


CHAPTER 1
Solving Equations

Exercises 1.1

1 (a) Check that f(x) = x3−9 satisfies f(2) = −1 and f(3) = 27−9 = 18. By the Intermediate
Value Theorem, f(2)f(3) < 0 implies the existence of a root between x = 2 and x = 3.

1 (b) Define f(x) = 3x3 + x2 − x− 5. Check that f(1) = −2 and f(2) = 21, so there is a root
in [1, 2].

1 (c) Define f(x) = cos2 x− x + 6. Check that f(6) > 0 and f(7) < 0. There is a root in [6, 7].

2 (a) [0, 1]
2 (b) [−1, 0]
2 (c) [1, 2]

3 (a) Start with f(x) = x3 + 9 on [2, 3], where f(2) < 0 and f(3) > 0. The first step is
to evaluate f(5

2
) = 53

8
> 0, which implies the new interval is [2, 5

2
]. The second step is to

evaluate f(9
4
) = 729

64
− 9 > 0, giving the interval [2, 9

4
]. The best estimate is the midpoint

xc = 17
8

.
3 (b) Start with f(x) = 3x3 +x2−x−5 on [1, 2], where f(1) > 0 and f(2) < 0. Since f(3

2
) > 0,

the second interval is [1, 3
2
]. Since f(5

4
) > 0, the third interval is [1, 5

4
]. The best estimate is

the endpoint xc = 9
8
.

3 (c) Start with f(x) = cos2 x+6−x on [6, 7], where f(6) > 0 and f(7) < 0. Since f(6.5) > 0,
the second interval is [6.5, 7]. Since f(6.75) > 0, the third interval is [6.75, 7]. The best
estimate is the midpoint xc = 6.875.

4 (a) 0.875
4 (b) −0.875
4 (c) 1.625

5 (a) Setting f(x) = x4 − x3 − 10, check that f(2) = −2 and f(3) = 44, so there is a root in
[2, 3].

5 (b) According to (1.1), the error after n steps is less than (3−2)/2n+1. Ensuring that the error is
less than 10−10 requires

(
1
2

)n+1
< 10−10, or 2n+1 > 1010, which yields n > 10/ log10(2)−1 ≈

32.2. Therefore 33 steps are required.

6 Bisection Method converges to 0, but 0 is not a root.
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Computer Problems 1.1

1 (a) There is a root in [2, 3] (see Exercise 1.1.1). In MATLAB , use bisect (p. 28). Six correct
decimal places corresponds to error tolerances 5 × 10−7, according to Def. 1.3. The calling
sequence

>> f=inline(’xˆ3-9’);
>> xc=bisect(f,2,3,5e-7)

returns the approximate root 2.080083.
1 (b) Similar to (a), on interval [1, 2]. The command

>> xc=bisect(inline(’3xˆ3+xˆ2-x-5’),1,2,5e-7)

returns the approximate root 1.169726.
1 (c) Similar to (a), on interval [6, 7]. The command

>> xc=bisect(inline(’cos(x)ˆ2+6-x’),6,7,5e-7)

returns the approximate root 6.776092.

2 (a) 0.75487767
2 (b) −0.97089892
2 (c) 1.59214294

3 (a) Plots for parts (a) - (c) are:
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(c)

In part (a), it is clear from the graph that there is a root in each of the three intervals
[−2,−1], [−1, 0], and [1, 2]. The command

>> bisect(inline(’2*xˆ3-6*x-1’),-2,-1,5e-7)

yields the first approximate root −1.641783. Repeating for the next two intervals gives the
approximate roots −0.168254 and 1.810038.

(b) There are roots in [−2,−1], [−0.5, 0.5], and [0.5, 1.5]. Using bisect as in part (a) yields
the approximate roots −1.023482, 0.163823, and 0.788942.

(c) There are roots in [−1.7,−0.7], [−0.7, 0.3], and [0.3, 1.3]. Using bisect as in part (a) yields
the approximate roots −0.818094, 0, and 0.506308.
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4 (a) [1, 2], 27 steps, 1.41421356
4 (b) [1, 2], 27 steps, 1.73205081
4 (c) [2, 3], 27 steps, 2.23606798

5 (a) There is a root in the interval [1, 2]. Eight decimal place accuracy implies an error tolerance
of 5× 10−9. The command

>> bisect(inline(’xˆ3-2’),1,2,5e-9)

yields the approximate cube root 1.25992105 in 27 steps.
5 (b) There is a root in the interval [1, 2]. Using bisect as in (a) gives the approximate cube

root 1.44224957 in 27 steps.
5 (c) There is a root in the interval [1, 2]. Using bisect as in (a) gives the approximate cube

root 1.70997595 in 27 steps.

