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Chapter 2 

The First Law of Thermodynamics 

2.2. Work is defined as negative pV because if a system does work on the surroundings, the 
system loses energy. 

 

2.4. atm34.2
torr760

atm1
torr1780 






   

 

w  PV  2.34atm 1.00L 3.55L  101.32J

1L atm







  605J  

 605 J of work are done ON the system. 
 
2.6.  (a) The work would be less because the external pressure is less. 

 (b) The work would be greater because the external pressure is greater. 

 (c) No work would be performed because the external pressure is (effectively) zero. 
 
2.8. First, we need to find the final volume of the CO2. Using P1V1=P2V2, we find that 

V2=105mL 

 

J1.8
atmL1

J32.101

mL1000

L1
)mL0.25105)(atm0.1(w 

















 
 

2.10.  First, determine the T: 330 K – 298 K = 32 K. 

 ΔTm

q
cTcmq


     :rearrange  we,   Using  

 Substituting: 
Kg

J
178.0

K) g)(32 (50.5

J 288


c . 

 

2.12.  First, we need to calculate the number of moles of phosphorous: 

 

molesP61.1
g97.30

mole1
Pg0.50 








 

q  (1.61moles) 56.99 0.1202T
J

mol K








298

350

 dT

q 1.61moles 56.99T  0.1202T 2

2











298

350

 8.03103 J
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2.14.  The kinetic energy of the hailstone, KE, is equal to:

  J100.3s/m0.10)kg100.6(
2

1
mv

2

1 3252    

 Since all of the kinetic energy is converted into thermal energy, we can say that: 

 

KE  m c  T

3.0103 J  6.0102 g  2.06
J

g K









(T )

T  0.024K  
 

2.16.  First, calculate the energy needed to warm the water by 1.00ºC: 

 q = mcT = (1.00105 g)(4.18 J/gK)(1.00 K) = 4.18105 J 

 Now, determine how many drops of a 20.0 kg weight falling 2.00 meters in gravity will 
yield that much energy. The amount of energy in one drop is 

 mgh = (20.0 kg)(9.81 m/s2)(2.00 m) = 392.4 J. Therefore, 

 
#  drops   

4.18105  J

392.4 J/drop
1065 drops. 

 
2.18.  True. As the gas expands, the average distance between molecules increases. For a real 

gas, work must be done to increase this distance due to intermolecular attractive forces 
between the gas molecules. 

 
2.20.  The major inaccuracy is the omission of the phrase “for an isolated system”, since for 

non-isolated systems energy can move in or out, giving the impression that that energy is 
created and/or destroyed. Can you find other inaccuracies? 

 
2.22.  q = -124.0 J 

 
w  pextV  (1550 torr)(119 mL - 377 mL) 1 atm

760 torr
 1 L

1000 mL
 0.526 L atm  

 w = 0.526 L atm101.32 J

1 L atm
 = +53.3 J 

 Since U = q + w, U = -124.0 J + 53.3 J  U = -70.7 J 
 

2.24.  Reversibly:  J 5705
L 1.0

L 10
lnK) K)(298.0J/mol mol)(8.314 1(ln 

i

f

V

V
nRTw  

 Irreversibly:  J 912
atmL1

J 101.32
L) 1.0 - atm)(10L 00.1( 


 Vpw ext  

 The reversible work is much larger than the irreversible work. This is one numerical 
example of the concept that the maximum amount of work is obtained by a reversible 
process.  
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2.26.  If any change in a system is isothermal, then the change in U must be zero. It doesn’t 
matter if the process is adiabatic or not! 

 
2.28.  Of the two distances mentioned, the 9-mile distance between the two cities is analogous 

to a state function, because that distance is independent of how a trip is actually traveled 
between the two cities. 

 
2.30.  The keys to this problem are the stated conditions. If the processes are adiabatic, then q = 

0. If the initial and final temperatures are the same, then U = 0. By the first law of 
thermodynamics, if U and q are 0, then w = 0 as well. While these values fit the 
conditions of the problem, do you think that a piston can even work under such 
conditions? Probably not. 

