

Object-Oriented Programming Using C++, Fourth Edition 2-1

Chapter 2

Evaluating C++ Expressions

At a Glance

Instructor’s Manual Table of Contents

• Overview

• Objectives

• Teaching Tips

• Quick Quizzes

• Class Discussion Topics

• Additional Projects

• Additional Resources

• Key Terms

Object-Oriented Programming Using C++, Fourth Edition 2-2

Lecture Notes

Overview

In Chapter 2, students learn how C++ evaluates expressions. They learn about the
different binary and unary operators. Students learn about the precedence and
associativity of arithmetic operations and examine shortcut arithmetic operators. They
also learn to evaluate Boolean expressions and how to perform operations on structure
fields.

Objectives

• Use C++ binary arithmetic operators
• Learn about the precedence and associativity of arithmetic operations
• Examine shortcut arithmetic operators
• Use other unary operators
• Evaluate Boolean expressions
• Perform arithmetic with class fields

Teaching Tips

Using C++ Binary Arithmetic Operators

1. Briefly introduce each of the five simple arithmetic operators provided by C++, and note

that they are binary operators.

2. Stress that some arithmetic operators are not binary and some binary operators are not
arithmetic.

3. Note that the results of an arithmetic operation can be used immediately or stored in a

variable in computer memory (see Figure 2-1).

Teaching
Tip

Explain that various programming choices may make your code run faster or
slower. Refer to the first tip on page 53 for an example.

4. Explain that addition, subtraction, multiplication, division, or modulus of any two

integers results in an integer.

Object-Oriented Programming Using C++, Fourth Edition 2-3

Teaching
Tip

Integer division is usually confusing for beginning students and is a common
source of programming errors. Make sure students understand why 10 / 8 is 0.

5. Note that if either or both of the operands in addition, subtraction, multiplication, or

division is a floating-point number –that is, at least one operand is a float or a double—
then the result is also a floating-point number.

6. Introduce the terms mixed expression and unifying type.

7. Describe the order of precedence of unifying types in binary arithmetic expressions. You

may refer to Figures 2-3 and 2-4 to help clarify how the precedence of unifying types
affects how binary arithmetic expressions are evaluated. Don’t forget to explain what a
cast is. Note the difference between an implicit cast and an explicit cast.

Teaching
Tip

Refer to the ASCII table available at www.asciitable.com/ to explain that you
can convert a character to its integer equivalent using a cast, and vice versa.

Teaching
Tip

Students may wonder if there is a difference between a C++ style static cast and
a C style static cast. Although they may seem equivalent, there are some subtle
differences between these types of casts. For more information, read:
http://cboard.cprogramming.com/showthread.php?p=621213.

Using Modulus

1. Explain the use of the modulus operator (%) and note how it can be used to extract digits

at the end of a number.

2. Introduce the concept of check digits and describe a simple algorithm for detecting and

comparing check digits.

Quick Quiz 1

1. What is a mixed expression?
Answer: An expression such as 3.2 * 2 is a mixed expression—one in which the operands
have different data types.

2. What is an implicit cast?

Answer: The automatic cast that occurs when you assign a value of one type to a type
with higher precedence is called an implicit cast—meaning the cast is performed
automatically and without your intervention.

3. The ____________________ gives the remainder of integer division; it can be used only

with integers.

Object-Oriented Programming Using C++, Fourth Edition 2-4

Answer: modulus operator (%)
 modulus operator
 % operator

4. A(n) ____________________ is a digit added to a number (either at the end or at the

beginning) that validates the authenticity of the number.
Answer: check digit

Precedence and Associativity of Arithmetic Operators

1. Explain the concepts of arithmetic precedence and associativity.

2. Describe the steps that occur when C++ evaluates a mixed arithmetic expression.

3. Use Table 2-1 to help students practice the arithmetic expression rules they just learned.

4. Note how parentheses can be used to override precedence rules.

Shortcut Arithmetic Operators

1. Briefly introduce the two categories of shortcut arithmetic: compound and
increment/decrement.

Compound Assignment Operators

1. Explain how compound assignment operators work.

Teaching
Tip

A common beginner’s mistake is to invert the order of compound assignment
operators. Note that the operators +=, –=, *=, /=, and %= are all valid; the
operators =+, =–, =*, =/, and =% are not. The assignment operator (=) always
appears second in a compound assignment operator.

