SOLUTIONS MANUAL

CHAPTER 1 Solving Equations

- 1 (a) Check that $f(x) = x^3 9$ satisfies $f(2) = -1$ and $f(3) = 27 9 = 18$. By the Intermediate Value Theorem, $f(2)f(3) < 0$ implies the existence of a root between $x = 2$ and $x = 3$.
- **1 (b)** Define $f(x) = 3x^3 + x^2 x 5$. Check that $f(1) = -2$ and $f(2) = 21$, so there is a root in [1, 2].
- 1 (c) Define $f(x) = \cos^2 x x + 6$. Check that $f(6) > 0$ and $f(7) < 0$. There is a root in [6, 7].
- **2** (a) $[0, 1]$
- **2 (b)** $[-1, 0]$
- **2 (c)** $[1, 2]$
- **3** (a) Start with $f(x) = x^3 + 9$ on [2, 3], where $f(2) < 0$ and $f(3) > 0$. The first step is to evaluate $f(\frac{5}{2})$ $(\frac{5}{2}) = \frac{53}{8} > 0$, which implies the new interval is $[2, \frac{5}{2})$ $\frac{5}{2}$. The second step is to evaluate $f(\frac{9}{4})$ $\frac{9}{4}$) = $\frac{729}{64}$ – 9 > 0, giving the interval $[2, \frac{9}{4}]$ $\frac{9}{4}$. The best estimate is the midpoint $x_c = \frac{17}{8}$ $\frac{17}{8}$.
- **3 (b)** Start with $f(x) = 3x^3 + x^2 x 5$ on [1, 2], where $f(1) > 0$ and $f(2) < 0$. Since $f(\frac{3}{2})$ $(\frac{3}{2}) > 0,$ the second interval is $[1, \frac{3}{2}]$ $\frac{3}{2}$]. Since $f(\frac{5}{4})$ $\frac{5}{4}$) > 0, the third interval is [1, $\frac{5}{4}$] $\frac{5}{4}$. The best estimate is the endpoint $x_c = \frac{9}{8}$ $\frac{9}{8}$.
- 3 (c) Start with $f(x) = \cos^2 x + 6 x$ on [6, 7], where $f(6) > 0$ and $f(7) < 0$. Since $f(6.5) > 0$, the second interval is [6.5, 7]. Since $f(6.75) > 0$, the third interval is [6.75, 7]. The best estimate is the midpoint $x_c = 6.875$.
- 4 (a) 0.875
- 4 (b) -0.875
- 4 (c) 1.625
- **5** (a) Setting $f(x) = x^4 x^3 10$, check that $f(2) = -2$ and $f(3) = 44$, so there is a root in [2, 3].
- **5 (b)** According to (1.1), the error after n steps is less than $(3-2)/2^{n+1}$. Ensuring that the error is less than 10^{-10} requires $(\frac{1}{2})$ 2 \int_{0}^{n+1} < 10⁻¹⁰, or 2ⁿ⁺¹ > 10¹⁰, which yields $n > 10/\log_{10}(2) - 1 \approx$ 32.2. Therefore 33 steps are required.
- 6 Bisection Method converges to 0, but 0 is not a root.

Computer Problems 1.1

1 (a) There is a root in [2, 3] (see Exercise 1.1.1). In MATLAB , use bisect (p. 28). Six correct decimal places corresponds to error tolerances 5×10^{-7} , according to Def. 1.3. The calling sequence

```
>> f=inline('xˆ3-9');
>> xc=bisect(f, 2, 3, 5e-7)
```
returns the approximate root 2.080083. 1 (b) Similar to (a), on interval $[1, 2]$. The command

```
>> xc=bisect(inline('3xˆ3+xˆ2-x-5'),1,2,5e-7)
```
returns the approximate root 1.169726.

1 (c) Similar to (a), on interval $[6, 7]$. The command

>> xc=bisect(inline('cos(x)^2+6-x'), $6, 7, 5e-7$)

returns the approximate root 6.776092.

- 2 (a) 0.75487767
- 2 (b) -0.97089892
- 2 (c) 1.59214294
- 3 (a) Plots for parts (a) $-$ (c) are:

In part (a), it is clear from the graph that there is a root in each of the three intervals $[-2, -1]$, $[-1, 0]$, and $[1, 2]$. The command

>> bisect(inline('2*x^{$3-6$ *x-1'),-2,-1,5e-7)}

yields the first approximate root −1.641783. Repeating for the next two intervals gives the approximate roots −0.168254 and 1.810038.

