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A Note To The Instructor...

The solutions here are somewhat brief, as they are designed for the instructor, not for the student.
Check with the publishers before electronically posting any part of these solutions; website, ftp, or
server access must be restricted to your students.

I have been somewhat casual about subscripts whenever it is obvious that a problem is one
dimensional, or that the choice of the coordinate system is irrelevant to the numerical solution.
Although this does not change the validity of the answer, it will sometimes obfuscate the approach
if viewed by a novice.

There are some traditional formula, such as

2 _
=

v vgx + 2a,x,

which are not used in the text. The worked solutions use only material from the text, so there may
be times when the solution here seems unnecessarily convoluted and drawn out. Yes, I know an
easier approach existed. But if it was not in the text, I did not use it here.

I also tried to avoid reinventing the wheel. There are some exercises and problems in the text
which build upon previous exercises and problems. Instead of rederiving expressions, I simply refer
you to the previous solution.

I adopt a different approach for rounding of significant figures than previous authors; in partic-
ular, I usually round intermediate answers. As such, some of my answers will differ from those in
the back of the book.

Exercises and Problems which are enclosed in a box also appear in the Student’s Solution Manual
with considerably more detail and, when appropriate, include discussion on any physical implications
of the answer. These student solutions carefully discuss the steps required for solving problems, point
out the relevant equation numbers, or even specify where in the text additional information can be
found. When two almost equivalent methods of solution exist, often both are presented. You are
encouraged to refer students to the Student’s Solution Manual for these exercises and problems.
However, the material from the Student’s Solution Manual must not be copied.

Paul Stanley
Beloit College
stanley@clunet.edu


http://physics.callutheran.edu/~stanley
http://www.beloit.edu/
mailto:stanley@clunet.edu

E25-1| The charge transferred is

Q= (2.5x10*C/s)(20 x 107%s) = 5.0 x 10~ C.

E25-2 Use Eq. 25-4:

ON.m2 /(2 —6 -6
. [(899x109N-m2/C2)(26.3x 10-°C)(47.1x105C) _
(5.66N)
E25-3 Use Eq. 25-4:
I 2 /(12 -6 —6
P (8.99x10°N-m*/C#)(3.12x107°C)(1.48 x 10~°C) — 2.74N.

(0.1231m)2
E25-4 (a) The forces are equal, so mja; = maas, or
my = (6.31x10™ "kg)(7.22m/s?)/(9.16 m/s?) = 4.97x 10~ "kg.

(b) Use Eq. 25-4:

=7.20x10"11C

(63110 Tkg)(7.22m/52)(3.20 X 10~3m)?2
1= (8.99 x 109N -m2,/C?2)

(a) Use Eq. 25-4,

I q1g2 1 (21.3 uC)(21.3 uC)

= = =1.77TN
dmeg 12, 4Am(8.85x10712C2/N - m?2) (1.52m)?

(b) In part (a) we found Fia; to solve part (b) we need to first find Fi3. Since g3 = ¢2 and
r13 = r12, we can immediately conclude that Fj3 = Fis.

We must assess the direction of the force of g3 on ¢p; it will be directed along the line which
connects the two charges, and will be directed away from ¢3. The diagram below shows the directions.

E
23

From this diagram we want to find the magnitude of the net force on ¢;. The cosine law is
appropriate here:

Foet® = FL+F%4 —2F5Fi3c080,
= (L77N)? 4+ (1.77N)? — 2(1.77N)(1.77 N) cos(120°),
= 9.40N?,

Fnet = 3.07N.



E25-6 Originally Fy = CQ3 = 0.088N, where C is a constant. When sphere 3 touches 1 the
charge on both becomes Qo/2. When sphere 3 the touches sphere 2 the charge on each becomes
(Qo + Qo0/2)/2 = 3Qu/4. The force between sphere 1 and 2 is then

F = C(Qo/2)(3Q0/4) = (3/8)CQj = (3/8)Fy = 0.033N.

E25-7| The forces on g3 are ﬁgl and F3y. These forces are given by the vector form of Coulomb’s
Law, Eq. 25-5,

= 1 Bh, 1 g :

ot Areg 12, O 4meg (2d)2 Y
- 1 g3q2, 1 g3q0,
Fo, — 3q2. 342

I32 = o l32-
2
dmey T3 4reg (d)?

