

©2001 Deitel & Associates, Inc. and Prentice Hall. All Rights Reserved.

Instructor’s Manual
for

Perl
How to Program

Harvey M. Deitel
Paul J. Deitel
Tem R. Nieto

David C. McPhie

Contents

Preface iv

1 Introduction to Computers, the Internet and the World
Wide Web 5

2 Introduction to Programming in Perl 8

3 Control Structures: Part I 14

4 Arrays and Hashes 23

5 Control Structures: Part II 28

6 Subroutines and Functions 34

7 Introduction to the Common Gateway Interface (CGI) 40

8 Regular Expressions 49

9 String Manipulation 54

10 File Processing 60

11 File and Directory Manipulation 69

12 Formatting 77

13 References 85

14 Objects and Modules 96

15 Databases: SQL and Perl Database Interface (DBI) 105

16 Session Tracking and Cookies 114

17 Web Automation and Networking 131

18 Process Management 143

19 Security 153

20 Data Structures 169

21 Graphics/Tk 189

22 Extensible Markup Language (XML) 200

23 Accessibility 214

24 Introduction to HyperText Markup Language 4: Part I 216

25 Introduction to HyperText Markup Language 4: Part II 219

26 Cascading Style Sheets™ (CSS) 223

27 Bonus: Introduction to Python Programming 225

Appendix Perl Multimedia Cyber Classroom: Solutions
Provided on CD 232

Preface

Thank you for considering and/or adopting our text Perl How to Program. If you have not read the preface to Perl
How to Program, please do so. The preface contains a careful walkthrough of the book’s key features, including
the case studies.

We have worked hard to produce a textbook and ancillaries that we hope you and your students will find valu-
able. The following ancillary resources are available:

• Perl How to Program’s examples are included on the CD-ROM in the back of the textbook. This helps in-
structors prepare lectures faster and helps students master Internet programming. The examples are also
available for download at www.deitel.com and www.prenhall.com/deitel. When extracting
the source code from the ZIP file, you must use a ZIP-file reader such as WinZip (www.winzip.com) or
PKZIP (www.pkware.com) that understands directories. The file should be extracted into a separate di-
rectory (e.g., perlhtp_examples).

• The CD-ROM included with Perl How to Program contains a variety of software, including [***].

• This Perl How to Program Instructor’s Manual on CD contains answers to most of the exercises in the text-
book. The programs are separated into directories by chapter and exercise number.

• Companion Web site (www.prenhall.com/deitel) provides instructor and student resources. In-
structor resources include textbook appendices (e.g., Appendix A, “HTML Special Characters”) and a syl-
labus manager for lesson planning. Student resources include chapter objectives, true/false questions,
chapter highlights, reference materials and a message board.

• Customizable Powerpoint Instructor Lecture Notes, with many complete features including source code,
and key discussion points for each program and major illustration. These lecture notes are available for in-
structors and students at no charge at our Web site www.deitel.com and www.prenhall.com/de-
itel.

We would sincerely appreciate your questions, comments, criticisms and corrections addressed to us at:

deitel@deitel.com

We will respond immediately. Please read the latest copy of the Deitel Buzz (published every April and
November) for information on forthcoming Deitel publications, ancillaries, product options and ordering infor-
mation. To receive the Deitel Buzz, please contact Jennie Burger (jennie_burger@prenhall.com).

Watch our Deitel & Associates, Inc. Web site (www.deitel.com) and our Prentice Hall Web site
(www.prenhall.com/deitel) for the latest publication updates.

We would like to thank the extraordinary team of publishing professionals at Prentice Hall who made Perl
How to Program and its ancillaries possible. Our Computer Science editor, Petra Recter, worked closely with us
to ensure the timely availability and professional quality of these ancillaries.

We would also like to thank Cheryl Yaeger and Matt Kowalewski, both of Deitel & Associates, Inc., for their
assistance in preparing this Instructor’s Manual.

Harvey M. Deitel
Paul J. Deitel
Tem R. Nieto
David C. McPhie

1
Introduction to

Computers, the Internet
and the World Wide Web

1.2 [CD] Categorize each of the following items as either hardware or software:
a) CPU

ANS: hardware.
b) ALU

ANS: hardware.
c) input unit

ANS: hardware.
d) a word processor program

ANS: software.
e) Perl modules

ANS: software.