- (b) There are roots in $[-2, -1]$, $[-0.5, 0.5]$, and $[0.5, 1.5]$. Using bisect as in part (a) yields the approximate roots −1.023482, 0.163823, and 0.788942.
- (c) There are roots in $[-1.7, -0.7]$, $[-0.7, 0.3]$, and $[0.3, 1.3]$. Using bisect as in part (a) yields the approximate roots -0.818094 , 0, and 0.506308.
- 4 (a) [1, 2], 27 steps, 1.41421356
- 4 (b) [1, 2], 27 steps, 1.73205081
- 4 (c) [2, 3], 27 steps, 2.23606798
- 5 (a) There is a root in the interval [1, 2]. Eight decimal place accuracy implies an error tolerance of 5×10^{-9} . The command

```
>> bisect(inline('xˆ3-2'),1,2,5e-9)
```
yields the approximate cube root 1.25992105 in 27 steps.

- 5 (b) There is a root in the interval [1, 2]. Using bisect as in (a) gives the approximate cube root 1.44224957 in 27 steps.
- 5 (c) There is a root in the interval $[1, 2]$. Using bisect as in (a) gives the approximate cube root 1.70997595 in 27 steps.
- 6 0.785398
- 7 Trial and error, or a plot of $f(x) = \det(A) 1000$, shows that $f(-18) f(-17) < 0$ and $f(9) f(10) < 0$. Applying bisect to $f(x)$ yields the roots -17.188498 and 9.708299. The backward errors of the roots are $|f(-17.188498)| = 0.0018$ and $|f(9.708299)| = 0.00014$.
- 8 2.948011
- **9** The desired height is the root of the function $f(H) = \pi H^2(1 \frac{1}{3}H) 1$. Using

>> bisect(inline('pi*H^2*(1-H/3)-1'),0,1,0.001)

gives the solution 636 mm.

- **1** (a) $g'(x) = \frac{2}{3}(2x 1)^{-\frac{2}{3}}$, and $|g'(1)| = \frac{2}{3} < 1$. Theorem 1.6 implies that FPI is locally convergent to $r = 1$.
- **1 (b)** $g'(x) = \frac{3}{2}x^2$, and $|g'(1)| = \frac{3}{2} > 1$; FPI diverges from $r = 1$.
- 1 (c) $g'(x) = \cos x + 1$, and $|g'(0)| = 2 > 1$; FPI diverges from $r = 0$.
- 2 (a) locally convergent
- 2 (b) locally convergent
- 2 (c) divergent
- **3 (a)** Solve $\frac{1}{2}x^2 + \frac{1}{2}$ $\frac{1}{2}x = x$ to find the fixed points $r = 0, 1$. The derivative $g'(x) = x + \frac{1}{2}$ $\frac{1}{2}$. By Theorem 1.6, $|g'(0)| = \frac{1}{2} < 1$ implies that FPI converges to $r = 0$, and $|g'(1)| = \frac{3}{2} > 1$ implies that FPI diverges from $r = 1$.
- **3 (b)** Solve $x^2 \frac{1}{4}$ $\frac{1}{4}x + \frac{3}{8} = x$ to find the fixed points $r = \frac{1}{2}$ $\frac{1}{2}, \frac{3}{4}$ $\frac{3}{4}$. The derivative $g'(x) = 2x - \frac{1}{4}$ $\frac{1}{4}$.

 $|g'(\frac{1}{2})|$ $\left|\frac{1}{2}\right| = \frac{3}{4} < 1$ implies that FPI is locally convergent to $r = \frac{1}{2}$ $rac{1}{2}$. $|g'(\frac{3}{4})|$ $\left|\frac{3}{4}\right| = \frac{5}{4} > 1$ implies that FPI diverges from $r = \frac{3}{4}$ $\frac{3}{4}$.