 
2.32.  First, we should determine the number of moles of gas in the cylinder. Assuming the 

ideal gas law holds: 

 
gas N mol 572

K) 15.2730.20)(
Kmol

atmL
08205.0(

L) atm)(80.0 172(
  torearranged becan  

2







n

RT

pV
nnRTpV

 

 (a) The final pressure can be determined using Charles’ law: 
f

f

i

i

T

p

T

p
  

   

atm 242    
K) 273.15  (20.0

K) 273.15  atm)(140.0 172(





 f
i

fi
f p

T

Tp
p  

 (b) w = 0 since the volume of the tank does not change. 

  q = n̅ܥ௏T = (572 mol)(21.0 J/molK)(140.0ºC – 20.0ºC) = 1.44106 J 

  U = q + w = 1.44106 J + 0 = 1.44106 J. 
 

2.34. w  nRT ln
Vf

Vi

 (0.505 mol)(8.314
J

mol K
)(5.0 273.15 K) ln

0.10 L

1.0 L
 2689 J  

 q = -2690 J (given) 

 U = q + w = -2690 J + 2689 J = -1 J 

 H = U + (pV) Since the process occurs at constant temperature, Boyle’s law applies 
and (pV) = 0. Therefore, H = -1 J. 

 
2.36.  Since we’re at the normal boiling point, the vaporization is a constant-pressure process (1 

atm at the normal boiling point). Therefore, H = qp and H = +2260 J/g. 

 For work, we need change in volume. Assuming the ideal gas law holds, the volume of 1 
gram of steam at 100ºC (373.15 K) is: 
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mol 0555.0
g 18.02

mol 1
OH g 1 2 n  

 

L 720.1
atm 988.0

K) K)(373.15atm/molL 05mol)(0.082 0555.0(





p

nRT
V  

 The volume of a gram of water, 1.00 mL, is negligible compared to this. Therefore, let us 
use V = 1.720 L. Therefore: 

 
J 172

atmL 1

J 101.32
L) atm)(1.720 988.0( 


w  

 Since U = q + w, we have U = +2260 J – 172 J = 2088 J. 
 

2.38. In terms of pressure and volume: dV
V

U
dp

p

U
dU

pV






















 . 

 For enthalpy:  dV
V

H
dp

p

H
dH

pV






















 . 

 

2.40. 0VPw  ; There is no change in volume. Assuming the heat capacity of an ideal 
gas: 

U  q  nCv

348.45

298.15

 dT  (35.0g)
1mole

2.016g









 20.78

J

mol K






dT 

348.45

298.15

 361
J

K







T 348.45

298.15  1.82104 J  

 Using the ideal gas law: 

 

H  U (PV )  U VP  U V
nRT

V









 1.82104 J  (35.0g)
1mole

2.016g









 8.314

J

K mol







 298.15348.45K   2.55104 J

 
 

2.42. q  m  s  T  (244g) 4.184
J

K mol







(20.080.0K )  6.13104 J  

 Since it is a constant pressure process (assumed 1 atm), H=-6.13x104J. 

 Now, we need to calculate the volume change of the coffee: 

 

V   mass

density









  (244g)

1cm3

0.9982g
 1cm3

0.9718g









  6.64cm3 

 

w  PV  (1atm)(6.64cm3)
1mL

cm3









1L

1000mL









101.32J

1L atm







  0.673J

U  qw  61300J  0.67J  6.13104 J  
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2.44.  Start with U CVT  and H  U  pV  : Since pV  = RT for an ideal gas, we also 

have H  U  RT  . Substituting for H  (equation 2.32) and U  (equation 2.27): 

 
)(RTTCTC vp   

 R is a constant, so it can be removed from the  term: 

 
TRTCTC vp   

 Now all terms can be divided by T to get the desired relationship: 

 
RCC vp  . 

 

2.46.  isobaric = constant pressure isochoric = constant volume isenthalpic = constant enthalpy 

 isothermal = constant temperature. A gaseous system that has all these conditions 
simultaneously probably isn’t undergoing any physical change! Can you conceive of a 
process in which all of these conditions are satisfied at once? 

 
2.48.  Actually, the ideal gas law can be used to determine the Joule-Thomson coefficient for an 

ideal gas, but it will turn out that the Joule-Thomson coefficient for an ideal gas is zero! 
 