1.3 [CD] Why might you want to write a program in a machine-independent language instead of
a machine-dependent language? Why might a machine-dependent language be more appropriate for
writing certain types of programs?

ANS: Machine independent languages are useful for writing programs to be executed on
multiple computer platforms. Machine dependent languages are appropriate for writing pro-
grams to be executed on a single platform. Machine dependent languages tend to exploit the
efficiencies of a particular machine.

1.4 [CD] Translator programs such as assemblers and compilers convert programs from one lan-
guage (referred to as the source language) to another language (referred to as the object language).
Determine which of the following statements are true and which are false:

a) A compiler translates high-level language programs into object language.
ANS: True.
b) An assembler translates source language programs into machine language programs
ANS: True.
c) A compiler converts source language programs into object language programs.
ANS: False.
d) High-level languages are generally machine-dependent.
ANS: False.

Chapter 1 Introduction to Computers, the Internet and the World Wide Web 6

e) A machine language program requires translation before it can be run on a computer.
ANS: False.

1.5 Fill in the blanks in each of the following statements:
a) Devices from which users access timesharing computer systems are usually called

.
ANS: terminals.
b) A computer program that converts assembly language programs to machine language

programs is called .
ANS: an assembler.
c) The logical unit of the computer that receives information from outside the computer for

use by the computer is called .
ANS: The input unit.
d) The process of instructing the computer to solve specific problems is called .
ANS: computer programming.
e) What type of computer language uses English-like abbreviations for machine language

instructions? .
ANS: a high-level language.
f) What are the six logical units of the computer? .
ANS: input unit, output unit, memory unit, arithmetic and logical unit, central processing
unit, secondary storage unit.
g) Which logical unit of the computer sends information that has already been processed by

the computer to various devices so that the information may be used outside the comput-
er? .

ANS: The output unit.
h) The general name for a program that converts programs written in a certain computer lan-

guage into machine language is .
ANS: compiler.
i) Which logical unit of the computer retains information? .
ANS: memory unit and secondary storage unit.
j) Which logical unit of the computer performs calculations? .
ANS: arithmetic and logical unit.
k) Which logical unit of the computer makes logical decisions? .
ANS: arithmetic and logical unit
l) The commonly used abbreviation for the computer's control unit is .
ANS: CPU.
m) The level of computer language most convenient to the programmer for writing programs

quickly and easily is .
ANS: high-level language.
n) The most common business-oriented language in wide use today is .
ANS: COBOL.
o) The only language that a computer can directly understand is called that computer's

.
ANS: machine language.
p) Which logical unit of the computer coordinates the activities of all the other logical units?

.
ANS: central processing unit.

1.6 State whether each of the following is true or false. If false, explain your answer.
a) Machine languages are generally machine dependent.
ANS: True. Machine languages are closely related to the hardware of a particular machine.
b) Timesharing truly runs several users simultaneously on a computer.

7 Introduction to Computers, the Internet and the World Wide Web Chapter 1

ANS: False. Time sharing systems split CPU time amongst several users so that the users
appear to be operating simultaneously
c) Like other high-level languages, Perl is generally considered to be machine-independent.
ANS: True. Perl programs can be written on most machines, and in most cases, Perl pro-
grams can be written on one machine and run on many machines with few changes or no
changes.

2
Introduction to

Programming in Perl

2.7 [CD] Write a program that asks the user to enter two numbers and prints the sum, product,
difference and quotient of the two numbers.

ANS:

2.8 [CD] Write a program that asks the user to input the radius of a circle and prints the circle’s
diameter, circumference and area. Use the value 3.14159 for π. Use the following formulas (r is the

radius): diameter = 2r, circumference = 2πr, area = πr2.