- 4 (a) FPI diverges from $3/2$, while 1 is locally convergent
- 4 (b) FPI diverges from 1, while $-1/2$ is locally convergent
- **5** (a) There is a variety of answers, obtained by rearranging the equation $x^3 x + e^x = 0$ to isolate x. For example, $x = x^3 + e^x$, $x = \sqrt[3]{x - e^x}$, $x = \ln(x - x^3)$.
- **5** (b) As in (a), rearrange $3x^{-2} + 9x^3 = x^2$ to isolate x. For example, $x =$ 3 $\frac{3}{x^3} + 9x^2, x =$ 1 9 − 1 $\frac{1}{3x^4}$, $x =$ $x^5 - 9x^6$ 3 .
- 6 (a) Faster than Bisection Method
- 6 (b) FPI diverges from the fixed point 1.2
- 7 Solving $x^2 = \frac{1-x}{2}$ $\frac{y-x}{2}$ for x results in the two separate equations $g_1(x) = \sqrt{x}$ $1 - x$ $\frac{x}{2}$ and $g_2(x) =$ − r $1 - x$ $\frac{x}{2}$. First notice that $g_1(x)$ returns only positive numbers, and $g_2(x)$ only negative. Therefore -1 cannot be a fixed point of $g_1(x)$, and $\frac{1}{2}$ cannot be a fixed point of $g_2(x)$. Check that $g_1(\frac{1}{2})$ $\frac{1}{2}$) = $\frac{1}{2}$ and $g'_1(x)$ = -1 2 $[′]$ </sup> $\overline{2-2x}$. $|g'_1(\frac{1}{2})|$ $\left|\frac{1}{2}\right| = \frac{1}{2} < 1$ confirms that FPI with $g_1(x)$ is locally convergent to $r = \frac{1}{2}$ $\frac{1}{2}$. Likewise, $g_2(-1) = -1$, $g'_2(x) = \frac{1}{2\sqrt{2}}$ 2 √ $\overline{2-2x}$ and $|g'_2(-1)| = \frac{1}{4}$ 4 implies that FPI with $g_2(x)$ is locally convergent to $r = -1$.
- 8 For a positive number A, consider applying Fixed Point Iteration to $g(x) = (x + A/x)/2$. Note or a positive number A, consider applying Fixed Point Iteration to $g(x) = (x + A/x)/2$. Note that $g'(\sqrt{A}) = 0$, so FPI is locally convergent to \sqrt{A} by Theorem 1.6. A simple sketch of that $g(\sqrt{A}) = 0$, so FPI is locally convergent to \sqrt{A} by Theorem 1.6.
 $y = g(x)$ shows that FPI converges to \sqrt{A} for all positive initial guesses.
- 9 Define $g(x) = (x + A/x^2)/2$. Since $|g'(\sqrt[3]{A})| = \frac{1}{2} < 1$, FPI is locally convergent to the cube root $\sqrt[3]{A}$.
- 10 $w = 2/3$
- 11 (a) Substitute roots and check.
- 11 (b) $g'(x) = -5 + 15x \frac{15}{2}$ $\frac{15}{2}x^2$. FPI diverges from all three roots, because $|g'(1$ p $3/5|=$ (a) $g'(x) = -3 + 13x - \frac{1}{2}x$. Fig. 1.1.1 and $|g'(1) + \sqrt{3/5}| = 2$ and $|g'(1)| = 2.5$.
- 12 Initial guesses 0, 1 and 2 all lead to $r = 1$. Neaby initial guesses cause FPI to move away from the divergent fixed point 1 and oscillate chaotically.
- 13 The slopes of g at r_1 and r_3 imply that the graph of $y = g(x)$ must pass through the line $y = x$ at $x = r_2$ from below the line to above the line. Therefore $g'(r_2)$ must belong to the interval $(1,\infty).$
- 14 $g'(1) = 1$
- 15 Let x belong to [a, b]. By the Mean Value Theorem, $|g(x_0)-r| \leq B|x_0-r| < |x_0-r|$. Since r belongs to [a, b], $x_1 = g(x_0)$ does also, and by extension, so does x_2, x_3 , etc. Similarly, $|x_1 - r| \leq B|x_0 - r|$ extends to $|x_i - r| \leq B^i |x_0 - r|$, which converges to zero as $i \to \infty$.
- 16 If $x_1 = q(x_1)$ and $x_2 = q(x_2)$ are both fixed points, then by the Mean Value Theorem, there exists c between x_1 and x_2 for which $x_2 - x_1 = g(x_2) - g(x_1) = g'(c)(x_2 - x_1)$, which implies $g'(c) = 1$, a contradiction.
- **17 (a)** Solving $x x^3 = x$ yields $x^3 = 0$, or $x = 0$.
- **17 (b)** Assume $0 < x_0 < 1$. Then $x_0^3 < x_0$, and so $0 < x_1 = x_0 x_0^3 < x_0 < 1$. The same argument implies by induction that $x_0 > x_1 > x_2 > ... > 0$.
- 17 (c) The limit $L = \lim x_i$ exists because the x_i form a bounded monotonic sequence. Since $g(x)$ is continuous, $g(L) = g(\lim_{i \to \infty} x_i) = \lim_{i \to \infty} g(x_i) = \lim_{i \to \infty} x_{i+1} = L$, so L is a fixed point, and by (a), $L = 0$.
- **18 (a)** $x = x + x^3$ implies $x = 0$
- **18 (b)** If $0 < x_i$, then $x_{i+1} = x_i + x_i^3 = x_i(1 + x_i^2) > x_i$.
- **18 (c)** $g'(0) = 1$, but the x_i move away from $r = 0$.
- 19 (a) Set $g(x) = \frac{x^3 + (c+1)x 2}{ }$ c . Then $g'(x) = \frac{3x^2 + (c+1)}{2}$ c , and $|g'(1)| = |$ $4+c$ c $| < 1$ for $c < -2$. By Theorem 1.6, FPI is locally convergent to $r = 1$ if $c < -2$.
- 19 (b) $g'(1) = 0$ if $c = -4$.
- 20 By Taylor's Theorem, $g(x_i) = g(r) + g'(r)(x_i r) + g''(c)(x r)^2/2$, where c is between x_i and r. Thus $e_{i+1} = |r - x_{i+1}| = |g''(c)| (r - x_i)^2/2 = |g''(c)| \cdot e_i^2/2$. In the limit, c converges to r.
- 21 By factoring or the Quadratic Formula, the roots of the equation are $-\frac{5}{4}$ $\frac{5}{4}$ and $\frac{1}{4}$. Set $g(x) =$ $\frac{5}{16} - x^2$. Using the cobweb diagram of $g(x)$, it is clear that initial guesses in $\left(-\frac{5}{4}\right)$ $\frac{5}{4}$, $\frac{5}{4}$ $\frac{5}{4}$) converge to $r_2 = \frac{1}{4}$ $\frac{1}{4}$, and initial guesses in $(-\infty, -\frac{5}{4})$ $(\frac{5}{4}) \cup (\frac{5}{4})$ $(\frac{5}{4}, \infty)$ diverge to $-\infty$ under FPI. Initial guesses $-\frac{5}{4}$ $\frac{5}{4}$ and $\frac{5}{4}$ limit on $-\frac{5}{4}$ $\frac{5}{4}$.
- 22 The open interval $(-4/3, 4/3)$ of initial guesses converge to the fixed point 1/3; the two initial guesses $-4/3$, $4/3$ lead to $-4/3$.