6 0.785398

7 Trial and error, or a plot of f(x) = det(A) − 1000, shows that f(−18)f(−17) < 0 and
f(9)f(10) < 0. Applying bisect to f(x) yields the roots −17.188498 and 9.708299. The
backward errors of the roots are |f(−17.188498)| = 0.0018 and |f(9.708299)| = 0.00014.

8 2.948011

9 The desired height is the root of the function f(H) = πH2(1− 1
3
H)− 1. Using

>> bisect(inline(’pi*Hˆ2*(1-H/3)-1’),0,1,0.001)

gives the solution 636 mm.

Exercises 1.2

1 (a) g′(x) = 2
3
(2x − 1)−

2
3 , and |g′(1)| = 2

3
< 1. Theorem 1.6 implies that FPI is locally

convergent to r = 1.
1 (b) g′(x) = 3

2
x2, and |g′(1)| = 3

2
> 1; FPI diverges from r = 1.

1 (c) g′(x) = cos x + 1, and |g′(0)| = 2 > 1; FPI diverges from r = 0.

2 (a) locally convergent
2 (b) locally convergent
2 (c) divergent

3 (a) Solve 1
2
x2 + 1

2
x = x to find the fixed points r = 0, 1. The derivative g′(x) = x + 1

2
.

By Theorem 1.6, |g′(0)| = 1
2

< 1 implies that FPI converges to r = 0, and |g′(1)| = 3
2

> 1
implies that FPI diverges from r = 1.

3 (b) Solve x2 − 1
4
x + 3

8
= x to find the fixed points r = 1

2
, 3

4
. The derivative g′(x) = 2x − 1

4
.
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|g′(1
2
)| = 3

4
< 1 implies that FPI is locally convergent to r = 1

2
. |g′(3

4
)| = 5

4
> 1 implies that

FPI diverges from r = 3
4
.

4 (a) FPI diverges from 3/2, while 1 is locally convergent
4 (b) FPI diverges from 1, while −1/2 is locally convergent

5 (a) There is a variety of answers, obtained by rearranging the equation x3 − x + ex = 0 to
isolate x. For example, x = x3 + ex, x = 3

√
x− ex, x = ln(x− x3).

5 (b) As in (a), rearrange 3x−2+9x3 = x2 to isolate x. For example, x =
3

x3
+9x2, x =

1

9
− 1

3x4
,

x =
x5 − 9x6

3
.

6 (a) Faster than Bisection Method
6 (b) FPI diverges from the fixed point 1.2

7 Solving x2 =
1− x

2
for x results in the two separate equations g1(x) =

√
1− x

2
and g2(x) =

−
√

1− x

2
. First notice that g1(x) returns only positive numbers, and g2(x) only negative.

Therefore −1 cannot be a fixed point of g1(x), and 1
2

cannot be a fixed point of g2(x). Check

that g1(
1
2
) = 1

2
and g′1(x) = − 1

2
√

2− 2x
. |g′1(1

2
)| = 1

2
< 1 confirms that FPI with g1(x) is

locally convergent to r = 1
2
. Likewise, g2(−1) = −1, g′2(x) =

1

2
√

2− 2x
and |g′2(−1)| = 1

4

implies that FPI with g2(x) is locally convergent to r = −1.

8 For a positive number A, consider applying Fixed Point Iteration to g(x) = (x+A/x)/2. Note
that g′(

√
A) = 0, so FPI is locally convergent to

√
A by Theorem 1.6. A simple sketch of

y = g(x) shows that FPI converges to
√

A for all positive initial guesses.

9 Define g(x) = (x + A/x2)/2. Since |g′( 3
√

A)| = 1
2

< 1, FPI is locally convergent to the cube
root 3

√
A.

