

CHAPTER 2 OPERATING SYSTEM

OVERVIEW

ANSWERS TO QUESTIONS

2.1 Convenience: An operating system makes a computer more

convenient to use. Efficiency: An operating system allows the
computer system resources to be used in an efficient manner. Ability

to evolve: An operating system should be constructed in such a way as
to permit the effective development, testing, and introduction of new

system functions without interfering with service.

2.2 The kernel is a portion of the operating system that includes the most

heavily used portions of software. Generally, the kernel is maintained
permanently in main memory. The kernel runs in a privileged mode and

responds to calls from processes and interrupts from devices.

2.3 Multiprogramming is a mode of operation that provides for the
interleaved execution of two or more computer programs by a single

processor.

2.4 A process is a program in execution. A process is controlled and
scheduled by the operating system.

2.5 The execution context, or process state, is the internal data by

which the operating system is able to supervise and control the process.
This internal information is separated from the process, because the

operating system has information not permitted to the process. The

context includes all of the information that the operating system needs
to manage the process and that the processor needs to execute the

process properly. The context includes the contents of the various
processor registers, such as the program counter and data registers. It

also includes information of use to the operating system, such as the
priority of the process and whether the process is waiting for the

completion of a particular I/O event.

2.6 Process isolation: The operating system must prevent independent

processes from interfering with each other's memory, both data and
instructions. Automatic allocation and management: Programs

should be dynamically allocated across the memory hierarchy as
required. Allocation should be transparent to the programmer. Thus, the

programmer is relieved of concerns relating to memory limitations, and
the operating system can achieve efficiency by assigning memory to

jobs only as needed. Support of modular programming:
Programmers should be able to define program modules, and to create,

destroy, and alter the size of modules dynamically. Protection and
access control: Sharing of memory, at any level of the memory

hierarchy, creates the potential for one program to address the memory
space of another. This is desirable when sharing is needed by particular

applications. At other times, it threatens the integrity of programs and
even of the operating system itself. The operating system must allow

portions of memory to be accessible in various ways by various users.

Long-term storage: Many application programs require means for
storing information for extended periods of time, after the computer has

been powered down.

2.7 A virtual address refers to a memory location in virtual memory. That
location is on disk and at some times in main memory. A real address is

an address in main memory.

2.8 Round robin is a scheduling algorithm in which processes are activated
in a fixed cyclic order; that is, all processes are in a circular queue. A

process that cannot proceed because it is waiting for some event (e.g.
termination of a child process or an input/output operation) returns

control to the scheduler.

2.9 A monolithic kernel is a large kernel containing virtually the complete

operating system, including scheduling, file system, device drivers, and
memory management. All the functional components of the kernel have

access to all of its internal data structures and routines. Typically, a
monolithic kernel is implemented as a single process, with all elements

sharing the same address space. A microkernel is a small privileged
operating system core that provides process scheduling, memory

management, and communication services and relies on other processes
to perform some of the functions traditionally associated with the

operating system kernel.

2.10 Multithreading is a technique in which a process, executing an
application, is divided into threads that can run concurrently.

2.11 Simultaneous concurrent processes or threads; scheduling;

synchronization; memory management; reliability and fault tolerance.

ANSWERS TO PROBLEMS

2.1 The answers are the same for (a) and (b). Assume that although

processor operations cannot overlap, I/O operations can.

Number of jobs TAT Throughput Processor

utilization

1 NT 1/N 50%

2 NT 2/N 100%

4 (2N – 1)T 4/(2N – 1) 100%

2.2 I/O-bound programs use relatively little processor time and are

therefore favored by the algorithm. However, if a processor-bound
process is denied processor time for a sufficiently long period of time,

the same algorithm will grant the processor to that process since it has

not used the processor at all in the recent past. Therefore, a processor-
bound process will not be permanently denied access.

2.3 With time sharing, the concern is turnaround time. Time-slicing is

preferred because it gives all processes access to the processor over a
short period of time. In a batch system, the concern is with throughput,

and the less context switching, the more processing time is available for
the processes. Therefore, policies that minimize context switching are

favored.

2.4 A system call is used by an application program to invoke a function
provided by the operating system. Typically, the system call results in

transfer to a system program that runs in kernel mode.

2.5 The system operator can review this quantity to determine the degree

of "stress" on the system. By reducing the number of active jobs
allowed on the system, this average can be kept high. A typical

guideline is that this average should be kept above 2 minutes [IBM86].
This may seem like a lot, but it isn't.

2.6 a. If a conservative policy is used, at most 20/4 = 5 processes can be

active simultaneously. Because one of the drives allocated to each
process can be idle most of the time, at most 5 drives will be idle at a

time. In the best case, none of the drives will be idle.

 b. To improve drive utilization, each process can be initially allocated

with three tape drives. The fourth one will be allocated on demand.
In this policy, at most 20/3 = 6 processes can be active

simultaneously. The minimum number of idle drives is 0 and the
maximum number is 2.

	Chapter 2 Operating System Overview