Computer Problems 1.2

1 (a) Define $g(x) = (2x+2)^{\frac{1}{3}}$, for example. Using the fpi code, the command

>> $x = fpi(iinline(' (2*x+2)^(1/3)'); 1/2,20)$

yields the solution 1.76929235 to 8 correct decimal places.

- 1 (b) Define $q(x) = \ln(7 x)$. Using fpi as in part (a) returns the solution 1.67282170 to 8 correct decimal places.
- 1 (c) Define $q(x) = \ln(4 \sin x)$. Using fpi as in part (a) returns the solution 1.12998050 to 8 correct decimal places.
- 2 (a) 0.75487767
- **2 (b)** -0.97089892
- 2 (c) 1.59214294
- 3 (a) Iterate $g(x) = (x + 3/x)/2$ with starting guess 1. After 4 steps of FPI, the results is 1.73205081 to 8 correct places.
- 3 (b) Iterate $g(x) = (x + 5/x)/2$ with starting guess 1. After 5 steps of FPI, the results is 2.23606798 to 8 correct places.
- 4 (a) 1.25992105
- 4 (b) 1.44224957
- 4 (c) 1.70997595
- 5 Iterating $g(x) = \cos^2 x$ with initial guess $x_0 = 1$ results in 0.641714 to six correct places after 350 steps. Checking $|g'(0.641714)| \approx 0.96$ verifies that FPI is locally convergent by Theorem 1.6.
- **6 (a)** $-1.641784, -0.168254, 1.810038$
- 6 (b) −1.023482, 0.163822, 0.788941
- 6 (c) $-0.818094, 0, 0.506308$.
- 7 (a) Almost all numbers between 0 and 1.
- 7 (b) Almost all numbers between 1 and 2.
- 7 (c) Any number greater than 3 or less than −1 will work.