These two forces are the only forces which act on g3, so in order to have g3 in equilibrium the forces
must be equal in magnitude, but opposite in direction. In short,

Fs1 = —Fg,

L e, 1w,
dreg (2d)2°" dreq (d)2 %%
Bin = Ly,

4 1

Note that r3; and I3 both point in the same direction and are both of unit length. We then get
Q= —4ga.

E25-8 The horizontal and vertical contributions from the upper left charge and lower right charge
are straightforward to find. The contributions from the upper left charge require slightly more work.
The diagonal distance is v/2a; the components will be weighted by cos45° = v/2/2. The diagonal
charge will contribute

L (@29 v2; _ V2 ¢
dmen (v/2a)? 2 "~ 8meg a?’
1 (9)(20) V2: _ V2 ¢
dmeg (v/2a)? 2 J 8meq a2y

F, =

F, =

(a) The horizontal component of the net force is then
L (QQ)(29)§+ V2 fi

dmeg a2 8meg a2’

4+ \/5/ 2q%;

— =i
dmeg  a?”’

= (4.707)(8.99x 10°N - m?/C?)(1.13x1075C)?/(0.152m)% = 2.34 N i.

F, =

(b) The vertical component of the net force is then

- 1 (Q)(2Q):+ V2 fj
dmey  a? S8mep a2’
—2+\/§/2 q
8meg az)’
= (—1.293)(8.99x10°N - m?/C?)(1.13x1075C)2/(0.152m)%j = —0.642N j.

r, =



E25-9 The magnitude of the force on the negative charge from each positive charge is
F = (8.99x10°N - m?/C?)(4.18 x1075C)(6.36 x 107°C) /(0.13 m)? = 14.1N.

The force from each positive charge is directed along the side of the triangle; but from symmetry
only the component along the bisector is of interest. This means that we need to weight the above
answer by a factor of 2cos(30°) = 1.73. The net force is then 24.5N.

E25-10 Let the charge on one sphere be ¢, then the charge on the other sphere is @ = (52.6 x
107°C) — q. Then
1
©Q _ g
4meq 12

(8.99x 10°N-m?/C?)¢(52.6 x 1075C — ¢) =

(1.19N)(1.94 m)?,

Solve this quadratic expression for ¢ and get answers q; = 4.02x107°C and ¢z = 1.24x 107 6N.

E25-11| This problem is similar to Ex. 25-7. There are some additional issues, however. It is
easy enough to write expressions for the forces on the third charge

= L g3q1
Fsi = ——5 T3,
dmeg 15,
= L g3q2,
F3» = ———5-13.
4dmeg 13,
Then
F31 = —Fay,
1 Bh, 1 4392
—5-Tr3 = - =5 T32
4reg 134 dreg 135 7
q1 i _ q2 ¢
T3 = — T3
731 T32

The only way to satisfy the vector nature of the above expression is to have t3; = 4r3s; this means
that g3 must be collinear with ¢; and ¢2. g3 could be between ¢; and g2, or it could be on either
side. Let’s resolve this issue now by putting the values for ¢; and ¢o into the expression:

(1.07 uC) . (—3.28uC) .
— %5 ;1 = ———5 I,
31 732
riyt31 = (3.07)r3F30.

Since squared quantities are positive, we can only get this to work if '3; = 32, so g3 is not between
q1 and qo. We are then left with
2 2
T340 = (3.07)r5,

so that g3 is closer to ¢; than it is to go. Then r3s = r3; + 1192 = r31 + 0.618 m, and if we take the
square root of both sides of the above expression,

rg1 + (0.618m) = (3.07)r31,
(0.618m) = +/(3.07)rs; — 31,
(0.618m) = 0.752rs1,
0.822m r31



E25-12 The magnitude of the magnetic force between any two charges is kq?/a?, where a =
0.153m. The force between each charge is directed along the side of the triangle; but from symmetry
only the component along the bisector is of interest. This means that we need to weight the above
answer by a factor of 2cos(30°) = 1.73. The net force on any charge is then 1.73kq?/a?.

The length of the angle bisector, d, is given by d = a cos(30°).

