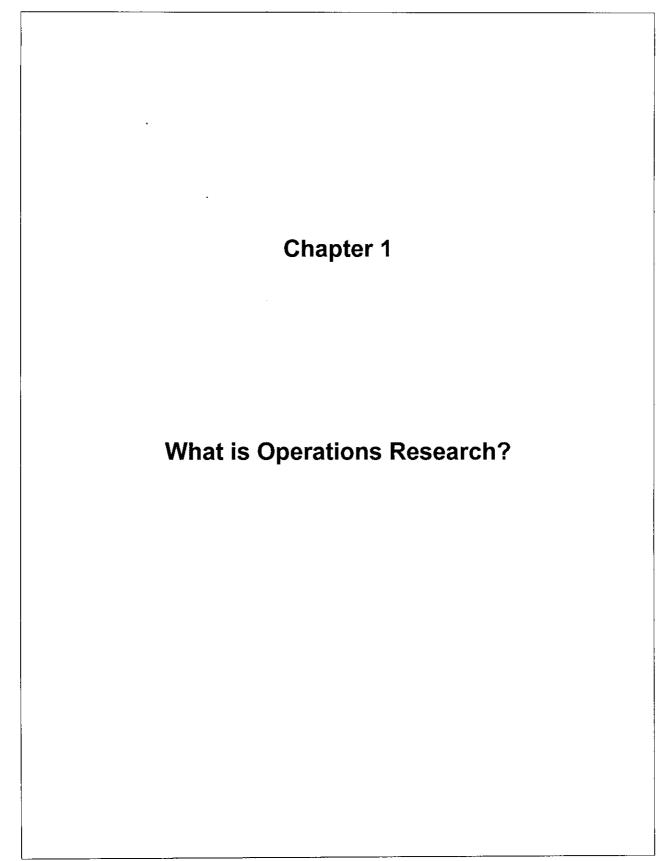


Solutions manual


Operations Research: An Introduction

Ninth Edition

Hamdy A. Taha

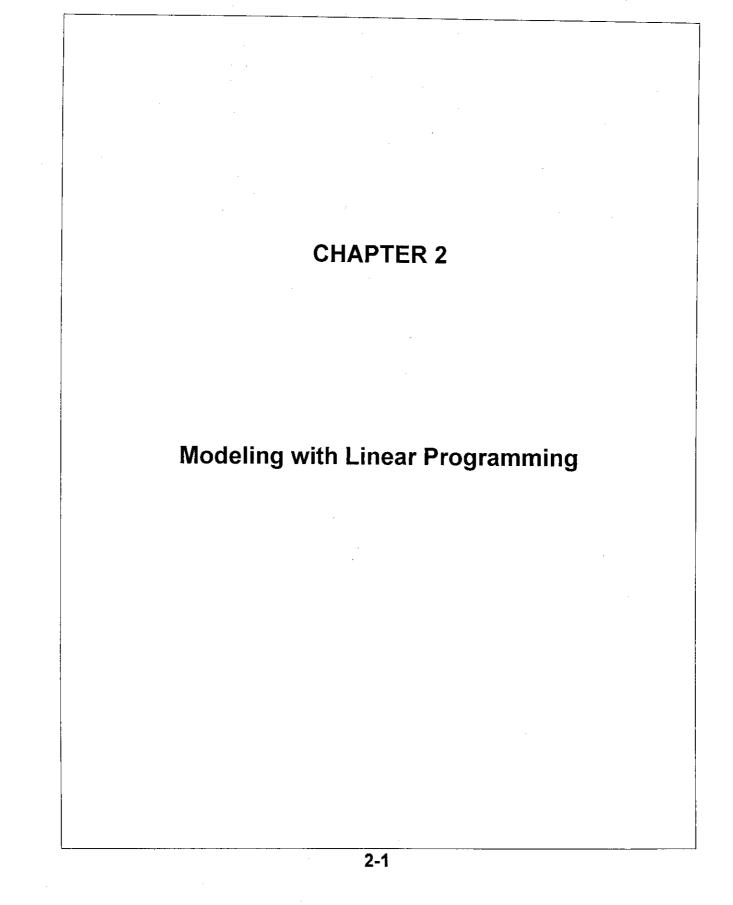
Contents

1	What is Operations Research?
2	Modeling with Linear Programming
3	The Simplex Method and Sensitivity Analysis
4	Duality and Post-Optimal Analysis
5	Transportation Model and its Variants
6	Network Models
7	Advanced Linear Programming
8	Goal Programming
9	Integer Liner Programming
10	Heuristic Programming
11	Traveling Salesperson Problem (TSP)
12	Deterministic Dynamic Programming
13	Deterministic Inventory Models
14	Review of Probability
15	Decision Analysis and Games
16	Probabilistic Inventory Models
17	Markov Chains
18	Queuing Systems
19	Simulation Modeling
20	Classical Optimization Theory
21	Nonlinear Programming Algorithms
Appendix C	AMPL modeling Language