Increment and Decrement Operators

1. Introduce C++ increment and decrement operators. Make sure students understand the

subtle difference between the prefix and postfix increment/decrement operators. Note that
these operators are unary operators.

Quick Quiz 2

1. In C++, most operators have ____________________ associativity.
Answer: left-to-right

Object-Oriented Programming Using C++, Fourth Edition 2-5

2. What is associativity?
Answer: When two operations with the same precedence appear in an arithmetic
expression, the operations are carried out in order from either left to right or right to left
based on their associativity—the rule that dictates the order in which an operator works
with its operands.

3. The add and assign operator is an example of a(n) ____________________—an operator

that performs two tasks, one of which is assignment.
Answer: compound assignment operator

4. ____________________ are those that require only one operand—that is, they perform

an operation on only one side of the operator.
Answer: Unary operators

Other Unary Operators

1. Note that besides the unary prefix and postfix increment and decrement operators, C++

supports several other unary operators, including +, –, and &.

2. Explain how the positive value and negative value operators work.

3. Explain how the address operator (&) works. Refer to Figures 2-6 and 2-7 to help explain
the use of this operator.

Evaluating Boolean Expressions

1. Briefly explain what relational operators and Boolean expressions are. Table 2-2 lists the
relational operators available in C++.

2. The not operator can be a bit confusing at first. Take some time to explain how it works
with different expressions.

3. Stress that one should be very careful not to use = instead of == to compare two
expressions. Using the assignment operator can lead to unexpected results that can be
very hard to catch.

Performing Operations on struct Fields

1. Use Figures 2-8 through 2-10 to explain how to perform operations on struct fields.

Object-Oriented Programming Using C++, Fourth Edition 2-6

Teaching
Tip

At this point you may briefly note that when you create a class instead of a
structure, some fields, called static fields, can be used without creating an object.

Quick Quiz 3

1. What is the positive value operator?
Answer: When used alone in front of an operand, it becomes the positive value operator,
indicating a positive value—one that is greater than zero.

2. ____________________ are those that evaluate the relationship between operands; you

use these relational operators to evaluate Boolean expressions.
Answer: Relational operators

3. A(n) ____________________ expression is one that is interpreted to be true or false.

Answer: Boolean

4. What is the not operator?
Answer: The unary operator ! is the not operator; it means “the opposite of,” and
essentially reverses the true/false value of an expression.

You Do It

1. Guide students as they work through the program in this section.

Using Arithmetic Operators

1. Be prepared to explain why students may need to use getch() in this program.

Teaching
Tip

For more information on why getch() is needed and how to use it, see
Appendix B and or www.daniweb.com/forums/thread11811.html.

Using Prefix and Postfix Increment and Decrement Operators

1. Make sure students have a good understanding of the difference between the prefix and

the postfix increment/decrement operators.

Using Operators with struct Fields

1. Be prepared to solve any compilation problems that may arise from entering C++ code
with syntax errors.

Object-Oriented Programming Using C++, Fourth Edition 2-7

Class Discussion Topics

1. Do students have previous programming experience in other languages? If so, do they
know of operators in other programming languages that do not exist in C++?

2. The use of the prefix and postfix increment/decrement operators can lead to confusing
code. Some programmers believe that it is better not to use them unless the outcome is
very clear and is guaranteed to avoid interpretation errors. Other programmers like to use
these operators (and other similar C++ features) as much as possible, to make the code
more concise. Ask students to give their opinions on this issue.