The distance from any charge to the center of the equilateral triangle is z, given by x2 =
(a/2)? + (d — x)2. Then

x = a®/8d +d/2 = 0.644a.

The angle between the strings and the plane of the charges is 6, given by
sinf = z/(1.17m) = (0.644)(0.153m)/(1.17m) = 0.0842,

or § = 4.83°.
The force of gravity on each ball is directed vertically and the electric force is directed horizontally.

The two must then be related by
tanf = Fg/Fg,

SO
1.73(8.99 x 10°N - m? /C?)¢?/(0.153 m)? = (0.0133 kg)(9.81 m/s?) tan(4.83°),

or g =1.29x107"C.
E25-13| On any corner charge there are seven forces; one from each of the other seven charges.

The net force will be the sum. Since all eight charges are the same all of the forces will be repulsive.
We need to sketch a diagram to show how the charges are labeled.

2
1
o o

o s 7

'® O 3

N v

8 © O
5

The magnitude of the force of charge 2 on charge 1 is

where r15 = a, the length of a side. Since both charges are the same we wrote ¢2. By symmetry we
expect that the magnitudes of Fis5, Fi3, and Fi4 will all be the same and they will all be at right
angles to each other directed along the edges of the cube. Written in terms of vectors the forces



would be

- 1 q2 o
F = —=i
12 47eq a?
_ 1 q2 o
F = —=j

13 dmey a2
- 1 q2 R
F = =
14 47eq a?
The force from charge 5 is
1 q2
Fis = ——-,
4dmeg i

and is directed along the side diagonal away from charge 5. The distance r15 is also the side diagonal

distance, and can be found from
ris = a® + a® = 2a°,

then

By symmetry we expect that the magnitudes of Fi5, Fig, and Fj7 will all be the same and they will
all be directed along the diagonals of the faces of the cube. In terms of components we would have

Fis - 47716 2 (i/v2+&/V2),
Fio = 47716 2 242 (/\f“‘/\f)
47T€ 2_2 (1/\/_+']/\/_)

The last force is the force from charge 8 on charge 1, and is given by

and is directed along the cube diagonal away from charge 8. The distance r1g is also the cube
diagonal distance, and can be found from

ris = a® + a® + a* = 3d?,

then in term of components

Fig = (/\/_+J/\/_+k/\/_)

47re 32

We can add the components together. By symmetry we expect the same answer for each com-
ponents, so we’ll just do one. How about i. This component has contributions from charge 2, 6, 7,

and 8:

1 ¢ /(1 2 1
S|ttt
drega? \1  2/2 33
1 ¢
4ey a2

(1.90)

The three components add according to Pythagoras to pick up a final factor of v/3, so

2

Flet = (0.262)—— €0a2



E25-14 (a) Yes. Changing the sign of y will change the sign of F); since this is equivalent to
putting the charge gy on the “other” side, we would expect the force to also push in the “other”
direction.

(b) The equation should look Eq. 25-15, except all y’s should be replaced by z’s. Then

1 q4q
dmeo xv/22 + L2]4

(c) Setting the particle a distance d away should give a force with the same magnitude as

F, =

_ 1 Q4
 dmeo dy/d? + L2/4
This force is directed along the 45° line, so F,, = F'cos45° and F,, = F'sin45°.
(d) Let the distance be d = y/22 4 y2, and then use the fact that F,/F = cosf = z/d. Then

x 1 Zqoq
F,=F=- = )
d ~— 4dmeq (22 + y? + L2/4)3/2

and

Yy 1 Yqoq
F =FZ = .
Y d  4dme (22 +y2 + L2/4)3/2

E25-15 (a) The equation is valid for both positive and negative z, so in vector form it would read

1 qoqz -

F=Fk=
drey (22 + R2)3/2

(b) The equation is not valid for both positive and negative z. Reversing the sign of z should
reverse the sign of F}, and one way to fix this is to write 1 = z/v/22. Then

— N 1 2q0qz 1 1 N
F=Fk= - k.
dmey R2 (\/;2 \/;2)

E25-16 Divide the rod into small differential lengths dr, each with charge dQ = (Q/L)dr. Each
differential length contributes a differential force

1 qd@ _ 1 ¢Q
4meg 12 4meq r2L

F = dF = d
/ / 471'60 7‘2L "

_ 1 4@
47reOL x 3:+L

E25-17 You must solve Ex. 16 before solving this problem! gy refers to the charge that had been
called ¢ in that problem. In either case the distance from ¢y will be the same regardless of the sign
of g; if ¢ = @ then g will be on the right, while if ¢ = —@Q then ¢ will be on the left.