1 #!/usr/bin/perl
2 # Ex. 2.7: Ex02_07.pl
3 # Calculating sum, product, difference and quotient values.
4
5 print("Enter the first number: ");
6 $first = <STDIN>;
7 chomp($first);
8
9 print("Enter the second number: ");

10 $second = <STDIN>;
11 chomp($second);
12
13 print("$first + $second = ", $first + $second, "\n");
14 print("$first * $second = ", $first * $second, "\n");
15 print("$first - $second = ", $first - $second, "\n");
16 print("$first / $second = ", $first / $second, "\n");

Enter the first number: 6
Enter the second number: 3
6 + 3 = 9
6 * 3 = 18
6 - 3 = 3
6 / 3 = 2

9 Introduction to Programming in Perl Chapter 2

ANS:

2.9 Write a program that asks the user to input one number consisting of five digits, separates the
number into its individual digits and prints the fifth digit five times, the fourth digit four times, the
third digit three times and so forth.

ANS:

1 #!/usr/bin/perl
2 # Ex. 2.8: Ex02_08.pl
3 # Calculating diameter, circumference and area.
4
5 $pi = 3.14159;
6 print("Enter the radius: ");
7 $r = <STDIN>;
8 chomp($r);
9

10 $diameter = 2 * $r;
11 $circumference = 2 * $pi * $r;
12 $area = $pi * $r ** 2;
13
14 print("The diameter of the circle is $diameter.\n");
15 print("The circumference of the circle is $circumference.\n");
16 print("The area of the circle is $area.\n");

Enter the radius: 1
The diameter of the circle is 2.
The circumference of the circle is 6.28318.
The area of the circle is 3.14159.

1 #!/usr/bin/perl
2 # Ex 2.9: Ex02_09.pl
3 # Printing digit values multiple times.
4
5 print("Enter a five digit number: ");
6 $number = <STDIN>;
7 chomp($number);
8
9 $ones = $number % 10;

10 $tens = ($number / 10) % 10;
11 $hundreds = ($number / 100) % 10;
12 $thousands = ($number / 1000) % 10;
13 $tenthousands = ($number / 10000) % 10;
14
15 print("$tenthousands\n");
16 print($thousands x 2, "\n");
17 print($hundreds x 3, "\n");
18 print($tens x 4, "\n");
19 print($ones x 5, "\n");

Chapter 2 Introduction to Programming in Perl 10

2.10 Write a program that reads in two integers and determines if either is a multiple of the other.
ANS:

2.11 [CD] Write a program that reads two strings input by the user and prints them in alphabetical
order, separated by a space. If the two strings are equal, they should be printed on separate lines.

ANS:

Enter a five digit number: 12345
1
22
333
4444
55555

1 #!/usr/bin/perl
2 # Ex 2.10: Ex02_10.pl
3 # Determining if one integer is a multiple of the other.
4
5 print("Enter the first number: ");
6 $first = <STDIN>;
7 chomp($first);
8
9 print("Enter the second number: ");

10 $second = <STDIN>;
11 chomp($second);
12
13 if ($first % $second == 0) {
14 print("$first is a multiple of $second!\n");
15 }
16
17 if ($second % $first == 0) {
18 print("$second is a multiple of $first!\n");
19 }

Enter the first number: 12
Enter the second number: 4
12 is a multiple of 4!

Enter the first number: 11
Enter the second number: 2

1 #!/usr/bin/perl
2 # Ex 2.11: Ex02_11.pl
3 # Printing strings in alphabetical order.
4
5 print("Enter the first string: ");
6 chomp($first = <STDIN>);

11 Introduction to Programming in Perl Chapter 2

2.12 [CD] One interesting application of computers is drawing graphs and bar charts (sometimes
called “histograms”). Write a program that reads five numbers (each between 1 and 30) from user in-
put. For each number read, your program should print a line containing that number of adjacent as-
terisks. For example, if your program reads the number 7, it should print *******.

ANS:

7 print("Enter the second string: ");
8 chomp($second = <STDIN>);
9

10 if ($first lt $second) {
11 print("$first $second\n");
12 }
13
14 if ($first eq $second) {
15 print("$first\n$second\n");
16 }
17
18 if ($first gt $second) {
19 print("$second $first\n");
20 }

Enter the first string: there
Enter the second string: hello
hello there

Enter the first string: hello
Enter the second string: there
hello there

Enter the first string: hello
Enter the second string: hello
hello
hello

1 #!/usr/bin/perl
2 # Ex 2.12: Ex02_12.pl
3 # Printing asterisks representing numerical values.
4
5 print("Enter a number (1-30): ");
6 chomp($number1 = <STDIN>);
7 print("Enter a number (1-30): ");
8 chomp($number2 = <STDIN>);
9 print("Enter a number (1-30): ");

