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A Note To The Instructor...

The solutions here are somewhat brief, as they are designed for the instructor, not for the student.
Check with the publishers before electronically posting any part of these solutions; website, ftp, or
server access must be restricted to your students.

I have been somewhat casual about subscripts whenever it is obvious that a problem is one
dimensional, or that the choice of the coordinate system is irrelevant to the numerical solution.
Although this does not change the validity of the answer, it will sometimes obfuscate the approach
if viewed by a novice.

There are some traditional formula, such as

v2
x = v2

0x + 2axx,

which are not used in the text. The worked solutions use only material from the text, so there may
be times when the solution here seems unnecessarily convoluted and drawn out. Yes, I know an
easier approach existed. But if it was not in the text, I did not use it here.

I also tried to avoid reinventing the wheel. There are some exercises and problems in the text
which build upon previous exercises and problems. Instead of rederiving expressions, I simply refer
you to the previous solution.

I adopt a different approach for rounding of significant figures than previous authors; in partic-
ular, I usually round intermediate answers. As such, some of my answers will differ from those in
the back of the book.

Exercises and Problems which are enclosed in a box also appear in the Student’s Solution Manual
with considerably more detail and, when appropriate, include discussion on any physical implications
of the answer. These student solutions carefully discuss the steps required for solving problems, point
out the relevant equation numbers, or even specify where in the text additional information can be
found. When two almost equivalent methods of solution exist, often both are presented. You are
encouraged to refer students to the Student’s Solution Manual for these exercises and problems.
However, the material from the Student’s Solution Manual must not be copied.

Paul Stanley
Beloit College

stanley@clunet.edu
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E25-1 The charge transferred is

Q = (2.5× 104 C/s)(20× 10−6 s) = 5.0× 10−1 C.

E25-2 Use Eq. 25-4:

r =

√
(8.99×109N·m2/C2)(26.3×10−6C)(47.1×10−6C)

(5.66 N)
= 1.40 m

E25-3 Use Eq. 25-4:

F =
(8.99×109N·m2/C2)(3.12×10−6C)(1.48×10−6C)

(0.123 m)2
= 2.74 N.

E25-4 (a) The forces are equal, so m1a1 = m2a2, or

m2 = (6.31×10−7kg)(7.22 m/s2)/(9.16 m/s2) = 4.97×10−7kg.

(b) Use Eq. 25-4:

q =

√
(6.31×10−7kg)(7.22 m/s2)(3.20×10−3m)2

(8.99×109N·m2/C2)
= 7.20×10−11C

E25-5 (a) Use Eq. 25-4,

F =
1

4πε0
q1q2

r2
12

=
1

4π(8.85×10−12 C2/N ·m2)
(21.3µC)(21.3µC)

(1.52 m)2
= 1.77 N

(b) In part (a) we found F12; to solve part (b) we need to first find F13. Since q3 = q2 and
r13 = r12, we can immediately conclude that F13 = F12.

We must assess the direction of the force of q3 on q1; it will be directed along the line which
connects the two charges, and will be directed away from q3. The diagram below shows the directions.

F 12

F
23

F
23

F 12

θ

F net

From this diagram we want to find the magnitude of the net force on q1. The cosine law is
appropriate here:

F net
2 = F 2

12 + F 2
13 − 2F12F13 cos θ,

= (1.77 N)2 + (1.77 N)2 − 2(1.77 N)(1.77 N) cos(120◦),
= 9.40 N2,

F net = 3.07 N.
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E25-6 Originally F0 = CQ2
0 = 0.088 N, where C is a constant. When sphere 3 touches 1 the

charge on both becomes Q0/2. When sphere 3 the touches sphere 2 the charge on each becomes
(Q0 +Q0/2)/2 = 3Q0/4. The force between sphere 1 and 2 is then

F = C(Q0/2)(3Q0/4) = (3/8)CQ2
0 = (3/8)F0 = 0.033 N.

E25-7 The forces on q3 are ~F31 and ~F32. These forces are given by the vector form of Coulomb’s
Law, Eq. 25-5,

~F31 =
1

4πε0
q3q1

r2
31

r̂31 =
1

4πε0
q3q1

(2d)2
r̂31,

~F32 =
1

4πε0
q3q2

r2
32

r̂32 =
1

4πε0
q3q2

(d)2
r̂32.