Set 1.2a

4 cont.
East Crossing West
5,10 (1,2) \rightarrow (t = 2) 1,2
1,5,10 (t = 1) $(t = 1)$
$1 (5,10) \to (t = 10) 2,5,10$
$1,2 (t=2) \leftarrow (2) \qquad 5,10 \qquad (t=2) \leftarrow (2) \qquad (t=2) \leftarrow (1,2) \leftarrow (1,$
none $(1,2) \rightarrow (t=2)$ $(1,2,5,10)$ Total = 2 + 1 + 10 + 2 + 2 = 17 minutes
10tal = 2 + 1 + 10 + 2 + 2 - 17 minutes
<u>5</u> Jim
Curve Fast
Curve $500 200$
Joe Fast .100 .300
 (a) Alternatives: Jim: Throw curve of fast ball. Joe: Prepare for curve or fast ball. (b) Joe tries to improve his batting score and Jim tries to counter Joe's action by selecting a less favorable strategy. This means that neither player will be satisfied with a single (pure) strategy. The problem is not an optimization situation in the familiar sense in which the objective is maximized or minimized. Instead, the conflicting situation requires a compromise
solution in which neither layer is tempted to change strategy. Game theory (Chapter 14) provides such a solution.

```
Let L=ops. 1 and 2=20 sec, C=ops. 3 and 4=25 sec, U=op. 5=20 sec
                      Gant chart: L1+load horse 1, L2=load horse 2, etc.
         one joist: 0---L1---20---C1---45----U1+L1---85----U2+L2----125---U1+L1---
                                         20-L2-40 45---C2----70 85---C1---110 125---C2---140
                                         165-C1-190
                                                        205----C2----230----U2----250
               Total = 250
               Loaders utilization=[250-(5+25)]/250=88%
               Cutter utilization=[250-(20+15+15+15+15)]/250=68%
       two joists: 0---2L1---40-----2C1-----90----2(U1+L1)---170----2C1----220---2U1-
                                                --260
                             40---2L2---80 90---2C2----140 170---2U2---210
              Total = 260
              Loaders utilization=[260-(10+10)]/260=92%
              Cutter utilization=[260-(40+30+40)]/250=58\%
        three joists: 0---3L1---60-----3C1-----135-----3C2-----210----3U2----270
                               60---3L2---120 135-----3U1-----195
              Total = 270
              Loaders utilization=[270-(15+15)]/270=89%
              Cutter utilization=[270-(60+60)]/270=56\%
Recommendation: One joist at a time gives the smallest time. The problem has other
alternatives that combine 1, 2, and 3 joists. Cutter utilization indicates that cutter represents the
bottleneck.
                                                                                         7
                                              10
                                             8 9
                                           5 6 7
                                          1 2 3 4
   (a) Alternative 1: Move dots 5, 6, and 7 below bottom row, move dots 8 and 9 below new 5, 6, and
       7. Move 10 to the bottom. Number of moves = 6. Alternative 2: See part (b)
   (b) Three moves: Move dot 1 up to the left of dot 8, dot 4 to the right of dot 9, and dot 10 below dots
      2 and 3.
```

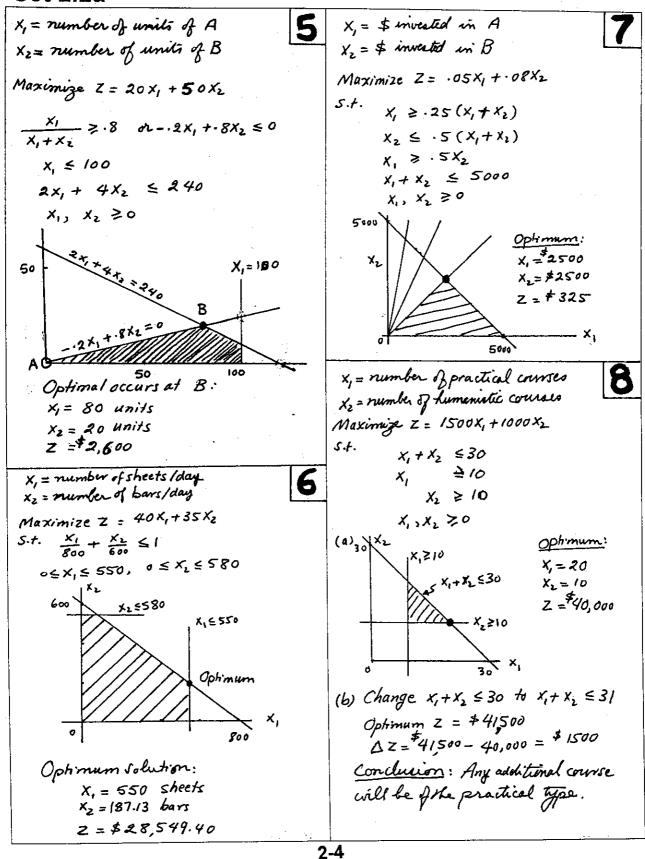

1 - 3

<u>8</u>

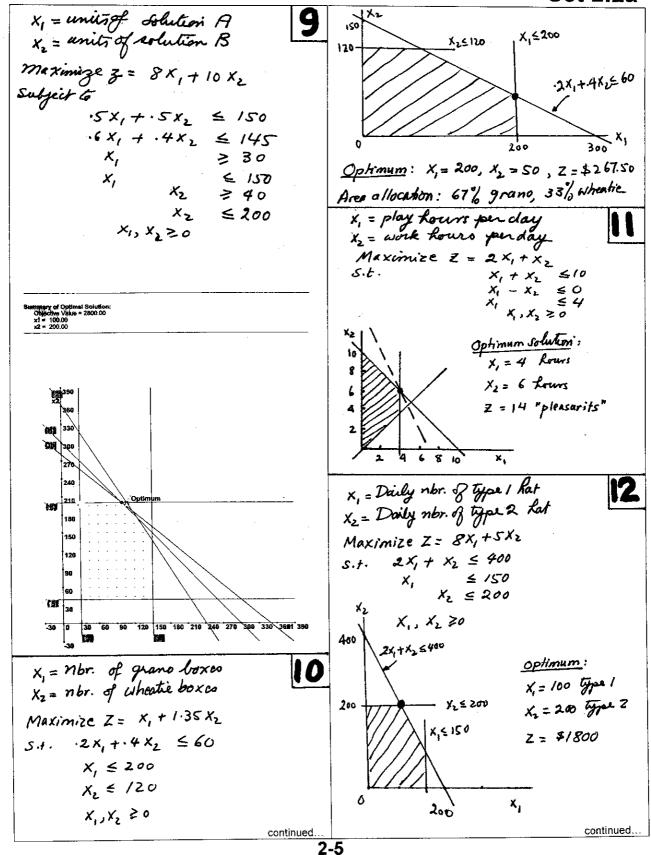
- (a) Alternative 1: Break one end link of each chain and connect to another chain. Four breaks and resolders, $cost = 4 \times (2 + 3) = 20$ cents. Alternative 2: See Part (b)
- (b) Break three links in one chain and use them to connect the remaining three chains: Three breaks and re-solder, $cost = 3 \times (2 + 3) = 15$ cents.

