.1	14.2	75.1
		40	80.0	20.8	54.3
		60	91.6	23.8	30.5
		100	60.5	15.7	14.8
		200	36.5	9.2	5.6
		Pan	21.5	5.6	0

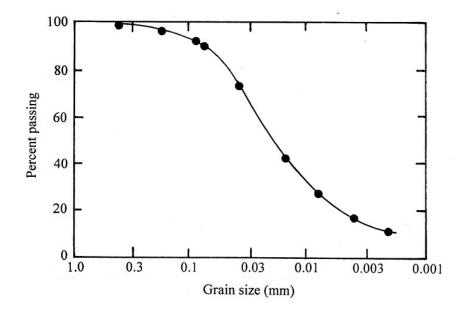
 $\frac{21.5}{\Sigma 385.5 \text{ g}}$


The grain-size distribution is shown.

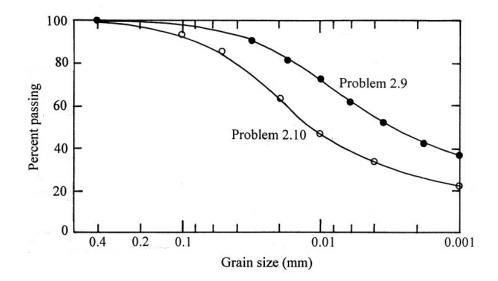
- b. $D_{60} =$ **0.50 mm**; $D_{30} =$ **0.26 mm**; $D_{10} =$ **0.14 mm**
- c. $C_u = \frac{D_{60}}{D_{10}} = \frac{0.50}{0.14} = 3.57$
- d. $C_c = \frac{(D_{30})^2}{(D_{10})(D_{60})} = \frac{(0.26)^2}{(0.5)(0.14)} =$ **0.97**

2.7	a.	Sieve	Mass of soil retained	Percent retained	Percent
		no.	on each sieve (g)	on each sieve	finer
		4	0	0	100
		6	0	0	100
		10	0	0	100
		20	9.1	1.82	98.18
		40	249.4	49.88	48.3
		60	179.8	35.96	12.34
		100	22.7	4.54	7.8
		200	15.5	3.10	4.7
		Pan	23.5	4.70	0
			Σ500 g		

The grain-size distribution is shown.



b. From the graph: $D_{60} = 0.48$ mm; $D_{30} = 0.33$ mm; $D_{10} = 0.23$ mm.


c.
$$C_u = \frac{0.48}{0.23} = 2.09$$

d.
$$C_c = \frac{(0.33)^2}{(0.48)(0.23)} = \mathbf{0.99}$$

a. The grain-size distribution curve is shown. 2.8

- b. Percent passing 2 mm = 100 Percent passing 0.06 mm = 84 Percent passing 0.002 mm = 11
- GRAVEL: 100 100 = **0%** SAND: 100 – 84 = **16%** SILT: 84 – 11 = **73%** CLAY: 11 – 0 = **11%**
- c. Percent passing 2 mm = 100 Percent passing 0.05 mm = 80 Percent passing 0.002 mm = 11
- GRAVEL: 100 100 = 0%SAND: 100 - 80 = 20%SILT: 80 - 11 = 69%CLAY: 11 - 0 = 11%
- d. Percent passing 2 mm = 100 Percent passing 0.075 mm = 90 Percent passing 0.002 mm = 11
- GRAVEL: 100 100 = 0%SAND: 100 - 90 = 10%SILT: 90 - 11 = 79%CLAY: 11 - 0 = 11%
- 2.9 The grain-size distributions are shown in the figure for Problems 2.9 and 2.10.

- Percent passing 2 mm = 100 Percent passing 0.05 mm = 94 Percent passing 0.002 mm = 42
- GRAVEL: 100 100 = 0%SAND: 100 - 94 = 6%SILT: 94 - 42 = 52%CLAY: 42 - 0 = 42%
- 2.10 Percent passing 2 mm = 100 Percent passing 0.05 mm = 83 Percent passing 0.002 mm = 26
- GRAVEL: 100 100 = 0%SAND: 100 - 83 = 17%SILT: 83 - 26 = 57%CLAY: 26 - 0 = 26%

2.11
$$G_s = 2.60$$
; temperature = 24°; $R = 43$; time = 60 min. Referring to Table 2.7, $L = 9.2$.

Eq. (2.5):
$$D \text{ (mm)} = K \sqrt{\frac{L \text{ (cm)}}{t \text{ (min)}}}$$

From Table 2.6 for $G_s = 2.60$ and temperature = 24°, K = 0.01321.

$$D = 0.01321\sqrt{\frac{9.2}{60}} =$$
0.0052 mm

2.12 For
$$G_s = 2.70$$
 and temperature = 23°, $K = 0.01297$, $R = 25$ (Table 2.6).

$$L = 12.2$$
 (Table 2.7).

$$D \text{ (mm)} = K \sqrt{\frac{L \text{ (cm)}}{t \text{ (min)}}} = 0.01297 \sqrt{\frac{12.2}{120}} = \mathbf{0.0041} \text{ mm}$$