These two forces are the only forces which act on q3, so in order to have q3 in equilibrium the forces
must be equal in magnitude, but opposite in direction. In short,

~F31 = −~F32,
1

4πε0
q3q1

(2d)2
r̂31 = − 1

4πε0
q3q2

(d)2
r̂32,

q1

4
r̂31 = −q2

1
r̂32.

Note that r̂31 and r̂32 both point in the same direction and are both of unit length. We then get

q1 = −4q2.

E25-8 The horizontal and vertical contributions from the upper left charge and lower right charge
are straightforward to find. The contributions from the upper left charge require slightly more work.
The diagonal distance is

√
2a; the components will be weighted by cos 45◦ =

√
2/2. The diagonal

charge will contribute

Fx =
1

4πε0
(q)(2q)
(
√

2a)2

√
2

2
î =

√
2

8πε0
q2

a2
î,

Fy =
1

4πε0
(q)(2q)
(
√

2a)2

√
2

2
ĵ =

√
2

8πε0
q2

a2
ĵ.

(a) The horizontal component of the net force is then

Fx =
1

4πε0
(2q)(2q)
a2

î +
√

2
8πε0

q2

a2
î,

=
4 +
√

2/2
4πε0

q2

a2
î,

= (4.707)(8.99×109N ·m2/C2)(1.13×10−6C)2/(0.152m)2 î = 2.34 N î.

(b) The vertical component of the net force is then

Fy = − 1
4πε0

(q)(2q)
a2

ĵ +
√

2
8πε0

q2

a2
ĵ,

=
−2 +

√
2/2

8πε0
q2

a2
ĵ,

= (−1.293)(8.99×109N ·m2/C2)(1.13×10−6C)2/(0.152m)2ĵ = −0.642 N ĵ.
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E25-9 The magnitude of the force on the negative charge from each positive charge is

F = (8.99×109N ·m2/C2)(4.18×10−6C)(6.36×10−6C)/(0.13 m)2 = 14.1 N.

The force from each positive charge is directed along the side of the triangle; but from symmetry
only the component along the bisector is of interest. This means that we need to weight the above
answer by a factor of 2 cos(30◦) = 1.73. The net force is then 24.5 N.

E25-10 Let the charge on one sphere be q, then the charge on the other sphere is Q = (52.6×
10−6C)− q. Then

1
4πε0

qQ

r2
= F,

(8.99×109N·m2/C2)q(52.6×10−6C− q) = (1.19 N)(1.94 m)2.

Solve this quadratic expression for q and get answers q1 = 4.02×10−5C and q2 = 1.24×10−6N.

E25-11 This problem is similar to Ex. 25-7. There are some additional issues, however. It is
easy enough to write expressions for the forces on the third charge

~F31 =
1

4πε0
q3q1

r2
31

r̂31,

~F32 =
1

4πε0
q3q2

r2
32

r̂32.

Then

~F31 = −~F32,
1

4πε0
q3q1

r2
31

r̂31 = − 1
4πε0

q3q2

r2
32

r̂32,

q1

r2
31

r̂31 = − q2

r2
32

r̂32.

The only way to satisfy the vector nature of the above expression is to have r̂31 = ±r̂32; this means
that q3 must be collinear with q1 and q2. q3 could be between q1 and q2, or it could be on either
side. Let’s resolve this issue now by putting the values for q1 and q2 into the expression:

(1.07µC)
r2
31

r̂31 = − (−3.28µC)
r2
32

r̂32,

r2
32r̂31 = (3.07)r2

31r̂32.

Since squared quantities are positive, we can only get this to work if r̂31 = r̂32, so q3 is not between
q1 and q2. We are then left with

r2
32 = (3.07)r2

31,

so that q3 is closer to q1 than it is to q2. Then r32 = r31 + r12 = r31 + 0.618 m, and if we take the
square root of both sides of the above expression,

r31 + (0.618 m) =
√

(3.07)r31,

(0.618 m) =
√

(3.07)r31 − r31,

(0.618 m) = 0.752r31,

0.822 m = r31
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E25-12 The magnitude of the magnetic force between any two charges is kq2/a2, where a =
0.153 m. The force between each charge is directed along the side of the triangle; but from symmetry
only the component along the bisector is of interest. This means that we need to weight the above
answer by a factor of 2 cos(30◦) = 1.73. The net force on any charge is then 1.73kq2/a2.

The length of the angle bisector, d, is given by d = a cos(30◦).
The distance from any charge to the center of the equilateral triangle is x, given by x2 =

(a/2)2 + (d− x)2. Then
x = a2/8d+ d/2 = 0.644a.