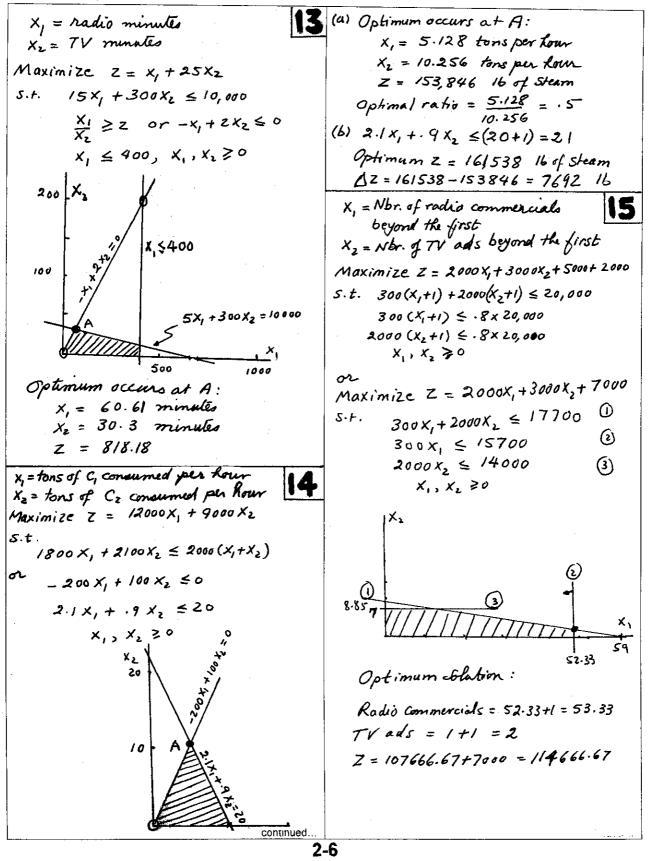
<u>9</u>

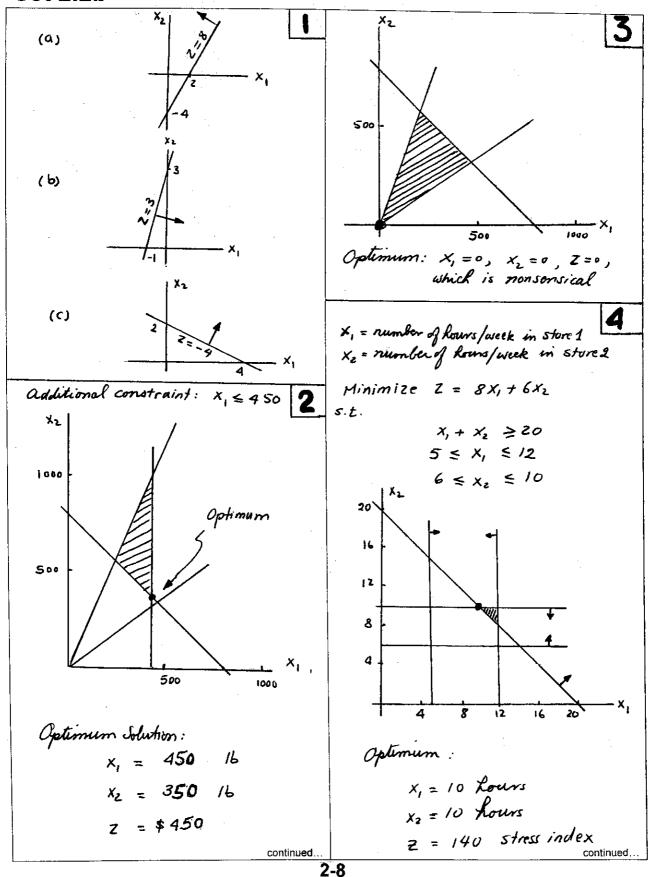
Represent the selected 2-digit number as 10x+y. The corresponding square number is 10x+y-(x+y)=9x. This means that the selected square will always be 9, 18, 27, ..., or 81. By assigning zero dollars to these squares, the reward is always zero regardless of the rewards assigned to the remaining squares or the number of times the game is repeated.