10 chomp($number3 = <STDIN>);
11 print("Enter a number (1-30): ");
12 chomp($number4 = <STDIN>);
13 print("Enter a number (1-30): ");
14 chomp($number5 = <STDIN>);

Chapter 2 Introduction to Programming in Perl 12

2.13 Write a program that asks the user to input an integer, then prints a hollow square of asterisks.
For example, if the user inputs 5, the output should be as follows:

ANS:

15
16 print("\nValue\tHistogram\n");
17 print("$number1\t", '*' x $number1, "\n");
18 print("$number2\t", '*' x $number2, "\n");
19 print("$number3\t", '*' x $number3, "\n");
20 print("$number4\t", '*' x $number4, "\n");
21 print("$number5\t", '*' x $number5, "\n");

Enter a number (1-30): 7
Enter a number (1-30): 29
Enter a number (1-30): 13
Enter a number (1-30): 22
Enter a number (1-30): 3

Value Histogram
7 *******
29 *****************************
13 *************
22 **********************
3 ***

* *
* *
* *

1 #!/usr/bin/perl
2 # Ex. 2.13: Ex02_13.pl
3 # Printing a hollow square based on an integer value.
4
5 print("How big should the square be? ");
6 chomp($size = <STDIN>);
7
8 if ($size == 1) {
9 print("*\n");

10 }
11 else {
12 $firstlast = ('*' x $size) . "\n";
13 $middle = '*' . (' ' x ($size - 2)) . "*\n";
14 print($firstlast, $middle x ($size - 2), $firstlast);
15 }

13 Introduction to Programming in Perl Chapter 2

How big should the square be? 3

* *

How big should the square be? 4

* *
* *

3
Control

Structures: Part I

3.10 Drivers are concerned with the gas mileage obtained by their automobiles. One driver has
kept track of several tankfuls of gasoline by recording the miles driven and gallons used for each tank-
ful. Develop a program that will receive as input the miles driven and gallons used for each tankful.
The program should calculate and display the miles per gallon obtained for each tankful. After pro-
cessing all input information, the program should calculate and print the combined miles per gallon
obtained for all tankfuls. Sample output of the program is as follows:

ANS:

Enter the gallons used (-1 to end): 12.8
Enter the miles driven: 287
The miles / gallon for this tank was 22.421875

Enter the gallons used (-1 to end): 10.3
Enter the miles driven: 200
The miles / gallon for this tank was 19.417475

Enter the gallons used (-1 to end): 5
Enter the miles driven: 120
The miles / gallon for this tank was 24.000000

Enter the gallons used (-1 to end): -1

The overall average miles/gallon was 21.601423

1 #!/usr/bin/perl
2 # Ex. 3.10: Ex03_10.pl
3 # Calculating miles per gallon.
4
5 print("Enter the gallons used (-1 to quit): ");

15 Control Structures: Part I Chapter 3

3.11 Write a program that receives as input a series of numbers. At the end of the input list, the
program should output the total number of numbers input, the largest number, the smallest number,
and the average of all the numbers.

ANS:

6 chomp($gallons = <STDIN>);
7
8 while ($gallons != -1) {
9 print("Enter the miles driven: ");

10 chomp($miles = <STDIN>);
11 $totalGallons += $gallons;
12 $totalMiles += $miles;
13
14 print("The miles / gallon for this tank was ");
15 print($miles / $gallons, "\n\n");
16
17 print("Enter the gallons used (-1 to quit): ");
18 chomp($gallons = <STDIN>);
19 }
20
21 unless ($totalGallons == 0) {
22 print("\nThe overall average miles/gallon was ");
23 print($totalMiles / $totalGallons, "\n");
24 }

Enter the gallons used (-1 to quit): 15
Enter the miles driven: 200
The miles / gallon for this tank was 13.3333333333333

Enter the gallons used (-1 to quit): 17
Enter the miles driven: 34
The miles / gallon for this tank was 2

Enter the gallons used (-1 to quit): 10
Enter the miles driven: 15
The miles / gallon for this tank was 1.5