The angle between the strings and the plane of the charges is θ, given by

sin θ = x/(1.17 m) = (0.644)(0.153 m)/(1.17 m) = 0.0842,

or θ = 4.83◦.
The force of gravity on each ball is directed vertically and the electric force is directed horizontally.

The two must then be related by
tan θ = FE/FG,

so
1.73(8.99×109N ·m2/C2)q2/(0.153 m)2 = (0.0133 kg)(9.81 m/s2) tan(4.83◦),

or q = 1.29×10−7C.

E25-13 On any corner charge there are seven forces; one from each of the other seven charges.
The net force will be the sum. Since all eight charges are the same all of the forces will be repulsive.
We need to sketch a diagram to show how the charges are labeled.

12

3

4

5

6

7

8

The magnitude of the force of charge 2 on charge 1 is

F12 =
1

4πε0
q2

r2
12

,

where r12 = a, the length of a side. Since both charges are the same we wrote q2. By symmetry we
expect that the magnitudes of F12, F13, and F14 will all be the same and they will all be at right
angles to each other directed along the edges of the cube. Written in terms of vectors the forces
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would be

~F12 =
1

4πε0
q2

a2
î,

~F13 =
1

4πε0
q2

a2
ĵ,

~F14 =
1

4πε0
q2

a2
k̂.

The force from charge 5 is

F15 =
1

4πε0
q2

r2
15

,

and is directed along the side diagonal away from charge 5. The distance r15 is also the side diagonal
distance, and can be found from

r2
15 = a2 + a2 = 2a2,

then

F15 =
1

4πε0
q2

2a2
.

By symmetry we expect that the magnitudes of F15, F16, and F17 will all be the same and they will
all be directed along the diagonals of the faces of the cube. In terms of components we would have

~F15 =
1

4πε0
q2

2a2

(
ĵ/
√

2 + k̂/
√

2
)
,

~F16 =
1

4πε0
q2

2a2

(̂
i/
√

2 + k̂/
√

2
)
,

~F17 =
1

4πε0
q2

2a2

(̂
i/
√

2 + ĵ/
√

2
)
.

The last force is the force from charge 8 on charge 1, and is given by

F18 =
1

4πε0
q2

r2
18

,

and is directed along the cube diagonal away from charge 8. The distance r18 is also the cube
diagonal distance, and can be found from

r2
18 = a2 + a2 + a2 = 3a2,

then in term of components

~F18 =
1

4πε0
q2

3a2

(̂
i/
√

3 + ĵ/
√

3 + k̂/
√

3
)
.

We can add the components together. By symmetry we expect the same answer for each com-
ponents, so we’ll just do one. How about î. This component has contributions from charge 2, 6, 7,
and 8:

1
4πε0

q2

a2

(
1
1

+
2

2
√

2
+

1
3
√

3

)
,

or
1

4πε0
q2

a2
(1.90)

The three components add according to Pythagoras to pick up a final factor of
√

3, so

F net = (0.262)
q2

ε0a2
.
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E25-14 (a) Yes. Changing the sign of y will change the sign of Fy; since this is equivalent to
putting the charge q0 on the “other” side, we would expect the force to also push in the “other”
direction.

(b) The equation should look Eq. 25-15, except all y’s should be replaced by x’s. Then

Fx =
1

4πε0
q0 q

x
√
x2 + L2/4

.

(c) Setting the particle a distance d away should give a force with the same magnitude as

F =
1

4πε0
q0 q

d
√
d2 + L2/4

.

This force is directed along the 45◦ line, so Fx = F cos 45◦ and Fy = F sin 45◦.
(d) Let the distance be d =

√
x2 + y2, and then use the fact that Fx/F = cos θ = x/d. Then

Fx = F
x

d
=

1
4πε0

x q0 q

(x2 + y2 + L2/4)3/2
.

and
Fy = F

y

d
=

1
4πε0

y q0 q

(x2 + y2 + L2/4)3/2
.

E25-15 (a) The equation is valid for both positive and negative z, so in vector form it would read

~F = Fzk̂ =
1

4πε0
q0 q z

(z2 +R2)3/2
k̂.

(b) The equation is not valid for both positive and negative z. Reversing the sign of z should
reverse the sign of Fz, and one way to fix this is to write 1 = z/

√
z2. Then

~F = Fzk̂ =
1

4πε0
2q0 qz

R2

(
1√
z2
− 1√

z2

)
k̂.