2.50.  Using the approximate version 
p

T




JT : 

 p = 0.95 atm – 200.00 atm = -199.05 atm Since JT = 0.150 K/atm: 

 
K 29.9-  atm) 9.05K/atm)(-19 150.0(     

atm 05.199
K/atm 150.0 




 T
T

 

 If the initial temperature is 19.0ºC and the temperature drops by 29.9 degrees, the final 
temperature should be about 19.0 – 29.9 = -10.9ºC. 

 
2.52. µJT for Argon at 0°C and 1atm is 0.4307K/atm. From Eqn 2.35 we know that: 

H

P









T

 CP JT   20.8
J

K mol







 0.4307

K

atm







  8.96

J

mol atm
; CP  for a monatomic ideal 

gas is equal to R
2

5
. 

 
2.54. Although U and H have similar behavior for isothermal processes of ideal gases, they 

won’t necessarily for real gases. Therefore, a Joule-Thomson coefficient defined in terms 
of U can be defined but will not have the same numerical value as one defined in terms of 
H. In addition, the Joule-Thomson experiment is originally defined (as is JT) for an 
isenthalpic process, not one for which U is constant. Therefore, that definition of JT 
would probably not be proper. 
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2.56. Since RCRC pV 2

5
 and 

2

3
 :

3

2
R  3

2
(8.314 J/mol K) 1 cal

4.184 J
 2.981 cal/mol K      

Or, in different units:  
3

2
(0.08205 L atm/mol K)   0.1231 L  atm/mol K

 

 

5

2
R  5

2
(8.314 J/mol K) 1 cal

4.184 J
 4.968 cal/mol K      

Or, in different units:  
5

2
(0.08205 L  atm/mol K)   0.2051 L  atm/mol K

 
 

2.58. CV  for a monatomic ideal gas is equal to 
3

2
R . Using the equation U  w  nCVT : -75 

J = (0.122 mol)(12.47 J/molK )T and solve for T: 
 T = -49 K. Since the initial temperature was 235ºC = 508 K, the final temperature is 508 

– 49 = 459 K. 
 

2.60. 
V

P

C

C
 . For a monatomic ideal gas, 

3

5

2

R3
2

R5




















 
 
2.62. (a) CO2 is a linear polyatomic molecule where N=3 atoms. In the low temperature limit it 

only has contributions from translational and rotational motion so 

5

7

C

C
so,R

2

7
C.R

2

5
RR

2

3
C

V

P
PV  . In the high temperature limit, 

vibrational motion contributes as well so: 

13

15

C

C
so,R

2

15
C.R

2

13
R)5N3(R

2

5
C

V

P
PV   

 (b) H2O is a non-linear polyatomic molecule where N=3 atoms. In the low temperature 
limit it only has contributions from translational and rotational motion so 

3

4

C

C
so,R4C.R3R

2

3
R

2

3
C

V

P
PV  . In the high temperature limit, 

vibrational motion contributes as well so: 

6

7

C

C
so,R7C.R6R)6N3(R3C

V

P
PV 

 
 

  



    Chapter 2 

    15 

2.64. Using Eqn. 2.47:
i

f

3/2

f

i

T

T

V

V









 

;T63.0x;
T

x

V2

V
i

i

3/2

i

i 







The final temperature is 63% of the initial temperature. 

 

2.66. For an adiabatic change, 
i

f

i

f

T

T

p

p









5/2

. Therefore, .550.0
atm 0.0033

atm 00074.0
5/25/2

















i

f

p

p
 

Therefore, the absolute temperature will drop to 55% of its initial temperature. 
2.68. As vibrational energies begin to have more significance, decreases. As decreases, the 

exponent in the equation in Example 2.14 become smaller. This makes the final 
temperature in the second example higher than the first as is demonstrated.  

 
2.70. (a) N2 and CO have nearly identical molar masses, M. What is different between the two 

gases is over a temperature range. By measuring the speed of sound at several 
different temperatures of the gases, one should be able to differentiate between the 
two. 