Setting the forces equal to each other one gets

1 4Q 1LY _ 1 qQ
dreg L \z x4+ L Ameg 127

r=+/z(x+L).

dF =

Integrate:

or



E25-18 You must solve Ex. 16 and Ex. 17 before solving this problem.

If all charges are positive then moving gg off axis will result in a net force away from the axis.
That’s unstable.

If ¢ = —Q then both ¢ and @ are on the same side of gqg. Moving gy closer to ¢ will result in the
attractive force growing faster than the repulsive force, so gy will move away from equilibrium.

E25-19| We can start with the work that was done for us on Page 577, except since we are
concerned with sinf = z/r we would have

1 goAdz z
dmeg (Y2 + 22) \/y2 + 22

We will need to take into consideration that A changes sign for the two halves of the rod. Then

Foo— qoA /0 —zdz +/L/2 +zdz
T Adrwe —L)2 (y% + z2)3/2 0 (y2 + z2)3/2 )

QoA /L/2 zdz
 2meo Jo o (y2 +22)3/2)

L/2

dF, = dFsinf =

qoA -1

27('60 A /y2 —+ 22

0
o QQ/\ 1 1
2reo \y V2 +(L/2)?)
E25-20 Use Eq. 25-15 to find the magnitude of the force from any one rod, but write it as
po L qQ
dmeo r\/r2 + L2/4°
where 72 = 22 + L% /4. The component of this along the z axis is F, = Fz/r. Since there are 4 rods,

we have
1 qQz 1 qQz

T meor2\/r2 + L2/4’  meo (22 + L2/4)\/22 + L2)2

Equating the electric force with the force of gravity and solving for @,

= —Weomg(zQ + L2 /4)\/22 + L2/2;
qz

putting in the numbers,

7(8.85x10712C? /N-m?)(3.46 x 10~ "kg)(9.8m/s?)

(2,45 10-12C)(0.214 ) ((0.214m)?+(0.25m)? /4)1/(0.214m)2 +(0.25m)?2 /2

so Q =3.07x1076C.

In each case we conserve charge by making sure that the total number of protons is the
same on both sides of the expression. We also need to conserve the number of neutrons.

(a) Hydrogen has one proton, Beryllium has four, so X must have five protons. Then X must be
Boron, B.

(b) Carbon has six protons, Hydrogen has one, so X must have seven. Then X is Nitrogen, N.

(c) Nitrogen has seven protons, Hydrogen has one, but Helium has two, so X has 7+ 1 -2 =6
protons. This means X is Carbon, C.



E25-22 (a) Use Eq. 25-4:
(8.99x 109N-m?2/C?2)(2)(90)(1.60 x 10-12C)?

F= (1210~ 55m)? =290N.
(b) a = (290N)/(4)(1.66 x 10~2"kg) = 4.4x 10%m/s>.
E25-23 Use Eq. 25-4:
7o (8:99x 1091(\12';1211/5()2)%;?1()); 070 _ 5 89%10-N.
E25-24 (a) Use Eq. 25-4:
q= \/(3'7?8_139ilfég?\}?;lzl;)czlsm)g =3.20x1071°C.
(b) N = (3.20x1071C)/(1.60x 10~1°C) = 2.
Use Eq. 25-4,
po L @e (21.6 x 10719 C)(31.6 x 10712 C) __3sN.

 dmeg 13, 4m(8.85 x 10712 C2/N - m?)(2.6 x 10-15m)

E25-26 (a) N = (1.15x1077C)/(1.60x 1071°C) = 7.19x 1011,
(b) The penny has enough electrons to make a total charge of —1.37x105C. The fraction is then

(1.15x1077C) /(1.37x 10°C) = 8.40x 10713,

E25-27 Equate the magnitudes of the forces:
1 g2
—— 1 _m
4meg r? 9

SO

=5.07m

o [(8:99X10°N-m?/C?)(1.60x10~19C)?
B (9.11x10~31kg)(9.81 m/s2)

E25-28 Q = (75.0kg)(—1.60x1071°C)/(9.11x 10~-3kg) = —1.3x 10'3C.