E25-16 Divide the rod into small differential lengths dr, each with charge dQ = (Q/L)dr. Each
differential length contributes a differential force

dF =
1

4πε0
q dQ

r2
=

1
4πε0

qQ

r2L
dr.

Integrate:

F =
∫
dF =

∫ x+L

x

1
4πε0

qQ

r2L
dr,

=
1

4πε0
qQ

L

(
1
x
− 1
x+ L

)
E25-17 You must solve Ex. 16 before solving this problem! q0 refers to the charge that had been
called q in that problem. In either case the distance from q0 will be the same regardless of the sign
of q; if q = Q then q will be on the right, while if q = −Q then q will be on the left.

Setting the forces equal to each other one gets

1
4πε0

qQ

L

(
1
x
− 1
x+ L

)
=

1
4πε0

qQ

r2
,

or
r =

√
x(x+ L).
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E25-18 You must solve Ex. 16 and Ex. 17 before solving this problem.
If all charges are positive then moving q0 off axis will result in a net force away from the axis.

That’s unstable.
If q = −Q then both q and Q are on the same side of q0. Moving q0 closer to q will result in the

attractive force growing faster than the repulsive force, so q0 will move away from equilibrium.

E25-19 We can start with the work that was done for us on Page 577, except since we are
concerned with sin θ = z/r we would have

dFx = dF sin θ =
1

4πε0
q0λ dz

(y2 + z2)
z√

y2 + z2
.

We will need to take into consideration that λ changes sign for the two halves of the rod. Then

Fx =
q0λ

4πε0

(∫ 0

−L/2

−z dz
(y2 + z2)3/2

+
∫ L/2

0

+z dz
(y2 + z2)3/2

)
,

=
q0λ

2πε0

∫ L/2

0

z dz

(y2 + z2)3/2
,

=
q0λ

2πε0
−1√
y2 + z2

∣∣∣∣∣
L/2

0

,

=
q0λ

2πε0

(
1
y
− 1√

y2 + (L/2)2

)
.

E25-20 Use Eq. 25-15 to find the magnitude of the force from any one rod, but write it as

F =
1

4πε0
q Q

r
√
r2 + L2/4

,

where r2 = z2 +L2/4. The component of this along the z axis is Fz = Fz/r. Since there are 4 rods,
we have

F =
1
πε0

q Q z

r2
√
r2 + L2/4

,=
1
πε0

q Q z

(z2 + L2/4)
√
z2 + L2/2

,

Equating the electric force with the force of gravity and solving for Q,

Q =
πε0mg

qz
(z2 + L2/4)

√
z2 + L2/2;

putting in the numbers,

π(8.85×10−12C2/N·m2)(3.46×10−7kg)(9.8m/s2)
(2.45×10−12C)(0.214 m)

((0.214m)2+(0.25m)2/4)
√

(0.214m)2+(0.25m)2/2

so Q = 3.07×10−6C.

E25-21 In each case we conserve charge by making sure that the total number of protons is the
same on both sides of the expression. We also need to conserve the number of neutrons.

(a) Hydrogen has one proton, Beryllium has four, so X must have five protons. Then X must be
Boron, B.

(b) Carbon has six protons, Hydrogen has one, so X must have seven. Then X is Nitrogen, N.
(c) Nitrogen has seven protons, Hydrogen has one, but Helium has two, so X has 7 + 1− 2 = 6

protons. This means X is Carbon, C.
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E25-22 (a) Use Eq. 25-4:

F =
(8.99×109N·m2/C2)(2)(90)(1.60×10−19C)2

(12×10−15m)2
= 290 N.

(b) a = (290 N)/(4)(1.66×10−27kg) = 4.4×1028m/s2.

E25-23 Use Eq. 25-4:

F =
(8.99×109N·m2/C2)(1.60×10−19C)2

(282×10−12m)2
= 2.89×10−9N.

E25-24 (a) Use Eq. 25-4:

q =

√
(3.7×10−9N)(5.0×10−10m)2

(8.99×109N·m2/C2)
= 3.20×10−19C.

(b) N = (3.20×10−19C)/(1.60×10−19C) = 2.

E25-25 Use Eq. 25-4,

F =
1

4πε0
q1q2

r2
12

=
( 1

31.6× 10−19 C)( 1
31.6× 10−19 C)

4π(8.85× 10−12 C2/N ·m2)(2.6× 10−15 m)2
= 3.8 N.

E25-26 (a) N = (1.15×10−7C)/(1.60×10−19C) = 7.19×1011.
(b) The penny has enough electrons to make a total charge of −1.37×105C. The fraction is then

(1.15×10−7C)/(1.37×105C) = 8.40×10−13.