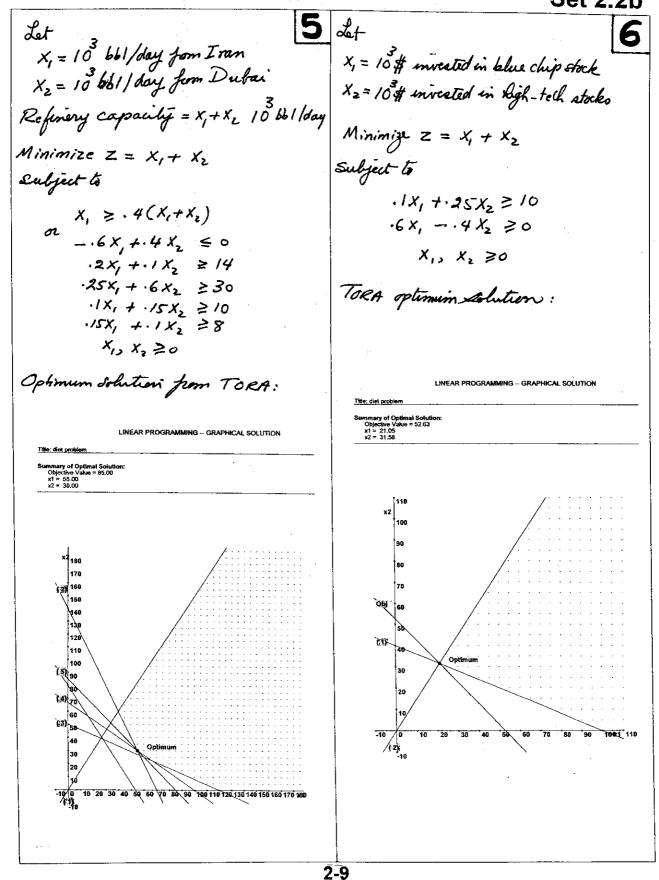

Set 2.1a

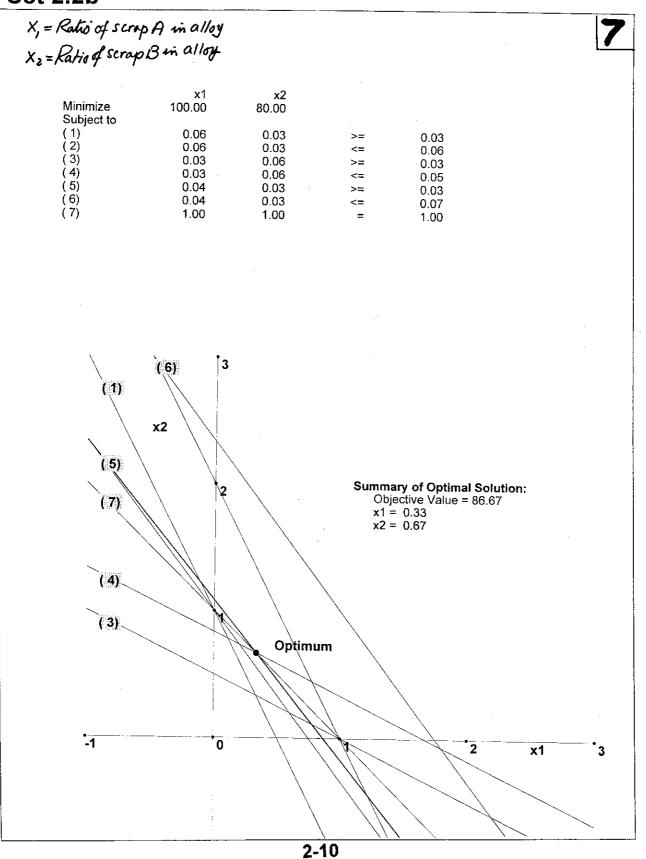
(a) $X_2 - X_1 \ge 1 \text{ or } -X_1 + X_2 \ge 1$ Quantity discount results in the (b) $X_1 + 2X_2 \ge 3$ and $X_1 + 2X_2 \le 6$ following nonlinear objective function: (C) X2 = X, or X, - X2 50 (d) $X_1 + X_2 \ge 3$ $Z = \begin{cases} 5x_1 + 4x_2, & 0 \le x_1 \le 2\\ 4 \cdot 5x_1 + 4x_2, & x_1 > 2 \end{cases}$ (a) $x_1 + x_2 = 5$ (c) $\frac{x_2}{x_1 + x_2} \leq .5 \text{ or } .5x_1 - .5x_2 > 0$ (a) $(X_{1}, X_{2}) = (1, 4)$ $(X_1, X_2) \geq 0$ 6x1+4x4 = 22 < 24 $1x1+2x4 = 9 \pm 6$ infeasible The suturation cannot be treated as a linear program. Nonlinearily can be accounted for in this case (b) $(x, x_1) = (2, 2)$ $\begin{cases} 6x 2 + 4x 2 = 20 < 24 \\ 1x 2 + 2x 2 = 6 = 6 \\ -1x 2 + 1x 2 = 0 < 1 \\ 1x 2 = 2 = 2 \end{cases}$ meaning mixes (chapter 9). maing mixed integer pergramming (X,)×2)≥ ° Z = 5x2 + 4x2 = \$18(c) $(X_1, X_2) = (3, 1.5)$ X13X230 $6 \times 3 + 4 \times 1.5 = 24 = 24$ $1 \times 3 + 2 \times 1.5 = 6 = 6$ $-1 \times 3 + 1 \times 1.5 = -1.5 < 1$ $1 \times 1.5 = 1.5 < 2$ $Z = 5x_3 + 4x_{1}S = 2$ $(d)(x_1, x_2) = (2, 1)$ $6 \times 2 + 4 \times 1 = 16 < 24$ feasible $1 \times 2 + 2 \times 1 = 4 < 6$ $-1 \times 2 + 1 \times 1 = -1 < 1$ $x_1, x_2 \ge 0$ 1×1 =1 $Z = 5x_2 + 4x_1 = 14 (c) $(x_1, x_2) = (29 - 1)$ X, 30, X2<0, infeasible Conclusion: (c) gives the best feasible Solution $(X_1, X_2) = (2, 2)$ $(x_1, x_2) = (Z, Z)$ det 5, and 52 be the unused daily amounts of MI and M2. For MI: 5, = 24 - (6x, + 4x) = 4 tons/day For M21 Sy = 6 - (x, + 2x2) = 6-(2+2X2) = 0 tons / day 2-2




Set 2.2a


Set 2.2a


Set 2.2a


Set 2.2b

Set 2.2b

Set 2.2b

Set 2.4a

(a)
$$x_{i}$$
 estimation portion of project i (b) (d) the schede S_{i} on presented i in .
The association of the second integration of the scheder of t

2-11

^{© 2011} Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Set 2.4a

$$\begin{array}{c} P_{i} = fraction undertakten g project \\ c, i = 1, 2 \\ \\ B_{i} = million dollars torransed in granter, j, j = 1, 2, 3, 4 \\ \\ S_{i} = surplus million dollars to ransed in the later granter, j, j = 1, 2, 3, 4 \\ \\ S_{i} = surplus million dollars at the later granter (1, 2, 3, 4) and S \\ \\ granter, j, j = 1, 2, 3, 4, 5 \\ \\ Inst, I$$