10 w = 2/3

11 (a) Substitute roots and check.
11 (b) g′(x) = −5 + 15x − 15

2
x2. FPI diverges from all three roots, because |g′(1 −

√
3/5)| =

|g′(1 +
√

3/5)| = 2 and |g′(1)| = 2.5.

12 Initial guesses 0, 1 and 2 all lead to r = 1. Neaby initial guesses cause FPI to move away
from the divergent fixed point 1 and oscillate chaotically.
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13 The slopes of g at r1 and r3 imply that the graph of y = g(x) must pass through the line y = x
at x = r2 from below the line to above the line. Therefore g′(r2) must belong to the interval
(1,∞).

14 g′(1) = 1

15 Let x belong to [a, b]. By the Mean Value Theorem, |g(x0)− r| ≤ B|x0− r| < |x0− r|. Since
r belongs to [a, b], x1 = g(x0) does also, and by extension, so does x2, x3, etc. Similarly,
|x1 − r| ≤ B|x0 − r| extends to |xi − r| ≤ Bi|x0 − r|, which converges to zero as i →∞.

16 If x1 = g(x1) and x2 = g(x2) are both fixed points, then by the Mean Value Theorem, there
exists c between x1 and x2 for which x2−x1 = g(x2)−g(x1) = g′(c)(x2−x1), which implies
g′(c) = 1, a contradiction.

17 (a) Solving x− x3 = x yields x3 = 0, or x = 0.
17 (b) Assume 0 < x0 < 1. Then x3

0 < x0, and so 0 < x1 = x0 − x3
0 < x0 < 1. The same

argument implies by induction that x0 > x1 > x2 > ... > 0.
17 (c) The limit L = lim

i→∞
xi exists because the xi form a bounded monotonic sequence. Since

g(x) is continuous, g(L) = g( lim
i→∞

xi) = lim
i→∞

g(xi) = lim
i→∞

xi+1 = L, so L is a fixed point,
and by (a), L = 0.

18 (a) x = x + x3 implies x = 0
18 (b) If 0 < xi, then xi+1 = xi + x3

i = xi(1 + x2
i ) > xi.

18 (c) g′(0) = 1, but the xi move away from r = 0.

19 (a) Set g(x) =
x3 + (c + 1)x− 2

c
. Then g′(x) =

3x2 + (c + 1)

c
, and |g′(1)| = |4 + c

c
| < 1

for c < −2. By Theorem 1.6, FPI is locally convergent to r = 1 if c < −2.
19 (b) g′(1) = 0 if c = −4.

20 By Taylor’s Theorem, g(xi) = g(r) + g′(r)(xi− r) + g′′(c)(x− r)2/2, where c is between xi

and r. Thus ei+1 = |r− xi+1| = |g′′(c)|(r− xi)
2/2 = |g′′(c)|e2

i /2. In the limit, c converges to
r.

21 By factoring or the Quadratic Formula, the roots of the equation are −5
4

and 1
4
. Set g(x) =

5
16
− x2. Using the cobweb diagram of g(x), it is clear that initial guesses in (−5

4
, 5

4
) converge

to r2 = 1
4
, and initial guesses in (−∞,−5

4
)∪ (5

4
,∞) diverge to −∞ under FPI. Initial guesses

−5
4

and 5
4

limit on −5
4
.

22 The open interval (−4/3, 4/3) of initial guesses converge to the fixed point 1/3; the two initial
guesses −4/3, 4/3 lead to −4/3.
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Computer Problems 1.2

1 (a) Define g(x) = (2x + 2)
1
3 , for example. Using the fpi code, the command

>> x=fpi(inline(’(2*x+2)ˆ(1/3)’),1/2,20)

yields the solution 1.76929235 to 8 correct decimal places.
1 (b) Define g(x) = ln(7 − x). Using fpi as in part (a) returns the solution 1.67282170 to 8

correct decimal places.
1 (c) Define g(x) = ln(4− sin x). Using fpi as in part (a) returns the solution 1.12998050 to 8

correct decimal places.

2 (a) 0.75487767
2 (b) −0.97089892
2 (c) 1.59214294

3 (a) Iterate g(x) = (x + 3/x)/2 with starting guess 1. After 4 steps of FPI, the results is
1.73205081 to 8 correct places.

3 (b) Iterate g(x) = (x + 5/x)/2 with starting guess 1. After 5 steps of FPI, the results is
2.23606798 to 8 correct places.