E25-27 Equate the magnitudes of the forces:

1
4πε0

q2

r2
= mg,

so

r =

√
(8.99×109N·m2/C2)(1.60×10−19C)2

(9.11×10−31kg)(9.81 m/s2)
= 5.07 m

E25-28 Q = (75.0 kg)(−1.60×10−19C)/(9.11×10−31kg) = −1.3×1013C.

E25-29 The mass of water is (250 cm3)(1.00 g/cm3) = 250 g. The number of moles of water is
(250 g)/(18.0 g/mol) = 13.9 mol. The number of water molecules is (13.9 mol)(6.02×1023mol−1) =
8.37×1024. Each molecule has ten protons, so the total positive charge is

Q = (8.37×1024)(10)(1.60×10−19C) = 1.34×107C.

E25-30 The total positive charge in 0.250 kg of water is 1.34×107C. Mary’s imbalance is then

q1 = (52.0)(4)(1.34×107C)(0.0001) = 2.79×105C,

while John’s imbalance is

q2 = (90.7)(4)(1.34×107C)(0.0001) = 4.86×105C,

The electrostatic force of attraction is then

F =
1

4πε0
q1q2

r2
= (8.99×109N ·m2/C2)

(2.79×105)(4.86×105)
(28.0 m)2

= 1.6×1018N.
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E25-31 (a) The gravitational force of attraction between the Moon and the Earth is

FG =
GMEMM

R2
,

where R is the distance between them. If both the Earth and the moon are provided a charge q,
then the electrostatic repulsion would be

FE =
1

4πε0
q2

R2
.

Setting these two expression equal to each other,

q2

4πε0
= GMEMM,

which has solution

q =
√

4πε0GMEMM,

=
√

4π(8.85×10−12C2/Nm2)(6.67×10−11Nm2/kg2)(5.98×1024kg)(7.36×1022kg),

= 5.71× 1013 C.

(b) We need
(5.71× 1013 C)/(1.60× 10−19 C) = 3.57× 1032

protons on each body. The mass of protons needed is then

(3.57× 1032)(1.67× 10−27 kg) = 5.97× 1065 kg.

Ignoring the mass of the electron (why not?) we can assume that hydrogen is all protons, so we
need that much hydrogen.

P25-1 Assume that the spheres initially have charges q1 and q2. The force of attraction between
them is

F1 =
1

4πε0
q1q2

r2
12

= −0.108 N,

where r12 = 0.500 m. The net charge is q1 + q2, and after the conducting wire is connected each
sphere will get half of the total. The spheres will have the same charge, and repel with a force of

F2 =
1

4πε0

1
2 (q1 + q2) 1

2 (q1 + q2)
r2
12

= 0.0360 N.

Since we know the separation of the spheres we can find q1 + q2 quickly,

q1 + q2 = 2
√

4πε0r2
12(0.0360 N) = 2.00µC

We’ll put this back into the first expression and solve for q2.

−0.108 N =
1

4πε0
(2.00µC− q2)q2

r2
12

,

−3.00× 10−12 C2 = (2.00µC− q2)q2,

0 = −q2
2 + (2.00µC)q2 + (1.73µC)2.

The solution is q2 = 3.0µC or q2 = −1.0µC. Then q1 = −1.0µC or q1 = 3.0µC.
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P25-2 The electrostatic force on Q from each q has magnitude qQ/4πε0a2, where a is the length
of the side of the square. The magnitude of the vertical (horizontal) component of the force of Q on
Q is

√
2Q2/16πε0a2.

(a) In order to have a zero net force on Q the magnitudes of the two contributions must balance,
so √

2Q2

16πε0a2
=

qQ

4πε0a2
,

or q =
√

2Q/4. The charges must actually have opposite charge.
(b) No.

P25-3 (a) The third charge, q3, will be between the first two. The net force on the third charge
will be zero if

1
4πε0

q q3

r2
31

=
1

4πε0
4q q3

r2
32

,

which will occur if
1
r31

=
2
r32

The total distance is L, so r31 + r32 = L, or r31 = L/3 and r32 = 2L/3.
Now that we have found the position of the third charge we need to find the magnitude. The

second and third charges both exert a force on the first charge; we want this net force on the first
charge to be zero, so

1
4πε0

q q3

r2
13

=
1

4πε0
q 4q
r2
12

,

or
q3

(L/3)2
=

4q
L2
,

which has solution q3 = −4q/9. The negative sign is because the force between the first and second
charge must be in the opposite direction to the force between the first and third charge.