E25-29 The mass of water is (250 cm?3)(1.00 g/em®) = 250 g. The number of moles of water is
(250 g)/(18.0 g/mol) = 13.9 mol. The number of water molecules is (13.9 mol)(6.02x10%*mol™*) =
8.37x10%%. Each molecule has ten protons, so the total positive charge is

Q = (8.37x10%*)(10)(1.60 x 10~ *°C) = 1.34x 107 C.

E25-30 The total positive charge in 0.250 kg of water is 1.34x 107C. Mary’s imbalance is then
q1 = (52.0)(4)(1.34x 107C)(0.0001) = 2.79x 10°C,

while John’s imbalance is
g2 = (90.7)(4)(1.34x 107C)(0.0001) = 4.86x 10°C,

The electrostatic force of attraction is then

_ 1 age
dmey 12

(2.79x10°)(4.86 x 105)

= 1.6x10'N.
(28.0m)? 610

= (8.99x10°N - m?/C?)




E25-31| (a) The gravitational force of attraction between the Moon and the Earth is

GMgMy
Fo=""p
where R is the distance between them. If both the Earth and the moon are provided a charge ¢,
then the electrostatic repulsion would be

1 ¢?
Fg = =
B 4deq R2
Setting these two expression equal to each other,
¢
=GMgMuy,
4eq

which has solution

q = 4regGMgM,yy,
= \/47r(8.85 x10~12C2/Nm?2)(6.67 x 10~ 11 Nm?/kg?)(5.98 x 1024kg) (7.36 x 1022kg),
= 5.71 x 103 C.

(b) We need
(5.71 x 10" C)/(1.60 x 10712 C) = 3.57 x 10*?

protons on each body. The mass of protons needed is then
(3.57 x 103%)(1.67 x 10~ %" kg) = 5.97 x 105 kg.

Ignoring the mass of the electron (why not?) we can assume that hydrogen is all protons, so we
need that much hydrogen.

P25-1| Assume that the spheres initially have charges ¢; and ¢». The force of attraction between

them is

O LU BTN

= 2
4dmeg Ty

where r12 = 0.500m. The net charge is ¢; + g2, and after the conducting wire is connected each
sphere will get half of the total. The spheres will have the same charge, and repel with a force of

1 3(q+a2)5(q1 + q2)

=
47ep %y

= 0.0360 N.

Since we know the separation of the spheres we can find ¢ + g2 quickly,

G t+q= 2\/47r60r%2(0.0360 N) =2.00 uC

We’ll put this back into the first expression and solve for g¢s.
1 (2.00 uC — q2)q2

—0.108 N =

47eq 2y ’
—3.00 x 10712C? = (2.00 uC — ¢2)qo,
0 = —¢%+(2.00uC)q + (1.73 uC)>.

The solution is go = 3.0 uC or g2 = —1.0 uC. Then ¢; = —1.0 uC or ¢; = 3.0 uC.

10



P25-2 The electrostatic force on @ from each ¢ has magnitude qQ/4mweqa?, where a is the length
of the side of the square. The magnitude of the vertical (horizontal) component of the force of @ on
Q is V2Q?/16mepa®.

(a) In order to have a zero net force on @ the magnitudes of the two contributions must balance,

V2Q2  qQ

16mega?  4mega?’

SO

or ¢ =v2Q /4. The charges must actually have opposite charge.
(b) No.

P25-3| (a) The third charge, g3, will be between the first two. The net force on the third charge

will be zero if
1 q4q3 _ 1 4qqs

2 = 2
dmeg T3 dmeg T3

which will occur if
1 2

31 732
The total distance is L, so 131 +r32 = L, or 31 = L/3 and r3s = 2L/3.

Now that we have found the position of the third charge we need to find the magnitude. The
second and third charges both exert a force on the first charge; we want this net force on the first
charge to be zero, so

1 gqqs 1 q4q

2 = 2 0
4dmeg T3 4meg Ty

or
w4
(L/3)*  L*

which has solution g3 = —4¢/9. The negative sign is because the force between the first and second

charge must be in the opposite direction to the force between the first and third charge.