Set 2.4a

XiA = amount invested in yeari 5 plan A (1000\$) $I_7 = 3.5 + 1.075 I_6 + 1.079 G_1$ $+.079(G_2+G_3+G_4+G_5)$ +.085 (M,+M2) XiB = amount invested in year i, plan B (1000\$) $I_g = 4 + 1.075 I_7 + 1.079 G_2$ + · 079 (G3+G4+G5) +.085 (M, + M2) Maximize Z = 3 X2B + 1.7 X3A Ig = 4 + 1.075 Ig + 1.079 G3 + .079 (G4 + G5) + .085 (M, + M2) Subject to XIA + XIB I10 = 5+1.075 Ig + 1.079 Gy *≤ 100* -1.7 X_{IA} +.079 G5 +1.085 M, +.085 M, + X2A+ X2B all variables 20 $-3 \times_{1B} - 1.7 \times_{2A} + \times_{3A} = 0$ *** OPTIMUM SOLUTION SUMMARY *** XiA, XiB =0 for i=1, 2, 3 Title: Problem 268-14 Final iteration No: 14 Objective value (max) + 46.8500 *** OPTIMUM SOLUTION SUMMARY *** Variable Value Obj Coeff Obj Val Contrib Title: Problem 2.6e-15 Final iteration No: 4 Cbjective value (mex) * 510.0000 *** ALTERNATIVE solution detected at x2 x1 11 x2 12 x3 13 x4 14 x5 15 x6 16 x7 17 x8 18 x9 19 x19 110 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.6331 9.6137 15.4678 0.0000 Value Variable Obj Coeff 0.0000 Obj Val Contrib 0.0000 x1 x1A 100.0000 0.0000 0.0000 0.0000 1.0750 0.0000 72 x18 x3 x2A x4 x28 x5 x3A 0.0000 0.0000 0.0000 0.0000 24.6665 0.0000 170.0000 510,000 0.0000 .0000 1.7000 0.0000 0.0000 Constraint .0000 RHS 2.9053 Slack(-)/Surplus(+) x14 64 x15 65 x16 H1 3.1395 3.9028 1.9608 1 (*) 2 (*) 3 (*) 100.0000 0.0000-4.211 0.0000 0.0000 0.0000x17 M2 8.0000 2.1242 1.0850 2.3047 Constraint RHS Slack(-)/Surplus(+) Optimum solution: Invest \$100,000 in A in yr 1 and 1 (=) 2 (=) 3 (=) 4 (=) 5 (=) 6 (=) 7 (=) 8 (=) 9 (=) 10 (=) 2.0000 8.000 \$170,000 in B in yr 2. 0.0000 2.0000 2.5000 Alternative optimum: Invest \$100,000 in B in yr 1 and 2.5000 3.0000 3.5000 3.5000 0.0000 \$300,000 in A in yr 3. 0.0000 4.0000 Xi = dollars allocated to choice i. 6 6=1,2,34 Year Recommendation y = minimum seturn Invest all in 9- yr bond 1 (-3×1+4×2-7×3+15×4 Investall in 9-yr. bond 2 Maximize Z = min { 5x1 - 3x2 + 9x3 + 4Xy bruest all in 6-yr bond 3 Investall in Gyr bond Subject to (3x, -9x2+10x3-8x4 4 Invest all in 6-31 bond $X_1 + X_2 + X_3 + X_4 \leq 500$ Invest all in insured savings $X_1, X_2, X_3, X_4 \geq 0$ 5 7 Invest all in insured savings $X_1, X_2, X_3, X_4 \ge 0$ Invest all in insured savings The problem can be converted to 8 9 Sumstall in moured savings a linear program as 10 continued. 2-13

	Set 2.4
Maximize Z = y	$P_{i} = \begin{cases} 1, i=1 \\ 3, i=2 \\ 6, i=3 \end{cases} \neq demand for periods$
subject to	
$-3x_1 + 4x_2 - 7x_3 + 15x_4 \ge y_1$	Maximize $Z = \sum_{t=1}^{12} \sum_{i=1}^{3} r_i X_i - y_i$
$5x_1 - 3x_2 + 9x_3 + 4x_4 \ge 4$	t-P>0
3x1 -9x2 + 10x3 - 8x4 > 4	S.E.
U	$y_{1} - x_{11} - x_{21} - x_{31} \ge d_{13}$
$X_1 + X_2 + X_3 + X_4 \leq 500$	$1000 + \sum_{i=1}^{3} (1+r_i) X_{i,k-p_i} - \sum_{i=1}^{3} X_{i,k} \ge d_{t}, t$
$X_{1}, X_{2}, X_{3}, X_{4} \geq 0$	
y unrestricted	$t-p_{1}.>0$ $t\leq I_{1}.$
*** OPTIMUM SOLUTION SUMMARY ***	Xit, y,≥0
Title: Final iteration No: 5	Solution: (see file amp12.3c-7.txt)
Objective value (max) = 1175.0000	N \$1200 71136.29 +
Variable Value Obj Coeff Obj Val Contrib	Interest amount = 1200 - 1136.29 = 63
x1 0.0000 0.0000 0.0000	Deposits:
x2 0.0000 0.0000 0.0000 x3 287.5000 0.0000 0.0000	t XIE XZE X31
x4 212.5000 0.0000 0.0000 x5 y 1175.0000 1.0000 1175.0000	1 0 0 0
Constraint RHS Slack(-)/Surplus(+)	2 0 200 0
1 (>) 0.0000 0.0000+	3 286.48 313.53 0
2 (>) 0.0000 2262.5000+	4 0 587.43 0
3 (>) 0.0000 0.0000+ 4 (<) 500.0000 0.0000-	5 314.31 289.30 ()
Allocate \$287.50 to choice 3	6 0 734.69 0 7 0 98.20 0
nd \$ 212.50 to choice 4. Return =	8 0 294.60
://75.00	9 0 848.16
(1, regular savings 7	10 0 0
	<u> </u>
$\dot{c} = \begin{cases} 2, 3 - month CD \\ 3, 6 - month CD \end{cases}$	12 0
Xit= Deposit in plani atstart of month t	
•••	
$t = \begin{cases} 1, 2, \dots, 12 & \text{if } i = 1 \\ 1, 2, \dots, 10 & \text{if } i = 2 \\ 1, 2, \dots, 7 & \text{if } i = 3 \end{cases}$	
t= { 1,2,,10 m -2	
(1,2,,7 4 (-3)	
y = initial amount on hand to insure a feasible solution	· · · · · ·
inaure a feasible Solution	
$r_i = interest rate for plan i=1, 2, 3$ $J_i = \begin{cases} 12, i=1\\ 10, i=2 \end{cases}$	
$\frac{1}{1-1}$ $\int 2, i=1$	
continued	2-14 [°]