(b) Consider what happens to the net force on the middle charge if is is displaced a small distance
z. If the charge 3 is moved toward charge 1 then the force of attraction with charge 1 will increase.
But moving charge 3 closer to charge 1 means moving charge 3 away from charge 2, so the force of
attraction between charge 3 and charge 2 will decrease. So charge 3 experiences more attraction to
ward the charge that it moves toward, and less attraction to the charge it moves away from. Sounds
unstable to me.

P25-4 (a) The electrostatic force on the charge on the right has magnitude

F =
q2

4πε0x2
,

The weight of the ball is W = mg, and the two forces are related by

F/W = tan θ ≈ sin θ = x/2L.

Combining, 2Lq2 = 4πε0mgx3, so

x =
(
q2L

2πε0

)1/3

.

(b) Rearrange and solve for q,

q =

√
2π(8.85×10−12C2/N ·m2)(0.0112 kg)(9.81 m/s2)(4.70×10−2m)3

(1.22 m)
= 2.28×10−8C.
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P25-5 (a) Originally the balls would not repel, so they would move together and touch; after
touching the balls would “split” the charge ending up with q/2 each. They would then repel again.

(b) The new equilibrium separation is

x′ =
(

(q/2)2L

2πε0mg

)1/3

=
(

1
4

)1/3

x = 2.96 cm.

P25-6 Take the time derivative of the expression in Problem 25-4. Then

dx

dt
=

2
3
x

q

dq

dt
=

2
3

(4.70×10−2m)
(2.28×10−8C)

(−1.20×10−9C/s) = 1.65×10−3m/s.

P25-7 The force between the two charges is

F =
1

4πε0
(Q− q)q
r2
12

.

We want to maximize this force with respect to variation in q, this means finding dF/dq and setting
it equal to 0. Then

dF

dq
=

d

dq

(
1

4πε0
(Q− q)q
r2
12

)
=

1
4πε0

Q− 2q
r2
12

.

This will vanish if Q− 2q = 0, or q = 1
2Q.

P25-8 Displace the charge q a distance y. The net restoring force on q will be approximately

F ≈ 2
qQ

4πε0
1

(d/2)2

y

(d/2)
=

qQ

4πε0
16
d3
y.

Since F/y is effectively a force constant, the period of oscillation is

T = 2π
√
m

k
=
(
ε0mπ

3d3

qQ

)1/2

.

P25-9 Displace the charge q a distance x toward one of the positive charges Q. The net restoring
force on q will be

F =
qQ

4πε0

(
1

(d/2− x)2
− 1

(d/2 + x)2

)
,

≈ qQ

4πε0
32
d3
x.

Since F/x is effectively a force constant, the period of oscillation is

T = 2π
√
m

k
=
(
ε0mπ

3d3

2qQ

)1/2

.
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P25-10 (a) Zero, by symmetry.
(b) Removing a positive Cesium ion is equivalent to adding a singly charged negative ion at that

same location. The net force is then
F = e2/4πε0r2,

where r is the distance between the Chloride ion and the newly placed negative ion, or

r =
√

3(0.20×10−9m)2

The force is then

F =
(1.6×10−19C)2

4π(8.85×10−12C2/N ·m2)3(0.20×10−9m)2
= 1.92×10−9N.

P25-11 We can pretend that this problem is in a single plane containing all three charges. The
magnitude of the force on the test charge q0 from the charge q on the left is

F l =
1

4πε0
q q0

(a2 +R2)
.

A force of identical magnitude exists from the charge on the right. we need to add these two forces
as vectors. Only the components along R will survive, and each force will contribute an amount

F l sin θ = F l
R√

R2 + a2
,

so the net force on the test particle will be

2
4πε0

q q0

(a2 +R2)
R√

R2 + a2
.

We want to find the maximum value as a function of R. This means take the derivative, and set it
equal to zero. The derivative is

2q q0

4πε0

(
1

(a2 +R2)3/2
− 3R2

(a2 +R2)5/2

)
,

which will vanish when
a2 +R2 = 3R2,

a simple quadratic equation with solutions R = ±a/
√

2.
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E26-1 E = F/q = ma/q. Then

E = (9.11×10−31kg)(1.84×109m/s2)/(1.60×10−19C) = 1.05×10−2N/C.

E26-2 The answers to (a) and (b) are the same!
F = Eq = (3.0×106N/C)(1.60×10−19C) = 4.8×10−13N.