(b) Consider what happens to the net force on the middle charge if is is displaced a small distance
z. If the charge 3 is moved toward charge 1 then the force of attraction with charge 1 will increase.
But moving charge 3 closer to charge 1 means moving charge 3 away from charge 2, so the force of
attraction between charge 3 and charge 2 will decrease. So charge 3 experiences more attraction to
ward the charge that it moves toward, and less attraction to the charge it moves away from. Sounds
unstable to me.

P25-4 (a) The electrostatic force on the charge on the right has magnitude
7

dmeqr?’

F

The weight of the ball is W = mg, and the two forces are related by
F/W =tanf ~sinf = z/2L.

- 2L 1/3
= 27eg )

 [27(8.85x10712C2/N - m2)(0.0112 kg)(9.81 m/52)(4.70 x 102m)?
= (1.22m)

Combining, 2Lq? = 4megmga?, so

(b) Rearrange and solve for g,

=92.28%x1078C.

11



P25-5 (a) Originally the balls would not repel, so they would move together and touch; after
touching the balls would “split” the charge ending up with ¢/2 each. They would then repel again.
(b) The new equilibrium separation is

v = (M)/ - (1)”395 — 296 e,

2megmyg 4

P25-6 Take the time derivative of the expression in Problem 25-4. Then

dr  2xdg 2 (4.70x107%m) 9 _3
— = = 7(_-1.20x1077C =1.65x10 .
& 3gdt 3 @asxio—=0) 20X /%) X107 m/s

P25-7| The force between the two charges is

1 _
P (@ X 2
dmeg Ty

We want to maximize this force with respect to variation in ¢, this means finding dF'/dq and setting
it equal to 0. Then

ﬂ_i( 1 (Q—q)q> _ 1 Q-2

dg  dg \ 4meg r?, " 4meg r2,

This will vanish if Q —2¢ =0, or ¢ = %Q

P25-8 Displace the charge ¢ a distance y. The net restoring force on g will be approximately

0@ 1y Q16
dmeo (d/2)2 (d)2) ~ dmeg B

Since F'/y is effectively a force constant, the period of oscillation is

3 73\ 1/2
T:%/@:Gﬂﬂi>,
k qQ

P25-9 Displace the charge g a distance x toward one of the positive charges ). The net restoring
force on ¢ will be

Fo— qQ ( 1 B 1 )
dmeg \(d/2 — )2 (d/2+2)%2)’
qQ 32
47eg ﬁm

Since F/x is effectively a force constant, the period of oscillation is

T o M _ (Gmmd”\
k 2qQ

12



P25-10 (a) Zero, by symmetry.
(b) Removing a positive Cesium ion is equivalent to adding a singly charged negative ion at that
same location. The net force is then
F = e? Jdmegr?,

where 7 is the distance between the Chloride ion and the newly placed negative ion, or

7= +/3(0.20 x 10~%m)?2
The force is then

e (1.6x10719C)?

= =1.92x107°N.
47(8.85x 10~12C2 /N - m2)3(0.20 x 10~9m)?2 x

P25-11| We can pretend that this problem is in a single plane containing all three charges. The
magnitude of the force on the test charge gy from the charge g on the left is

_ 1 4490
drey (a® + R2)”

F

A force of identical magnitude exists from the charge on the right. we need to add these two forces
as vectors. Only the components along R will survive, and each force will contribute an amount

R

Fisinf = F|————,
: VRt a?

so the net force on the test particle will be

2 q 40 R
dmeg (a2 + R2?) /R2 + a2

We want to find the maximum value as a function of R. This means take the derivative, and set it
equal to zero. The derivative is

2q qo 1 B 3R?
dmeg \ (a2 + R2)3/2 (a2 + R2)5/2 )"

which will vanish when

a’* + R* = 3R?,
a simple quadratic equation with solutions R = :ta/\/§.

13



E26-1 FE = F/q=ma/q. Then
E = (9.11x1073%g)(1.84x 10°m/s?)/(1.60x 10~'C) = 1.05x 10~ 2N/C.