4 (a) 1.25992105
4 (b) 1.44224957
4 (c) 1.70997595

5 Iterating g(x) = cos2 x with initial guess x0 = 1 results in 0.641714 to six correct places after
350 steps. Checking |g′(0.641714)| ≈ 0.96 verifies that FPI is locally convergent by Theorem
1.6.

6 (a) −1.641784,−0.168254, 1.810038
6 (b) −1.023482, 0.163822, 0.788941
6 (c) −0.818094, 0, 0.506308.

7 (a) Almost all numbers between 0 and 1.
7 (b) Almost all numbers between 1 and 2.
7 (c) Any number greater than 3 or less than −1 will work.

Exercises 1.3

1 (a) The forward error is |r − xc| = |0.75 − 0.74| = 0.01. The backward error is |f(xc)| =
|4(0.74)− 3| = 0.04.

1 (b) FE = |r − xc| = 0.01 as in (a). BE = |f(0.74)| = (0.04)2 = 0.0016.
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1 (c) FE = |r − xc| = 0.01 as in (a). BE = |f(0.74)| = (0.04)3 = 0.000064.
1 (d) FE = |r − xc| = 0.01 as in (a). BE = |f(0.74)| = (0.04)

1
3 = 0.342.

2 (a) FE = 0.00003, BE = 10−4

2 (b) FE = 0.00003, BE = 10−8

2 (c) FE = 0.00003, BE = 10−12

2 (d) FE = 0.00003, BE = 0.0464

3 (a) Check derivatives: f(0) = f ′(0) = 0, f ′′(0) = cos 0 = 1. The multiplicity of the root r = 0
is 2.

3 (b) The forward error is |r − xc| = |0 − 0.0001| = 0.0001. The backward error is |f(xc)| =
| − cos 0.0001| ≈ 5× 10−9.

4 (a) 4
4 (b) FE = 10−2, BE = 10−8

5 The root of f(x) = ax − b is r = b/a. If xc is an approximate root, the forward error is
FE = |b/a−xc|while the backward error is BE = |f(xc)| = |axc−b| = |a|| b

a
−xc| = |a|FE.

Therefore the backward error is a factor of |a| larger than the forward error.

6 (a) 1
6 (b) Let ε be the backward error. By the Sensitivity Formula, the forward error ∆r is ε/f ′(A1/n) =

ε/(nA(n−1)/n).

7 (a) W ′(x) = (x− 2) · · · (x− 20) + (x− 1)(x− 3) · · · (x− 20) + . . . + (x− 1) · · · (x− 19),
so W ′(16) = (16− 1)(16− 2) · · · (16− 15)(16− 17)(16− 18)(16− 19)(16− 20) = 15!4!

7 (b) For a general integer j between 1 and 20,
W ′(j) = (j − 1)(j − 2) · · · (1)(−1)(−2) · · · (j − 20) = (−1)j(j − 1)!(20− j)!

8 (a) Predicted root a + ∆r = a− εa
8 (b) Actual root a/(1 + ε) = a− εa + ε2a− ε3a + . . .

Computer Problems 1.3

1 (a) Check the derivatives of f(x) = sin x − x to see that f(0) = f ′(0) = f ′′(0) = 0 and
f ′′′(0) = − cos 0 = −1, giving multiplicity 3.

1 (b) fzero returns xc = −2.0735 × 10−8. The forward error is 2.0735 × 10−8 and MATLAB

reports the backward error to be |f(xc)| = 0. This means the true backward error is likely less
than machine epsilon.

2 (a) m = 9
2 (b) xc = FE = 0.0014, BE = 0

3 (a) The MATLAB command
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>> xc=fzero(’2*x*cox(x)-2*x+sin(xˆ3)’,[-0.1,0.2])

returns xc = 0.00016881. The forward error is |xc − r| = 0.00016881 and the backward error
is reported by MATLAB as |f(xc)| = 0.

3 (b) The bisection method with starting interval [−0.1, 0.2] stops after 13 steps, giving xc =
−0.00006103. Neither method can determine the root r = 0 to more than about 3 correct
decimal places.