- 1 (a) The forward error is $|r x_c| = |0.75 0.74| = 0.01$. The backward error is $|f(x_c)| =$ $|4(0.74) - 3| = 0.04.$
- 1 (b) $FE = |r x_c| = 0.01$ as in (a). $BE = |f(0.74)| = (0.04)^2 = 0.0016$.
- 1 (c) $FE = |r x_c| = 0.01$ as in (a). $BE = |f(0.74)| = (0.04)^3 = 0.000064$.
- **1 (d)** $FE = |r x_c| = 0.01$ as in (a). $BE = |f(0.74)| = (0.04)^{\frac{1}{3}} = 0.342$.
- **2 (a)** FE = 0.00003, BE = 10^{-4}
- **2 (b)** FE = 0.00003, BE = 10^{-8}
- **2 (c)** FE = 0.00003, BE = 10^{-12}
- **2 (d)** FE = 0.00003 , BE = 0.0464
- **3 (a)** Check derivatives: $f(0) = f'(0) = 0$, $f''(0) = \cos 0 = 1$. The multiplicity of the root $r = 0$ is 2.
- **3 (b)** The forward error is $|r x_c| = |0 0.0001| = 0.0001$. The backward error is $|f(x_c)| =$ $| - \cos 0.0001 | \approx 5 \times 10^{-9}$.

4 (a) 4

- 4 (b) FE = 10^{-2} , BE = 10^{-8}
- 5 The root of $f(x) = ax b$ is $r = b/a$. If x_c is an approximate root, the forward error is $FE = |b/a - x_c|$ while the backward error is $BE = |f(x_c)| = |ax_c - b| = |a||\frac{b}{a} - x_c| = |a|FE$. Therefore the backward error is a factor of $|a|$ larger than the forward error.

6 (a) 1

- **6 (b)** Let ϵ be the backward error. By the Sensitivity Formula, the forward error Δr is $\epsilon/f'(A^{1/n}) =$ $\epsilon/(nA^{(n-1)/n}).$
- **7** (a) $W'(x) = (x 2) \cdots (x 20) + (x 1)(x 3) \cdots (x 20) + \ldots + (x 1) \cdots (x 19),$ so $W'(16) = (16 - 1)(16 - 2) \cdots (16 - 15)(16 - 17)(16 - 18)(16 - 19)(16 - 20) = 15!4!$
- **7 (b)** For a general integer j between 1 and 20, $W'(j) = (j-1)(j-2)\cdots(1)(-1)(-2)\cdots(j-20) = (-1)^{j}(j-1)!(20-j)!$
- **8 (a)** Predicted root $a + \Delta r = a \epsilon a$
- **8 (b)** Actual root $a/(1+\epsilon) = a \epsilon a + \epsilon^2 a \epsilon^3 a + \dots$

Computer Problems 1.3

- 1 (a) Check the derivatives of $f(x) = \sin x x$ to see that $f(0) = f'(0) = f''(0) = 0$ and $f'''(0) = -\cos 0 = -1$, giving multiplicity 3.
- 1 (b) fzero returns $x_c = -2.0735 \times 10^{-8}$. The forward error is 2.0735×10^{-8} and MATLAB reports the backward error to be $|f(x_c)| = 0$. This means the true backward error is likely less than machine epsilon.
- 2 (a) $m = 9$
- **2 (b)** $x_c = FE = 0.0014, BE = 0$
- 3 (a) The MATLAB command

```
>> xc=fzero('2*x*cox(x)-2*x+sin(xˆ3)',[-0.1,0.2])
```
returns $x_c = 0.00016881$. The forward error is $|x_c - r| = 0.00016881$ and the backward error is reported by MATLAB as $|f(x_c)| = 0$.

- **3 (b)** The bisection method with starting interval $[-0.1, 0.2]$ stops after 13 steps, giving $x_c =$ -0.00006103 . Neither method can determine the root $r = 0$ to more than about 3 correct decimal places.
- 4 (a) $r + \Delta r = 3 2.7\epsilon$
- 4 (b) Predicted root = $3 0.0027 = 2.9973$, actual root = 2.9973029
- 5 To use (1.21), set $f(x) = (x-1)(x-2)(x-3)(x-4)$, $\epsilon = -10^{-6}$ and $g(x) = x^6$. Then near the root $r = 4$, $\Delta r \approx -\epsilon g(r)/f'(r) = 4^6/6 \approx 0.00068267$. According to (1.22), the error magnification factor is $|g(r)|/|rf'(r)| = 4^6/24 \approx 170.7$. fzero returns the approximate root 4.00068251, close to the guess 4.00068267 given by (1.21).
- 6 Actual root $x_c = 14.856$, predicted root = $r + \Delta r = 15 0.14 = 14.86$