Set 2.4b

Set 2.4b

Set 2.4b

X = Units of peroduct j, j=1,2 8 Y = Unused hours of machine i } i=1,2 y += Overtime hours of machini is Maximize Z = 110 X, +118 X2 - 100 (y+ y+) S. +. $\frac{x_{1}}{5} + \frac{x_{2}}{5} + y_{1}^{-} - y_{1}^{+} = 8$ $\frac{X_{1}}{8} + \frac{X_{2}}{4} + \frac{Y_{2}}{4} - \frac{Y_{1}}{4} = 8$ $\mathcal{Y}_{1}^{+} \leq 4$, $\mathcal{Y}_{2}^{+} \leq 4$ X,,X2, y-, y+, y-, y+ 30 Solution : Revenue = 6,232 $X_{i} = 56$, $y_{i}^{+} = 4$ kro $x_z = 4, \quad y_z^+ = 0$ 7, 7= 0 2-17

Set 2.4c

2-18

Let $x_i = Nbr$, starting on day i and lasting for 7 days

 y_{ij} = Nbr. starting shift on day i and starting their 2 days off on day j, $i \neq j$

Thus, of the x_1 workers who start on Monday, y_{12} will take T and W off, y_{13} will take W and Th off, and so on, as the following table shows.

	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	x ₇
1	start on Mon	<i>y</i> 12	y12 ⁺ y13	<i>y</i> ₁₃ + <i>y</i> ₁₄	<i>y</i> 14+ <i>y</i> 15	y 15 +y 16	Y 16
2	y27	Tue	y23	y23+y24	y24+y25	y25+y26	y26+y27
3	y31+y37	y31	Wed	y34	y34+y35	y35+y36	y36+y37
4	y41+y47	y41+y42	y42	Ъ	y45	y45+y46	y46+y47
5	y51+y57	y51+y52	y52+y53	y53	Fn	y56	y56+y57
6	y61+y67	y61+y62	y62+y63	y63+y64	y64	Sat	y67
7	y71	y71+y72	y72+y73	y73+y74	y74+y75	y75	Su

Minimize $z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$

Each employee has 2 days off: $x_i = sum{j in 1..7, j\neq i}y_{ij}$ Mon (1) constraint: $s -(y_27 + y_{31} + y_{37} + y_{41} + y_{47} + y_{51} + y_{57} + y_{61} + y_{67} + y_{71}) >= 12$ Tue (2) constraint: $s -(y_{12} + y_{31} + y_{41} + y_{42} + y_{51} + y_{52} + y_{61} + y_{62} + y_{71} + y_{72}) >= 18$ Wed (3) constraint: $s -(y_{12} + y_{13} + y_{23} + y_{42} + y_{52} + y_{53} + y_{62} + y_{63} + y_{72} + y_{73}) >= 20$ Th (4) constraint: $s -(y_{13} + y_{14} + y_{23} + y_{24} + y_{53} + y_{63} + y_{64} + y_{73} + y_{74}) >= 28$ Fri (5) constraint: $s -(y_{14} + y_{15} + y_{24} + y_{25} + y_{34} + y_{35} + y_{45} + y_{64} + y_{74} + y_{75}) = 32$ Sat(6) constraint: $s -(y_{15} + y_{16} + y_{25} + y_{26} + y_{35} + y_{36} + y_{45} + y_{46} + y_{57} + y_{67}) >= 40$ Sun(7) constraint: $s -(y_{16} + y_{26} + y_{27} + y_{36} + y_{37} + y_{46} + y_{47} + y_{56} + y_{57} + y_{67}) >= 40$

continued

6

2-19

Jolution, 40				·			·		Set 2
Solution: 42		ployees	S				,,	·	
Starting		Nbr off							
On N	Vbr	M	Tu	Wed	Th	Fri	Sat	Sun	
М	16		16	16	1. 11. 12. 13.				
Tu	8				8	8			
Wed	8	8	8		t deficilie	ndiateri (n. 1997) T			
Th	0								
Fri	6			6	6				
Sat	2	2		-shi - mining mali	. Anarasite transf	, e		2	
Sun	2					, 2	2	sarus (sina milaizza) Angli Angli Sina Milai	
Nbr off		10	24	22	14	10	2	2	ъ.
Nbr at work		32	18	20	28	32	40	40	
Surplus above minimum	e	20	0	0	0	0	0	0	
		`							
					,				
				,					
					2-20				

Set 2.4d

$$\begin{array}{c} X_{c} = \text{Nbr. } q, \text{ fficture gastment}_{c} \\ X_{c} = \text{Nbr. } q, \text{ angle. family homes}_{x_{c}} \\ X_{c} = \text{Nbr. } q, \text{ angle. family homes}_{x_{c}} \\ X_{c} = \text{Rebailspace in } ft^{2} \\ \text{Maximize } Z = 600 X_{c} + 750 X_{c} + 1200 X_{c} + 100 X_{h} \\ \text{S.t. } x_{c} \leq 500, X_{d} \leq 300, X_{s} \leq 250 \\ X_{h} \geq 10 X_{c} + 15 X_{d} + 18 X_{s} \\ X_{h} \leq 10 000 \\ X_{h} = 20 X_{h} = 28 X_{h} = 28 S_{h} 7 \\ X_{h} \leq 228 S_{h} = 75 \\ X_{h} = 10 000 \\ X_{h} = 2 X_{h} = 10, 000 \\ X_{h} = 10 000 \\ X_{h} = 0 000$$

2-22

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

~

Set 2.4e

$$\begin{array}{c} X_{5} = toro f straw berry / day, \\ X_{g} = toro f grapes / day, \\ Y_{g} = cano f grapes / day, \\ Y_{g} = cano f grapes / day, \\ Y_{g} = toro f gra$$

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

.