4 (a) r + ∆r = 3− 2.7ε
4 (b) Predicted root = 3− 0.0027 = 2.9973, actual root = 2.9973029

5 To use (1.21), set f(x) = (x− 1)(x− 2)(x− 3)(x− 4), ε = −10−6 and g(x) = x6. Then near
the root r = 4, ∆r ≈ −εg(r)/f ′(r) = 46/6 ≈ 0.00068267. According to (1.22), the error
magnification factor is |g(r)|/|rf ′(r)| = 46/24 ≈ 170.7. fzero returns the approximate root
4.00068251, close to the guess 4.00068267 given by (1.21).

6 Actual root xc = 14.856, predicted root = r + ∆r = 15− 0.14 = 14.86

Exercises 1.4

1 (a) x1 = x0−(x3
0+x0−2)/(3x2

0+1) = 0−(−2)/(1) = 2; x2 = 2−(23+2−2)/(3(22)+1) =
18/13.

1 (b) x1 = x0 − (x4
0 − x2

0 + x0 − 1)/(4x3
0 − 2x0 + 1) = 1; x2 = 1.

1 (c) x1 = x0 − (x2
0 − x0 − 1)/(2x0 − 1) = −1; x2 = −2

3
.

2 (a) x1 = 0.8, x2 = 0.756818
2 (b) x1 = −0.2, x2 = 0.180856
2 (c) x1 = x2 = 2

3 (a) According to Theorem 1.11, f ′(−1) = 8 implies that convergence to r = −1 is quadratic,
with ei+1 ≈ |f ′′(−1)/(2f ′(−1))|e2

i = | − 40/(2)(8)|e2
i = 2.5e2

i ; f ′(0) = −1 implies conver-
gence to r = 0 is quadratic, ei+1 ≈ 2e2

i ; f ′(1) = f ′′(1) = 0 and f ′′′(1) = 12 implies that
convergence to r = 1 is linear, ei+1 ≈ 2

3
ei.

3 (b) f ′(−1
2
) = −27/4 implies that convergence to r = −1

2
is quadratic, with error relationship

ei+1 ≈ |27/2(−27
4
)|e2

i = 2e2
i ; f ′(1) = f ′′(1) = 0 and f ′′′(1) = 18 implies that convergence to

r = 1 is linear, ei+1 ≈ 2
3
ei.

4 (a) r = −1/2, ei+1 = 1.6e2
i ; r = 3/4, ei+1 = 1

2
ei

4 (b) r = −1, ei+1 = 1
2
ei; r = 3, ei+1 = 1

2
e2

i

5 Convergence to r = 0 is quadratic since f ′(0) = −1 6= 0, so Newton’s Method converges
faster than the Bisection Method. Convergence to r = 1

2
is linear since f ′(1

2
) = f ′′(1

2
) = 0
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and f ′′′(1
2
) = 24, with ei+1 ≈ 2

3
ei. Since S = 2

3
> 1

2
, Newton’s Method will converge to

r = 1
2

slower than the Bisection Method.

6 Many possible answers; for example, f(x) = xe−x with initial guess greater than 1.

7 Computing derivatives, f ′(2) = f ′′(2) = 0 and f ′′′(2) = 6 implies that r = 2 is a triple
root. Therefore Newton’s Method does not converge quadratically, but converges linearly and
ei+1/ei → 2

3
according to Theorem 1.12.

8 x1 = x0 − (ax0 + b)/a = −b/a

9 Since f ′(x) = 2x, Newton’s Method is

xi+1 = xi − x2
i − A

2xi

=
xi

2
+

A

2xi

=
xi + A/xi

2
.

10 xi+1 = (2xi + A/x2
i )/3

11 The nth root of A is the real root of f(x) = xn − A = 0. Newton’s Method applied to the
equation is

xi+1 = xi − xn
i − A

nxn−1
i

=
n− 1

n
xi +

A

nxn−1
i

=
(n− 1)xi + A/xn−1

i

n
.

Since f ′(A) = nAn−1, Theorem 1.11 implies that Newton’s Method converges quadratically
as long as A 6= 0.

12 x50 = 250

13 (a) Newton’s Method converges quadratically to r = 2 since f ′(2) = 8 6= 0, and e5 ≈
f ′′(2)/(2f ′(2))e2

4 = 3
4
(10−6)

2
= 0.75× 10−12.