E26-2 The answers to (a) and (b) are the same!
F=Eq=(3.0x10°N/C)(1.60x10719C) = 4.8 x 10~ 13N.

F=W,or Eq=mg, so

mg  (6.64 x 10727 kg)(9.81m/s?) .
E=-—"= =2. 107" N/C.
7 2(1.60 x 10-19C) 03 > 1077 N/C

The alpha particle has a positive charge, this means that it will experience an electric force which
is in the same direction as the electric field. Since the gravitational force is down, the electric force,
and consequently the electric field, must be directed up.

E26-4 (a) E=F/q=(3.0x1075N)/(2.0x107°C) = 1.5x 103N/C.
(b) F = Eq = (1.5x103N/C)(1.60x 10719C) = 2.4 x 10~ '6N.
(c) F =mg=(1.67x10"2"kg)(9.81m/s?) = 1.6 x 10~ 26N,
(d) (2.4x10715N) /(1.6 x 10726N) = 1.5x 101°.
E26-5 Rearrange E = q/4meor?,

q = 47(8.85x1072C?/N - m?)(0.750m)?(2.30 N/C) = 1.44x 10~ 1°C.
E26-6 p=qd=(1.60x10719C)(4.30x107?) = 6.88x 10728C - m.

E26-7| Use Eq. 26-12 for points along the perpendicular bisector. Then

(3.56 x 10729 C - m)
(25.4 x 109 m)3

1 p 9 2 /2
= e = (899 X 10N m?/C?)

=1.95 x 10*N/C.

E26-8 If the charges on the line x = a where +¢ and —q instead of +2¢ and —2¢q then at the
center of the square F = 0 by symmetry. This simplifies the problem into finding F for a charge +¢q
at (a,0) and —q at (a,a). This is a dipole, and the field is given by Eq. 26-11. For this exercise we
have x = a/2 and d = a, so
B 1 qa ’
dmeg [2(a)/2)2]3/2
or, putting in the numbers, £ = 1.11x 10°N/C.

E26-9 The charges at 1 and 7 are opposite and can be effectively replaced with a single charge of
—6q at 7. The same is true for 2 and 8, 3 and 9, on up to 6 and 12. By symmetry we expect the
field to point along a line so that three charges are above and three below. That would mean 9:30.

E26-10 If both charges are positive then Eq. 26-10 would read E = 2E, sinf, and Eq. 26-11
would look like

5 - o9 1 q T
- Tdmeg 22 4 (d/2)? /22 ¥ (d]2)?’
1 g =

9~ %
4meg 22 /22
when z >> d. This can be simplified to E = 2q/4mega?.

14



Treat the two charges on the left as one dipole and treat the two charges on the right as
a second dipole. Point P is on the perpendicular bisector of both dipoles, so we can use Eq. 26-12
to find the two fields.

For the dipole on the left p = 2aq and the electric field due to this dipole at P has magnitude
1 2aq
 drmey (z+a)3

B

and is directed up.
For the dipole on the right p = 2aq and the electric field due to this dipole at P has magnitude
1 2aq
" dmey (x —a)3

and is directed down.
The net electric field at P is the sum of these two fields, but since the two component fields point
in opposite directions we must actually subtract these values,

E = Er - El7
_ 2aq 1 _ 1
- dmeg \(z—a)® (z+a)3)’

aq 1 1 1
2meq T3 <(1 —a/z)? - (1"‘@/55)3) .

We can use the binomial expansion on the terms containing 1 + a/x,

aqg 1
Smeg 23 (L +30/2) = (1= 3a/z)),
aqg 1

= — (6a/x),

2meg x3
3(2qa®)
2meqrt

E

Q

E26-12 Do a series expansion on the part in the parentheses

1 1 2 2
TN SO R R N
V14 R?/22 2 22 222
Substitute this in,
o R« Q

2T 20222 Amegz?’

E26-13 At the surface z = 0 and E, = 0/2¢y. Half of this value occurs when z is given by
1 z

2 V22 + R?

which can be written as 22 + R? = (22)2. Solve this, and z = R//3.