Enter the gallons used (-1 to quit): -1

The overall average miles/gallon was 5.92857142857143

1 #!/usr/bin/perl
2 # Ex. 3.11: Ex03_11.pl:
3 # Inputting and evaluating numbers.
4
5 print("Enter a number (-1 to quit): ");
6 chomp($number = <STDIN>);
7
8 if ($number != -1) {
9 $smallest = $number;

10 $largest = $number;
11 $total = $number;

Chapter 3 Control Structures: Part I 16

3.12 [CD] A palindrome is a number or a text phrase that reads the same backwards as forwards.
For example, each of the following five-digit integers is a palindrome: 12321, 55555, 45554 and
11611. Write a program that reads in a number of arbitrary length and checks if it is a palindrome.
[Hint: Use the division and modulus operators to separate the number into its individual digits. Note
that when you divide by 10, the remainder from this division will result in the last digit of the original
number. For instance, 12345 divided by 10 results in a remainder of 5, and 789 divided by 10 results
in a remainder of 9.]

12 $count++;
13
14 print("Enter a number (-1 to quit): ");
15 chomp($number = <STDIN>);
16 }
17
18 while ($number != -1) {
19
20 if ($number < $smallest) {
21 $smallest = $number;
22 }
23
24 if ($number > $largest) {
25 $largest = $number;
26 }
27
28 $total += $number;
29 $count++;
30
31 print("Enter a number (-1 to quit): ");
32 chomp($number = <STDIN>);
33 }
34
35 if ($count) {
36 print("The total number of numbers was $count.\n");
37 print("Largest number $largest\n");
38 print("Smallest number $smallest\n");
39 print("Average ", $total / $count, "\n");
40 }

Enter a number (-1 to quit): 3
Enter a number (-1 to quit): 4
Enter a number (-1 to quit): 5
Enter a number (-1 to quit): 6
Enter a number (-1 to quit): 7
Enter a number (-1 to quit): 8
Enter a number (-1 to quit): 9
Enter a number (-1 to quit): 0
Enter a number (-1 to quit): -1
The total number of numbers was 8.
Largest number 9
Smallest number 0
Average 5.25

17 Control Structures: Part I Chapter 3

ANS:

1 #!/usr/bin/perl
2 # Ex. 3.12: Ex03_12.pl
3 # Checking to see if a number is a palindrome.
4
5 print("Enter a number: ");
6 chomp($number = <STDIN>);
7
8 # For large numbers Perl may convert values to
9 # scientific notation. The if structure below

10 # is designed to handle this case.
11 if ($number / 1000000000000000 > 1) {
12 print("The number is too large for this program.\n");
13 }
14 else {
15 $high = 10;
16
17 while ($number / $high > 1) {
18 $high *= 10;
19 }
20
21 $low = 1;
22 $high /= 10;
23
24 while ($high > $low) {
25 $digit1 = ($number / $low) % 10;
26 $digit2 = ($number / $high) % 10;
27
28 if ($digit1 != $digit2) {
29 $no = 1;
30 }
31
32 $low *= 10;
33 $high /= 10;
34 }
35
36 if ($no) {
37 print("$number is not a palindrome.\n");
38 }
39 else {
40 print("$number is a palindrome!\n");
41 }
42 }

Enter a number: 5555555
5555555 is a palindrome!

Enter a number: 565
565 is a palindrome!

Chapter 3 Control Structures: Part I 18

3.13 [CD] Receive as input an integer containing only 0s and 1s (i.e., a “binary” integer), and print
its decimal equivalent. [Hint: Use the modulus and division operators to pick off the “binary” num-
ber’s digits one at a time from right to left. Just as in the decimal-number system, where the right most
digit has a positional value of 1, the next digit to the left has a positional value of 10, then 100, then
1000, etc., in the binary-number system, the right most digit has a positional value of 1, the next digit
to the left has a positional value of 2, then 4, then 8, etc. Thus the decimal number 234 can be inter-
preted as 4 * 1 + 3 * 10 + 2 * 100. The decimal equivalent of binary 1101 is 1 * 1 + 0 * 2 + 1 * 4 + 1
* 8 or 1 + 0 + 4 + 8, or 13.]