Set 2.4e

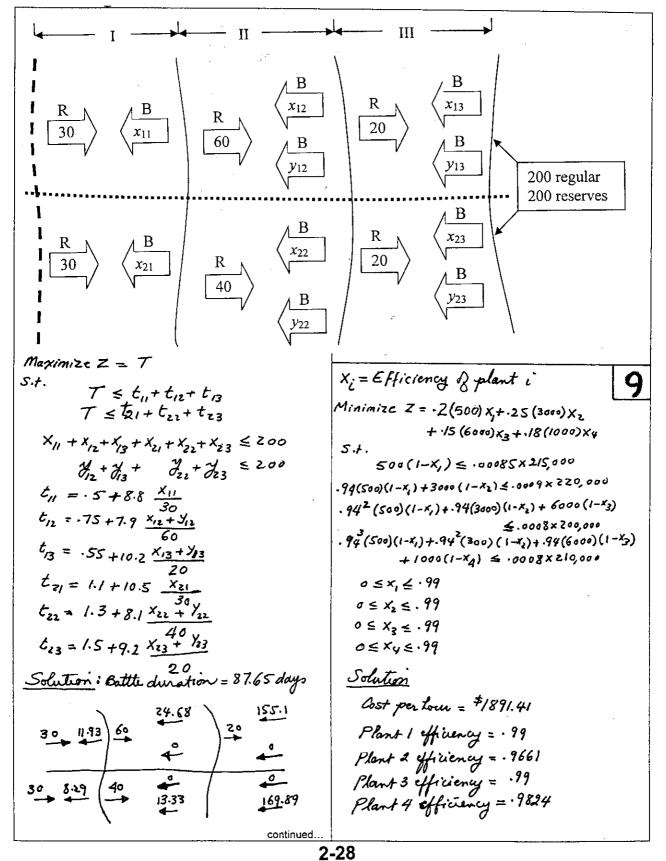
Set 2.4e

NR = bb1/day of naphta ward in regular 6 Maximize Z = 150 x, +200 x2 + 230 x3 +35 x NP= 661/14 of raphta ward in premium st. NJ= 661/day of naphta used mi jet Xy = 4000 × · 1 Xy = 400 LR = bb1/day of light used in regular LP = 661/day of light used in premium $x_{1} + \left(\frac{x_{2} + \frac{x_{3}}{.95}}{.95}\right) \le .3 \times 4000$ LJ = 661/day of light used in jet Using the other notation in Problem 5, $.76x_1 + .95x_2 + x_3 \leq 9/2$ Maximize Z = 50(R-R)+70(P-P)+12(J-J) $X_1 \ge 25, X_2 \ge 25$ -(10 R+15 P+205)-(2 R+3p++45) $x_3 \ge 25$, $x_y \ge 0$ - (30A+40R) Optimiim solution from TORA: s.7. A=2500, B=3000 x, = 25 tons per week X2 = 25 tons per week R + R - R' = 500X3 = 869.25 tono per week $P + P - P^{\dagger} = 700$ × Xy = 400 tone per week $J + J - J^{\dagger} = 400$ Z = # 122,677.50 ·35A+·45R=NR+NP+NJ A = 661/the of stock A 8 $\cdot 6A + \cdot SB = LR + LP + LJ$ B= 661/h of stock B YAi = bbl/hr of A used in gasdini i 7 i=1, Z. YBi = bbl/hr of B used in gashini i] i=1, Z. R=NR+LR P = NP + LPT = N T + L TMaximize Z = 7 (YAI+YBI) + 10 (YAZ+YBZ) all variables are nonnegative A = YAI + YAZ , A = 450 S.f. B=YB1+YB2, B≤700 Optimum tohition: Z = \$71,473.68 $98Y_{A,} + 89Y_{I} \ge 91(Y_{A_{I}} + Y_{B_{I}})$ A=1684.21 B=0 R= 500, P=700, J=400 $98 Y_{A2} + 89 Y_{B2} \ge 93(Y_{A2} + Y_{B1})$ X1 = tons of brown sugar per week 10YA1 + 8 YB1 = 12 (YA1 + YB1) X2 = tons of white sugar per week $10 Y_{A2} + 8 Y_{B2} \leq 12 (Y_{A2} + Y_{B2})$ X3 = tons of porodered angar perweek X4 = tons of molassis per week all variables are nonnegative Optimum tolution: Z = \$10,675 A= 450 661/2 B=700 661/2 1: 15 Gussonie 1 production = 1 Ai + 181 = 61.11+213.89=275 boll Gastine 2 production = YA2+YB2 = 388.89+486.11=875 60/hr Syrup continued 2-25

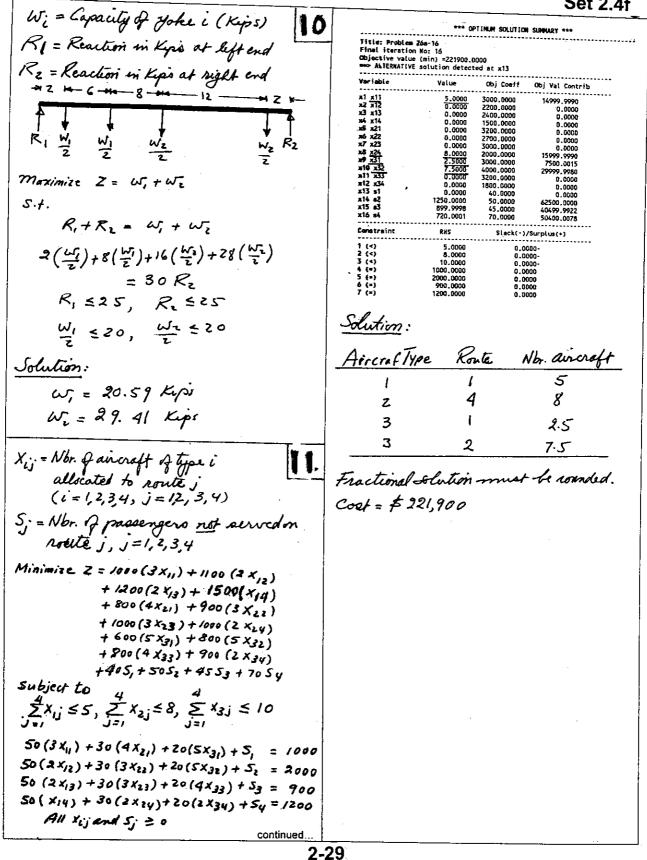
© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Set 2.4e