E26-14 Look at Eq. 26-18. The electric field will be a maximum when z/(z> + R?)*/? is a
maximum. Take the derivative of this with respect to z, and get
1 3 222 B 22 + R? — 322
(22 + R2)3/2  2(22+ R2)3/2 (22 + R2)5/2

This will vanish when the numerator vanishes, or when z = R/ V2.
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E26-15| (a) The electric field strength just above the center surface of a charged disk is given by
Eq. 26-19, but with z = 0,
o

o 260

The surface charge density is ¢ = ¢/A = q/(7R?). Combining,
q=2eomR*E = 2(8.85 x 10712 C?/N - m?)m(2.5 x 10~?m)?(3 x 10°N/C) = 1.04 x 107"C.

Notice we used an electric field strength of E = 3 x 10° N/C, which is the field at air breaks down
and sparks happen.

(b) We want to find out how many atoms are on the surface; if a is the cross sectional area of
one atom, and N the number of atoms, then A = Na is the surface area of the disk. The number
of atoms is

A w(0.0250m)? .
N=2= —1.31 x 10
@ (0.015 x 10~ m?) %

(c) The total charge on the disk is 1.04 x 10~7C, this corresponds to

(1.04 x 1077C) /(1.6 x 1071°C) = 6.5 x 10!

electrons. (We are ignoring the sign of the charge here.) If each surface atom can have at most one
excess electron, then the fraction of atoms which are charged is

(6.5 x 10M)/(1.31 x 10'7) = 4.96 x 1075,
which isn’t very many.
E26-16 Imagine switching the positive and negative charges. The electric field would also need

to switch directions. By symmetry, then, the electric field can only point vertically down. Keeping
only that component,

But A = q/(7/2), so E = q/n%eqr?.

E26-17| We want to fit the data to Eq. 26-19,

g _1(1_;>
© T 2¢ V22+R2)

There are only two variables, R and ¢, with ¢ = onR?.
We can find o very easily if we assume that the measurements have no error because then at the
surface (where z = 0), the expression for the electric field simplifies to

g

- 260'

Then o = 2egE = 2(8.854 x 10712 C? /N - m?)(2.043 x 10" N/C) = 3.618 x 1074 C/m?.
Finding the radius will take a little more work. We can choose one point, and make that the
reference point, and then solve for R. Starting with

o z
B=2(1- 2 ),
260( \/22+R2>
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and then rearranging,

2¢0F, _ o1 z
o Ve
20E, 1
o VIt
1 _ 2B
L+ (R/2) o
1+ (R/2)?* = 1

(1-2¢E. /)’

B B —
\/(1 —2eoE. /o)

Using z = 0.03m and E, = 1.187 x 10" N/C, along with our value of o = 3.618 x 10~* C/m?, we
find

w | =

R 1
L -1,
z \/(1 —2(8.854x10-12C2/Nm?2)(1.187x 107N /C)/(3.618 x 1()*4C/m2))2
R = 2.167(0.03m) = 0.065 m.
(b) And now find the charge from the charge density and the radius,

q=7nR*¢ = m(0.065m)?(3.618 x 10~* C/m?) = 4.80 uC.

E26-18 (a) A= —q/L.
(b) Integrate:

L+a
E = / Adzz?,
o 4deg

B A 1 1
" dweg \a L+a)’

q 1
dmeg a(L + a)’

since A = ¢/L.
(¢) If a > L then L can be replaced with 0 in the above expression.

E26-19 A sketch of the field looks like this.
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o 7

E26-20 (a) F = Eq = (40N/C)(1.60x10~19C) = 6.4x 10~ 1N
(b) Lines are twice as far apart, so the field is half as large, or £ = 20N/C.

E26-21 Consider a view of the disk on edge.

E26-22 A sketch of the field looks like this.
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E26-23 To the right.

E26-24 (a) The electric field is zero nearer to the smaller charge; since the charges have opposite
signs it must be to the right of the +2¢q charge. Equating the magnitudes of the two fields,
2q 59

4regr?  dmeo(z + a)?’

or

Voz = V2(x + a),

which has solution

E26-25 This can be done quickly with a spreadsheet.

=

E26-26 (a) At point A,

po t (L4 _ 20\ _ 1 —q
Cdmeg \ A2 (2d)2 )  dmeg 2d2’
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