- **1 (a)** $x_1 = x_0 (x_0^3 + x_0 2)/(3x_0^2 + 1) = 0 (-2)/(1) = 2$; $x_2 = 2 (2^3 + 2 2)/(3(2^2) + 1) =$ 18/13. **1** (b) $x_1 = x_0 - (x_0^4 - x_0^2 + x_0 - 1)/(4x_0^3 - 2x_0 + 1) = 1$; $x_2 = 1$. **1 (c)** $x_1 = x_0 - (x_0^2 - x_0 - 1)/(2x_0 - 1) = -1; x_2 = -\frac{2}{3}$ $\frac{2}{3}$.
-
- **2 (a)** $x_1 = 0.8, x_2 = 0.756818$
- **2 (b)** $x_1 = -0.2, x_2 = 0.180856$
- **2 (c)** $x_1 = x_2 = 2$
- **3 (a)** According to Theorem 1.11, $f'(-1) = 8$ implies that convergence to $r = -1$ is quadratic, with $e_{i+1} \approx |f''(-1)/(2f'(-1))|e_i^2 = |-40/(2)(8)|e_i^2 = 2.5e_i^2; f'(0) = -1$ implies convergence to $r = 0$ is quadratic, $e_{i+1} \approx 2e_i^2$; $f'(1) = f''(1) = 0$ and $f'''(1) = 12$ implies that convergence to $r=1$ is linear, $e_{i+1} \approx \frac{2}{3}$ $rac{2}{3}e_i.$
- **3** (**b**) $f'(-\frac{1}{2})$ $\frac{1}{2}$) = -27/4 implies that convergence to $r = -\frac{1}{2}$ $\frac{1}{2}$ is quadratic, with error relationship $e_{i+1} \approx |\tilde{2}7/2(-\frac{27}{4})|$ $\frac{27}{4}|e_i^2 = 2e_i^2$; $f'(1) = f''(1) = 0$ and $f'''(1) = 18$ implies that convergence to $r = 1$ is linear, $e_{i+1} \approx \frac{2}{3}$ $rac{2}{3}e_i.$
- **4 (a)** $r = -1/2, e_{i+1} = 1.6e_i^2$; $r = 3/4, e_{i+1} = \frac{1}{2}$ $rac{1}{2}e_i$ 4 (b) $r = -1, e_{i+1} = \frac{1}{2}$ $\frac{1}{2}e_i; r = 3, e_{i+1} = \frac{1}{2}$ $\frac{1}{2}e_i^2$
- 5 Convergence to $r = 0$ is quadratic since $f'(0) = -1 \neq 0$, so Newton's Method converges faster than the Bisection Method. Convergence to $r = \frac{1}{2}$ $\frac{1}{2}$ is linear since $f'(\frac{1}{2})$ $(\frac{1}{2}) = f''(\frac{1}{2})$ $(\frac{1}{2}) = 0$

and $f'''(\frac{1}{2})$ $(\frac{1}{2}) = 24$, with $e_{i+1} \approx \frac{2}{3}$ $\frac{2}{3}e_i$. Since $S = \frac{2}{3} > \frac{1}{2}$ $\frac{1}{2}$, Newton's Method will converge to $r=\frac{1}{2}$ $\frac{1}{2}$ slower than the Bisection Method.

- 6 Many possible answers; for example, $f(x) = xe^{-x}$ with initial guess greater than 1.
- 7 Computing derivatives, $f'(2) = f''(2) = 0$ and $f'''(2) = 6$ implies that $r = 2$ is a triple root. Therefore Newton's Method does not converge quadratically, but converges linearly and $e_{i+1}/e_i \rightarrow \frac{2}{3}$ according to Theorem 1.12.
- 8 $x_1 = x_0 (ax_0 + b)/a = -b/a$
- 9 Since $f'(x) = 2x$, Newton's Method is

$$
x_{i+1} = x_i - \frac{x_i^2 - A}{2x_i} = \frac{x_i}{2} + \frac{A}{2x_i} = \frac{x_i + A/x_i}{2}.
$$