E26-3 F = W , or Eq = mg, so

E =
mg

q
=

(6.64× 10−27 kg)(9.81 m/s2)
2(1.60× 10−19 C)

= 2.03× 10−7 N/C.

The alpha particle has a positive charge, this means that it will experience an electric force which
is in the same direction as the electric field. Since the gravitational force is down, the electric force,
and consequently the electric field, must be directed up.

E26-4 (a) E = F/q = (3.0×10−6N)/(2.0×10−9C) = 1.5×103N/C.
(b) F = Eq = (1.5×103N/C)(1.60×10−19C) = 2.4×10−16N.
(c) F = mg = (1.67×10−27kg)(9.81 m/s2) = 1.6×10−26N.
(d) (2.4×10−16N)/(1.6×10−26N) = 1.5×1010.

E26-5 Rearrange E = q/4πε0r2,

q = 4π(8.85×10−12C2/N ·m2)(0.750 m)2(2.30 N/C) = 1.44×10−10C.

E26-6 p = qd = (1.60×10−19C)(4.30×10−9) = 6.88×10−28C ·m.

E26-7 Use Eq. 26-12 for points along the perpendicular bisector. Then

E =
1

4πε0
p

x3
= (8.99× 109N ·m2/C2)

(3.56× 10−29 C ·m)
(25.4× 10−9 m)3

= 1.95× 104N/C.

E26-8 If the charges on the line x = a where +q and −q instead of +2q and −2q then at the
center of the square E = 0 by symmetry. This simplifies the problem into finding E for a charge +q
at (a, 0) and −q at (a, a). This is a dipole, and the field is given by Eq. 26-11. For this exercise we
have x = a/2 and d = a, so

E =
1

4πε0
qa

[2(a/2)2]3/2
,

or, putting in the numbers, E = 1.11×105N/C.

E26-9 The charges at 1 and 7 are opposite and can be effectively replaced with a single charge of
−6q at 7. The same is true for 2 and 8, 3 and 9, on up to 6 and 12. By symmetry we expect the
field to point along a line so that three charges are above and three below. That would mean 9:30.

E26-10 If both charges are positive then Eq. 26-10 would read E = 2E+ sin θ, and Eq. 26-11
would look like

E = 2
1

4πε0
q

x2 + (d/2)2

x√
x2 + (d/2)2

,

≈ 2
1

4πε0
q

x2

x√
x2

when x� d. This can be simplified to E = 2q/4πε0x2.
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E26-11 Treat the two charges on the left as one dipole and treat the two charges on the right as
a second dipole. Point P is on the perpendicular bisector of both dipoles, so we can use Eq. 26-12
to find the two fields.

For the dipole on the left p = 2aq and the electric field due to this dipole at P has magnitude

El =
1

4πε0
2aq

(x+ a)3

and is directed up.
For the dipole on the right p = 2aq and the electric field due to this dipole at P has magnitude

Er =
1

4πε0
2aq

(x− a)3

and is directed down.
The net electric field at P is the sum of these two fields, but since the two component fields point

in opposite directions we must actually subtract these values,

E = Er − El,

=
2aq
4πε0

(
1

(x− a)3
− 1

(x+ a)3

)
,

=
aq

2πε0
1
x3

(
1

(1− a/x)3
− 1

(1 + a/x)3

)
.

We can use the binomial expansion on the terms containing 1± a/x,

E ≈ aq

2πε0
1
x3

((1 + 3a/x)− (1− 3a/x)) ,

=
aq

2πε0
1
x3

(6a/x) ,

=
3(2qa2)
2πε0x4

.

E26-12 Do a series expansion on the part in the parentheses

1− 1√
1 +R2/z2

≈ 1−
(

1− 1
2
R2

z2

)
=
R2

2z2
.

Substitute this in,

Ez ≈
σ

2ε0
R2

2z2

π

π
=

Q

4πε0z2
.

E26-13 At the surface z = 0 and Ez = σ/2ε0. Half of this value occurs when z is given by

1
2

= 1− z√
z2 +R2

,

which can be written as z2 +R2 = (2z)2. Solve this, and z = R/
√

3.

E26-14 Look at Eq. 26-18. The electric field will be a maximum when z/(z2 + R2)3/2 is a
maximum. Take the derivative of this with respect to z, and get

1
(z2 +R2)3/2

− 3
2

2z2

(z2 +R2)5/2
=
z2 +R2 − 3z2

(z2 +R2)5/2
.