Additional Projects

1. C++ has other operators besides the ones introduced in this chapter. Ask students to
research on the Internet for other operators and to compile a list of them (in order of
precedence).

2. Ask students to find of at least two situations in which check digits are used, other than
the ones covered in the book (note that some uses of check digits are also described in the
Exercises section). For example, students may find out how check digits are used in
ISBN (www.cs.queensu.ca/home/bradbury/checkdigit/isbncheck.htm) and UPC
(www.cs.queensu.ca/home/bradbury/checkdigit/upccheck.htm) numbers.

Additional Resources

1. Operator Precedence in C++:

http://cplus.about.com/od/learning1/ss/cppexpressionsr_7.htm

2. C++ Operator Precedence:
 www.cppreference.com/operator_precedence.html

3. Operators in C and C++:
http://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B

Key Terms

 The relational operator != means not equal to.
 The relational operator < means less than.
 The relational operator <= means less than or equal to.
 The relational operator = = means equivalent to.
 The relational operator > means greater than.
 The relational operator >= means greater than or equal to.

Object-Oriented Programming Using C++, Fourth Edition 2-8

 The add and assign operator, +=, adds the right-hand operand to the left-hand operand.
 The addition operator is the + symbol; it is a binary arithmetic operator used to perform

addition.
 The address operator (&) is a unary operator used to refer to the memory address of a

variable.
 An arithmetic operator is a symbol that performs arithmetic.
 Arithmetic precedence is the set of rules of order of performance of arithmetic

operations. Operators with higher precedence are performed first in an arithmetic
statement with multiple operations.

 Associativity is the rule that dictates the order in which an operator works with its
operands.

 A binary operator is an operator that takes two operands, one on each side of the
operator.

 A Boolean expression is one that evaluates as true or false.
 To cast a value is to transform it to another data type.
 A check digit is a digit added to a number (either at the end or the beginning) that

validates the authenticity of the number.
 A compound assignment operator is an operator that performs two tasks, one of which

is assignment.
 To decrement is to reduce by one.
 The divide and assign operator (/=) divides the operand on the left by the operand on

the right.
 The division operator is the / symbol; it is a binary arithmetic operator used to perform

division.
 An explicit cast is a deliberate cast; you can perform an explicit cast in one of two ways:

by typing static_cast<data type> in front of an expression, or by using a type
name within parentheses in front of an expression.

 The hexadecimal numbering system is a numbering system based on powers of 16.
 An implicit cast is the automatic cast or transformation that occurs when you assign a

value of one type to a type with higher precedence.
 To increment is to increase by one.
 A mixed expression is one in which the operands have different data types.
 The modulus and assign operator (%=) finds the modulus when you divide the left-

hand operand by the right-hand operand and assigns the result to the left-hand operand.
 The modulus operator is the % symbol; it is a binary arithmetic operator used to

perform modulus. The modulus operator gives the remainder of integer division; it can be
used only with integers.

 The multiplication operator is the * symbol; it is a binary arithmetic operator used to
perform multiplication.

 The multiply and assign operator (*=) multiplies the left-hand operand by the right-
hand operand.

 The negative value operator (–) is a unary operator that indicates a negative value.
 The not operator (!) reverses the true/false value of an expression.
 The positive value operator (+) is a unary operator that indicates a positive value.
 The postfix increment operator is ++ after a variable.
 The prefix increment operator is ++ before a variable.

Object-Oriented Programming Using C++, Fourth Edition 2-9

 Relational operators are those that evaluate the relationship between operands.
 The subtract and assign operator (– =) subtracts the right-hand operand from the left-

hand operand.
 The subtraction operator is the – symbol; it is a binary arithmetic operator used to

perform subtraction.
 Unary operators are those that require only one operand.
 The unifying type is the data type of the value in an arithmetic expression to which all

the types in the expression are converted.