- 10 $x_{i+1} = (2x_i + A/x_i^2)/3$
- 11 The n^{th} root of A is the real root of $f(x) = x^n A = 0$. Newton's Method applied to the equation is

$$
x_{i+1} = x_i - \frac{x_i^n - A}{nx_i^{n-1}} = \frac{n-1}{n}x_i + \frac{A}{nx_i^{n-1}} = \frac{(n-1)x_i + A/x_i^{n-1}}{n}.
$$

Since $f'(A) = nA^{n-1}$, Theorem 1.11 implies that Newton's Method converges quadratically as long as $A \neq 0$.

$$
12 \quad x_{50} = 2^{50}
$$

- **13 (a)** Newton's Method converges quadratically to $r = 2$ since $f'(2) = 8 \neq 0$, and $e_5 \approx$ $f''(2)/(2f'(2))e_4^2=\frac{3}{4}$ $\frac{3}{4}(10^{-6})^2 = 0.75 \times 10^{-12}.$
- **13 (b)** Since $f'(0) = -4$ and $f''(0) = 0$, Theorem 1.11 implies that $\lim_{n \to \infty} e_{i+1}/e_i^2 = 0$, and no useful estimate of e_5 follows. Essentially, convergence is faster than quadratic. Reverting to the definition of Newton's Method, $x_{i+1} = x_i$ – $x_i^3 - 4x_i$ $3x_i^2 - 4$ = $2x_i^3$ $3x_i^2 - 4$, and because $r = 0$, $e_{i+1} =$ $3x_i^2 - 4$ $3x_i^2 - 4$ ¯ ¯ ¯ $2e_i^3$ $3e_i^2 - 4$. Substituting $e_4 = 10^{-6}$ yields $e_5 =$ $\begin{bmatrix} \end{bmatrix}$ 2×10^{-18} $3 \times 10^{-12} - 4$ $\Big| \approx 0.5 \times 10^{-18}.$

Computer Problems 1.4

1 (a) Newton's Method is $x_{i+1} = x_i - (x_i^3 - 2x_i - 2)/(3x_i^2 - 2)$. Setting $x_0 = 1$ yields $x_7 = 1.76929235$ to eight decimal places.

- 1 (b) Applying Newton's Method with $x_0 = 1$ yields $x_5 = 1.67282170$ to eight places.
- 1 (c) Applying Newton's Method with $x_0 = 1$ yields $x_3 = 1.12998050$ to eight places.
- 2 (a) 0.75487767
- **2 (b)** -0.97089892
- 2 (c) 1.59214294
- 3 (a) Newton's Method converges linearly to $x_c = -0.6666648$. Subtracting x_c from x_i shows error ratios $|x_{i+1} - x_c|/|x_i - x_c| \approx \frac{2}{3}$, implying a multiplicity 3 root. Applying Modified Newton's Method with $m = 3$ and $x_0 = 0.5$ converges to $x_c = -\frac{2}{3}$ $\frac{2}{3}$.
- **3 (b)** Newton's Method converges linearly to $x_c = 0.166666669$. The error ratios $|x_{i+1}-x_c|/|x_i |x_c| \approx \frac{1}{2}$, implying a multiplicity 2 root. Applying Modified Newton's Method with $m = 2$ and $x_0 = 1$ converges quadratically to 0.166666667 $\approx \frac{1}{6}$ $\frac{1}{6}$. In fact, one checks by direct substitution that the root is $r = \frac{1}{6}$ $\frac{1}{6}$.

4 (a) $r = 1, m = 3$ 4 (b) $r = 2, m = 2$

- **5** The volume of the silo is $400 = 10\pi r^2 + \frac{2}{3}$ $\frac{2}{3}\pi r^3$. Solving for r by Newton's Method yields 3.2362 meters.
- 6 $r = 2.0201$ cm
- 7 Newton's Method converges quadratically to −1.197624 and 1.530134, and converges linearly to the root 0. The error ratio is $|x_{i+1} - 0|/|x_i - 0| \approx \frac{3}{4}$, implying that $r = 0$ is a multiplicity 4 root. This can be confirmed by evaluating the first four derivatives.
- 8 0.841069, quadratic convergence; $\pi/3 \approx 1.047198$, linear convergence, $m = 3$; 2.300524, quadratic convergence
- 9 Newton's Method converges quadratically to 0.8571428571 with quadratic error ratio $M =$ $\lim_{i\to\infty}e_{i+1}/e_i^2\approx 2.4$, and converges linearly to the root 2 with error ratio $S=\lim_{i\to\infty}e_{i+1}/e_i\approx 1$ 2 3 .
- 10 −1.381298, quadratic convergence; $-2/3$, linear convergence, $m = 2$; 0.205183, quadratic convergence; 1/2, quadratic convergence; 1.176116, quadratic convergence
- 11 Solving the ideal gas law for an initial approximation gives $V_0 = nRT/P = 1.75$. Applying Newton's Method to the non-ideal gas Van der Waal's equation with initial guess $V_0 = 1.75$ converges to $V = 1.701$.
- 12 initial guess = 2.87, solution $V = 2.66$ L
- **13 (a)** The equation is equivalent to $1 3/(4x) = 0$, and has the root $r = \frac{3}{4}$ $\frac{3}{4}$.
- **13 (b)** Newton's Method applied to $f(x) = (1 3/(4x))^{\frac{1}{3}}$ does not converge.