 (b At 100K: 

  

 
s/m163

mol

kg
04401.0

K100
molK

J
314.8

5

7

speed 

















  

  At 500 K: 

  

 
s/m330

mol

kg
04401.0

K500
molK

J
314.8

13

15

speed 



















 
 
2.72. The volumes of both water and ice at 0ºC are: 

 water: Vl 
18.02 g

0.99984 g/mL
18.02 mL; ice: Vs 

18.02 g

0.9168 g/mL
19.66 mL . 

 Therefore, V = 19.66 mL – 18.92 mL = 0.74 mL, so that the work is 

 w  pextV   1bar  1atm

1.01325bar







 0.74mL  1L

1000mL









101.32J

1L·atm







  0.074J . 

 
  



Instructor’s Manual 

16 

2.74. According to Table 2.3, 1 gram of H2O gives up 2260 J when it condenses. Since each 
gram of ice requires 333.5 J to melt, we get 

 
melted. becan  that ice of grams 78.6

J 333.5

g 1
J 2260 

 
 
2.76.   kJ 53.00-0-kJ/mol) mol)(26.5 (2rcts)(prods)( HHH ffrxn  
 
2.78.   mole/kJ26367)]g(O[H60)]s(C[H)]g(CO[H60H 2

o
f60

o
f2

o
frxn   

 
mole/kJ2757)]s(C[H

mole/kJ263670x)mol/kJ51.393(60

60
o

f 



 
 

2.80.  The reactions are: 

2[NaHCO3 (s)  Na (s) + ½ H2 (g) + C (s) + 3/2 O2 (g)] 2 -fH = +1901.62 kJ 

  2 Na (s) + C (s) + 3/2 O2 (g)  Na2CO3 (s)   fH = -1130.77 kJ 

C (s) + O2 (g)  CO2 (g)      fH = -393.51 kJ 

  H2 (g) + ½ O2 (g)  H2O (l)     fH = -285.83 kJ 

 This yields the overall reaction (you can verify that), and the overall rxnH is the sum of 
the values on the right: rxnH = 91.51 kJ. 

 
2.82. The reaction is 2 Al (s) + Fe2O3 (s)  Al2O3 (s) + 2 Fe (s). The rxnH is (using data from 

the appendix): (2 mol)(0 kJ/mol) + (1 mol)(-1675.7 kJ/mol) – (1 mol)(-825.5 kJ/mol) – (2 
mol)(0 kJmol) = -850.2 kJ. 

 
2.84.  In this case, since the combustion occurs in open atmosphere in (assumed) constant 

pressure, this time qp = H = -31,723 J. If the expansion of gases is done against a 
constant atmospheric pressure of 1 atm, to determine work we need to know the net 
volume of gas produced. From exercise 2.55, we found that there was a net change of  
–0.00491 mol of gas produced (ignoring the volume of the benzoic acid itself). Thus, 

 volumegas less  L 120.0
atm 1

273.15)  K)(24.6atm/molL 05mol)(0.082 0049.0(





p

nRT
V  

 Using this change in volume to calculate work: 

J 1.12
atmL1

J 101.32
L) 0atm)(-0.12 1( 


 Vpw ext  

 Finally, to calculate U: 

31,711J-  J 1.12-31,723

273.15)K)(24.6J/mol .3148mol)( 00491.0(723,31)()(




U

RTnHpVHU
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2.86.  This problem is very similar to Example 2.19, so we will follow that example, taking data 
from Table 2.1. 

 The heat needed to bring the reactants from 500ºC (or 773 K) to 298 K is: 

 H1 = q = (2 mol)(2.02 g/mol)(14.304 J/gK)(-475 K) + (1 mol)(32.00 g/mol) 
(0.918 J/gK)(-475 K) = -41403 J 

 The heat of reaction is 2(fH[H2O(g)]) = 2 mol  -241.8 kJ/mol = -483.6 kJ = H2 

 The heat needed to bring the products from 298 K to 500ºC (or 773 K) is: 

 H3 = q = (2 mol)(18.02 g/mol)(1.864 J/gK)(475 K) = +31,910 J 

 The overall rxnH is the sum of these three parts. Converting all energy values to kJ: 

 rxnH = -41.403 kJ – 483.6 kJ + 31.910 kJ = -493.1 kJ 