This will vanish when the numerator vanishes, or when z = R/
√

2.
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E26-15 (a) The electric field strength just above the center surface of a charged disk is given by
Eq. 26-19, but with z = 0,

E =
σ

2ε0
The surface charge density is σ = q/A = q/(πR2). Combining,

q = 2ε0πR2E = 2(8.85× 10−12 C2/N ·m2)π(2.5× 10−2m)2(3× 106 N/C) = 1.04× 10−7C.

Notice we used an electric field strength of E = 3 × 106 N/C, which is the field at air breaks down
and sparks happen.

(b) We want to find out how many atoms are on the surface; if a is the cross sectional area of
one atom, and N the number of atoms, then A = Na is the surface area of the disk. The number
of atoms is

N =
A

a
=

π(0.0250 m)2

(0.015× 10−18 m2)
= 1.31× 1017

(c) The total charge on the disk is 1.04× 10−7C, this corresponds to

(1.04× 10−7C)/(1.6× 10−19C) = 6.5× 1011

electrons. (We are ignoring the sign of the charge here.) If each surface atom can have at most one
excess electron, then the fraction of atoms which are charged is

(6.5× 1011)/(1.31× 1017) = 4.96× 10−6,

which isn’t very many.

E26-16 Imagine switching the positive and negative charges. The electric field would also need
to switch directions. By symmetry, then, the electric field can only point vertically down. Keeping
only that component,

E = 2
∫ π/2

0

1
4πε0

λdθ

r2
sin θ,

=
2

4πε0
λ

r2
.

But λ = q/(π/2), so E = q/π2ε0r
2.

E26-17 We want to fit the data to Eq. 26-19,

Ez =
σ

2ε0

(
1− z√

z2 +R2

)
.

There are only two variables, R and q, with q = σπR2.
We can find σ very easily if we assume that the measurements have no error because then at the

surface (where z = 0), the expression for the electric field simplifies to

E =
σ

2ε0
.

Then σ = 2ε0E = 2(8.854× 10−12 C2/N ·m2)(2.043× 107 N/C) = 3.618× 10−4 C/m2.
Finding the radius will take a little more work. We can choose one point, and make that the

reference point, and then solve for R. Starting with

Ez =
σ

2ε0

(
1− z√

z2 +R2

)
,
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and then rearranging,

2ε0Ez
σ

= 1− z√
z2 +R2

,

2ε0Ez
σ

= 1− 1√
1 + (R/z)2

,

1√
1 + (R/z)2

= 1− 2ε0Ez
σ

,

1 + (R/z)2 =
1

(1− 2ε0Ez/σ)2 ,

R

z
=

√
1

(1− 2ε0Ez/σ)2 − 1.

Using z = 0.03 m and Ez = 1.187 × 107 N/C, along with our value of σ = 3.618 × 10−4 C/m2, we
find

R

z
=

√
1

(1− 2(8.854×10−12C2/Nm2)(1.187×107N/C)/(3.618×10−4C/m2))2 − 1,

R = 2.167(0.03 m) = 0.065 m.

(b) And now find the charge from the charge density and the radius,

q = πR2σ = π(0.065 m)2(3.618× 10−4 C/m2) = 4.80µC.

E26-18 (a) λ = −q/L.
(b) Integrate:

E =
∫ L+a

a

1
4πε0

λ dxx2,

=
λ

4πε0

(
1
a
− 1
L+ a

)
,

=
q

4πε0
1

a(L+ a)
,

since λ = q/L.
(c) If a� L then L can be replaced with 0 in the above expression.

E26-19 A sketch of the field looks like this.
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E26-20 (a) F = Eq = (40 N/C)(1.60×10−19C) = 6.4×10−18N
(b) Lines are twice as far apart, so the field is half as large, or E = 20N/C.

E26-21 Consider a view of the disk on edge.

E26-22 A sketch of the field looks like this.
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E26-23 To the right.

E26-24 (a) The electric field is zero nearer to the smaller charge; since the charges have opposite
signs it must be to the right of the +2q charge. Equating the magnitudes of the two fields,

2q
4πε0x2

=
5q

4πε0(x+ a)2
,

or √
5x =

√
2(x+ a),

which has solution

x =
√

2 a√
5−
√

2
= 2.72a.

E26-25 This can be done quickly with a spreadsheet.

d
x

E

E26-26 (a) At point A,

E =
1

4πε0

(
− q

d2
− −2q

(2d)2

)
=

1
4πε0

−q
2d2

,
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