S=tons of steel scrap / day 9 10 A = tons of alum. scrap / day Xij = tons of one i allocated to alloy & Whe = tons of alloy & peroduced C = tons of Cast iron scrap / day Ab = tons of alum. briguettes / day Maximize Z = 200 WA + 300 WB Sb = tono silicon briguettes / day a = tons of alum. I day - 30 (X10+ X1R) -40 (X2A+X2B) g = tone of graphite / day - 50 (X3A + X3R) I = tono of Eilicon / day aI = tons of alum in ingot I / day Subject to a II = tons falum. in ingot II / day Specification constraints : gI = tons of graphite in most I / day gII = tons of graphite in most II / day ·2 XIA + · 1 XZA + · 05 X3A ≤ · 8 WA () · 1 X1A + · 2 X2A + · 05 X3A ≤ · 3 WA (2) SI = tono of silicon in ingot I / day SII = tono of silicon in ingot I / day · 3 X1A + · 3 X2A + · 2 X3A = · 5 WA (3) I = tons of inget I / day $\cdot 1 \times_{1B} + \cdot 2 \times_{2B} + \cdot 05 \times_{3B} \ge \cdot 4 W_{B} \langle 4 \rangle$ Iz= tons of ingot II/day. ·1×1B + ·2×1B + ·05×38 ≤ .6WBG Minimize Z = 100 S+150 A+75 C+900 Ab+380 Sb ·3 ×18 + ·3 ×28 + ·7 ×38 ≥ ·3 WR 6 S.J. SE 1000, A = 500, CE 2500 ·3 ×18 + ·3 ×28 + ·2 ×38 ≤ ·7 WR(7) a = .1S + .95A + AbOne constraints 9 = .05 S +. 01 A +. 15 C S = .14 S +. 02 A +. 08 C + SL XIA + XIB = 1000 $I_{1} = QI + gI + SI$ $I_{2} = QI + gI + SI$ X2A + X28 5 2000 $q_{I} + q_{\overline{I}} \leq \mathcal{X}$, $\mathcal{S}I + \mathcal{S}\overline{L} \leq \mathcal{S}$, $\mathcal{J}I + \mathcal{J}\overline{L} \leq \mathcal{G}$ X3A + X38 5 3000 $\begin{array}{l} \cdot \mathbf{O}\mathbf{F}\mathbf{I} \ \mathbf{I}, \ \leq \mathbf{a}\mathbf{I} \leq \cdot \mathbf{I}\mathbf{O}\mathbf{F}\mathbf{I}, \\ \cdot \mathbf{v}\mathbf{I}\mathbf{S}\mathbf{I}, \ \leq \mathbf{\partial}\mathbf{I} \leq \cdot \mathbf{o}\mathbf{S}\mathbf{I}, \end{array}$ Title: Problem 26a-17 Final iteration No: 1 ·025I,≤8I<∞ Objective value (max) =400000 ·0621, 50I 5.089Iz Variable Value Obj Coeff Obj Val Contrib $\begin{array}{c} \cdot \circ 4 / I_{z} \leq \partial I \leq \infty \\ \cdot \circ 28 I_{z} \leq \partial I \leq \cdot \circ 4 / I_{z} \end{array}$ x1 54 x2 56 1799.9999 359999.9688 300000.0312 200.0000 300.0000 -30.0000 -30.0000 1000.0001 x3 x1A x3 x1A x4 x1B x5 x2A x6 x28 1000.0000 -30000.0000 0.0000 $I_1 \ge 130$, $I_2 \ge 250$ 40.000 0.0000 2000.0001 3000.0000 40.000 x7 x34 000.0078 50.0000 x8 x38 -150000.000c 0.0000 Optimum solution : Constrain RHS Slack(-)/Surplus(+) 0.000 1090.0000 0.0000 Z = \$ 117.435.65 290.0000 S=0, A=38.2, C= 1489.41 0.0000 0.0000 0000 Ab = Sb = 0I,= 130, I2=250 Solution: a = 36.29, g = 223.79, J= 119.92 Produce 1800 tons of alloy A and 1000 tons of alloy B. 2-26


Set 2.4f

$$\begin{array}{c} X_{1} = Nbr. & f_{1} add, for incluse i, i = 1,3,3,4 \\ Minimize Z = S_{1}^{-} + S_{2}^{-} + S_{3}^{-} + S_{4}^{-} \\ (-3,0,00 + 6,000 + 3,0,00)X_{3} + S_{2}^{-} - S_{2}^{+} - SIX 400,000 \\ (R_{0},00 + 3,0,00) X_{3} + S_{2}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{0},00 - 2,0,00) X_{3} + S_{3}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{0},00 - 2,0,00) X_{3} + S_{3}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{0},00 - 2,0,00) X_{3} + S_{3}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{0},00 - 2,0,00) X_{3} + S_{3}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{0},00 - 2,0,00) X_{3} + S_{3}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{0},00 - 2,0,00) X_{3} + S_{3}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{0},00 - 2,0,00) X_{3} + S_{3}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{0},00 - 2,0,00) X_{3} + S_{3}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{0},00 - 2,0,00) X_{3} + S_{3}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{0},00 - 2,0,00) X_{3} + S_{3}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{0},00 - 2,0,00) X_{4} + S_{3}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{0},00 - 2,0,00) X_{4} + S_{3}^{-} - S_{4}^{+} - SIX 400,000 \\ (R_{1},00) X_{1} + S_{1}^{+} - S_{1}^{+} - S_{1}^{+} - S_{2}^{+} - S_{1}^{+} - S_$$


2-26a

Set 2.4f

Set 2.4f

Set 2.4f