Exercises 1.5

- **1 (a)** Applying the Secant Method with $x_0 = 1$ and $x_1 = 2$ yields $x_2 = x_1 (x_1 - x_0) f(x_1)$ $f(x_1) - f(x_0)$ = 8 5 and $x_3 \approx 1.742268$.
- 1 (b) Using the Secant Method formula with $x_0 = 1$ and $x_1 = 2$ as in (a) returns $x_2 \approx 1.578707$ and $x_3 \approx 1.660160$.
- 1 (c) The Secant Method yields $x_2 \approx 1.092907$ and $x_3 \approx 1.119357$.
- **2 (a)** $x_2 = 8/5, x_3 = 1.742268$
- **2 (b)** $x_2 = 1.578707, x_3 = 1.66016$
- **2 (c)** $x_2 = 1.092907, x_3 = 1.119357$
- **3 (a)** Applying IQI with $x_0 = 1$, $x_1 = 2$ and $x_2 = 0$ yields $x_3 = -\frac{1}{5}$ $\frac{1}{5}$ and $x_4 \approx -0.11996018$ from formula (1.37).
- **3 (b)** Applying the IQI formula gives $x_3 \approx 1.75771279$ and $x_4 \approx 1.66253117$.
- 3 (c) Applying IQI as in (a) and (b) yields $x_3 \approx 1.13948155$ and $x_4 \approx 1.12927246$.
- 4 10.25 m
- 5 Setting $A = f(a)$, $B = f(b)$, $C = f(c)$, and $y = 0$ in (1.35) gives

$$
P(0) = \frac{af(b)f(c)}{(f(a) - f(b))(f(a) - f(c))} + \frac{bf(a)f(c)}{(f(b) - f(a))(f(b) - f(c))}
$$

+
$$
\frac{cf(a)f(b)}{(f(c) - f(a))(f(c) - f(b))}
$$

=
$$
\frac{a \frac{f(b) - f(c)}{f(a)} + b \frac{f(c) - f(a)}{f(b)} + c \frac{f(a) - f(b)}{f(c)}}{(1 - \frac{f(b)}{f(a)})(\frac{f(a)}{f(c)} - 1)(1 - \frac{f(c)}{f(b)})}
$$

=
$$
\frac{as(1 - qs) + bgs(r - q) + c(q - 1)}{(q - 1)(r - 1)(s - 1)}
$$

=
$$
c + \frac{as(1 - r) + br(r - q) - c(r^2 - qr - rs + s)}{(q - 1)(r - 1)(s - 1)}
$$

=
$$
c - \frac{(c - b)r(r - q) + (c - a)s(1 - r)}{(q - 1)(r - 1)(s - 1)}.
$$

Computer Problems 1.5

- 1 (a) Applying the Secant Method formula on page 65 shows convergence to the root 1.76929235
- 1 (b) 1.67282170
- 1 (c) 1.12998050.
- 2 (a) 1.76929235
- **2 (b)** 1.67282170
- **2 (c)** 1.12998050
- 3 (a) Applying formula (1.37) for Inverse Quadratic Interpolation shows convergence to 1.76929235.
- 3 (b) Similar to part (a). Converges to 1.67282170
- 3 (c) Similar to part (a). Converges to 1.129998050.
- 4 −1.381298, superlinear; −2/3, linear; 0.205183, superlinear; 1/2, superlinear; 1.176116, superlinear
- 5 The MATLAB command

>> fzero(' $1/x'$, [-2,1])

converges to zero, although there is no root there.

6 fzero fails in both cases because the functions never cross zero