ANS:

3.14 The factorial of a nonnegative integer n is written as n! (pronounced “n factorial”) and is de-
fined as follows:

n! = n · (n - 1) · (n - 2) · … · 1 (for values of n greater than or equal to 1)
and

n! = 1 (for n = 0).
For example, 5! = 5 · 4 · 3 · 2 · 1, which is 120.

a) Write a program that reads a nonnegative integer and computes and prints its factorial.

Enter a number: 56766
56766 is not a palindrome.

1 #!/usr/bin/perl
2 # Ex. 3.13: Ex03_13.pl
3 # Converting from binary to decimal.
4
5 print("Input a binary number: ");
6 chomp($binary = <STDIN>);
7
8 $bit = 0;
9 $decimal = 0;

10
11 while ($binary / (10 ** $bit) >= 1) {
12 $digit = ($binary / (10 ** $bit)) % 10;
13 $decimal += $digit * 2 ** $bit;
14 $bit++;
15 }
16
17 print("The decimal representation for $binary is $decimal.\n");

Input a binary number: 101
The decimal representation for 101 is 5.

Input a binary number: 1000
The decimal representation for 1000 is 8.

19 Control Structures: Part I Chapter 3

ANS:

b) Write a program that estimates the value of the mathematical constant e by using the fol-
lowing formula: (One way to do this is to have the program print the result after each term
is added, so you can see what value e comes close to. Prompt the user for the number of
terms they wish to have calculated, to ensure that the program does not go on forever.)

ANS:

1 #!/usr/bin/perl
2 # Ex. 3.14a: Ex03_14a.pl
3 # Calculating factorials.
4
5 print("Enter a number: ");
6 chomp($number = <STDIN>);
7
8 $factorial = 1;
9

10 $i = $number;
11
12 while ($i > 0) {
13 $factorial *= $i;
14 $i--;
15 }
16
17 print("$number! = $factorial\n");

Enter a number: 5
5! = 120

1 #!/usr/bin/perl
2 # Ex. 3.14b: Ex03_14b.pl
3 # Calculating the value of e.
4
5 print("How many iterations should we use to compute e? ");
6 chomp($iterations = <STDIN>);
7
8 $i = 1;
9 $e = 1;

10
11 while ($i <= $iterations) {
12 $factorial = 1;
13 $j = $i;
14
15 while ($j) {
16 $factorial *= $j;
17 $j--;
18 }
19
20 $e += 1 / $factorial;

e 1 1
1!
----- 1

2!
----- 1

3!
----- …+ + + +=

Chapter 3 Control Structures: Part I 20

c) Write a program that computes the value of ex by using the following formula (again,
have the program print after each iteration, stopping after a specified number of terms)
and prints the current value after each iteration:

ANS:

21 print("The value of e at iteration number $i is $e\n");
22 $i++;
23 }
24
25 print("With $iterations iterations, e = $e\n");

How many iterations should we use to compute e? 10
The value of e at iteration number 1 is 2
The value of e at iteration number 2 is 2.5
The value of e at iteration number 3 is 2.66666666666667
The value of e at iteration number 4 is 2.70833333333333
The value of e at iteration number 5 is 2.71666666666667
The value of e at iteration number 6 is 2.71805555555556
The value of e at iteration number 7 is 2.71825396825397
The value of e at iteration number 8 is 2.71827876984127
The value of e at iteration number 9 is 2.71828152557319
The value of e at iteration number 10 is 2.71828180114638
With 10 iterations, e = 2.71828180114638

1 #!/usr/bin/perl
2 # Ex. 3.14c: Ex03_14c.pl
3 # Calculating e to a specific power.
4
5 print("What power should e be raised to? ");
6 chomp($power = <STDIN>);
7 print("How many iterations should we use to compute e? ");
8 chomp($iterations = <STDIN>);
9

10 $i = 1;
11 $e = 1;
12
13 while ($i <= $iterations) {
14 $factorial = 1;
15 $j = $i;
16
17 while ($j) {
18 $factorial *= $j;
19 $j--;
20 }
21
22 $e += ($power ** $i) / $factorial;
23 print("At iteration number $i, e^$power = $e\n");
24 $i++;
25 }

ex 1 x
1!
----- x2

2!
----- x3

3!
----- …+ + + +=

	perlhtp1_im.pdf