13 (b) Since f ′(0) = −4 and f ′′(0) = 0, Theorem 1.11 implies that lim
i→∞

ei+1/e
2
i = 0, and no

useful estimate of e5 follows. Essentially, convergence is faster than quadratic. Reverting to

the definition of Newton’s Method, xi+1 = xi − x3
i − 4xi

3x2
i − 4

=
2x3

i

3x2
i − 4

, and because r = 0,

ei+1 =

∣∣∣∣
2e3

i

3e2
i − 4

∣∣∣∣. Substituting e4 = 10−6 yields e5 =

∣∣∣∣
2× 10−18

3× 10−12 − 4

∣∣∣∣ ≈ 0.5× 10−18.

Computer Problems 1.4

1 (a) Newton’s Method is xi+1 = xi − (x3
i − 2xi − 2)/(3x2

i − 2). Setting x0 = 1 yields
x7 = 1.76929235 to eight decimal places.
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1 (b) Applying Newton’s Method with x0 = 1 yields x5 = 1.67282170 to eight places.
1 (c) Applying Newton’s Method with x0 = 1 yields x3 = 1.12998050 to eight places.

2 (a) 0.75487767
2 (b) −0.97089892
2 (c) 1.59214294

3 (a) Newton’s Method converges linearly to xc = −0.6666648. Subtracting xc from xi shows
error ratios |xi+1 − xc|/|xi − xc| ≈ 2

3
, implying a multiplicity 3 root. Applying Modified

Newton’s Method with m = 3 and x0 = 0.5 converges to xc = −2
3
.

3 (b) Newton’s Method converges linearly to xc = 0.166666669. The error ratios |xi+1−xc|/|xi−
xc| ≈ 1

2
, implying a multiplicity 2 root. Applying Modified Newton’s Method with m = 2 and

x0 = 1 converges quadratically to 0.166666667 ≈ 1
6
. In fact, one checks by direct substitution

that the root is r = 1
6
.

4 (a) r = 1,m = 3
4 (b) r = 2,m = 2

5 The volume of the silo is 400 = 10πr2 + 2
3
πr3. Solving for r by Newton’s Method yields

3.2362 meters.

6 r = 2.0201 cm

7 Newton’s Method converges quadratically to −1.197624 and 1.530134, and converges linearly
to the root 0. The error ratio is |xi+1 − 0|/|xi − 0| ≈ 3

4
, implying that r = 0 is a multiplicity 4

root. This can be confirmed by evaluating the first four derivatives.

8 0.841069, quadratic convergence; π/3 ≈ 1.047198, linear convergence, m = 3; 2.300524,
quadratic convergence

9 Newton’s Method converges quadratically to 0.8571428571 with quadratic error ratio M =

lim
i→∞

ei+1/e
2
i ≈ 2.4, and converges linearly to the root 2 with error ratio S = lim

i→∞
ei+1/ei ≈ 2

3
.

10 −1.381298, quadratic convergence; −2/3, linear convergence, m = 2; 0.205183, quadratic
convergence; 1/2, quadratic convergence; 1.176116, quadratic convergence

11 Solving the ideal gas law for an initial approximation gives V0 = nRT/P = 1.75. Applying
Newton’s Method to the non-ideal gas Van der Waal’s equation with initial guess V0 = 1.75
converges to V = 1.701.

12 initial guess = 2.87, solution V = 2.66 L

13 (a) The equation is equivalent to 1− 3/(4x) = 0, and has the root r = 3
4
.

13 (b) Newton’s Method applied to f(x) = (1− 3/(4x))
1
3 does not converge.
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Exercises 1.5

1 (a) Applying the Secant Method with x0 = 1 and x1 = 2 yields x2 = x1− (x1 − x0)f(x1)

f(x1)− f(x0)
=

8

5
and x3 ≈ 1.742268.

1 (b) Using the Secant Method formula with x0 = 1 and x1 = 2 as in (a) returns x2 ≈ 1.578707
and x3 ≈ 1.660160.

1 (c) The Secant Method yields x2 ≈ 1.092907 and x3 ≈ 1.119357.

2 (a) x2 = 8/5, x3 = 1.742268
2 (b) x2 = 1.578707, x3 = 1.66016
2 (c) x2 = 1.092907, x3 = 1.119357

3 (a) Applying IQI with x0 = 1, x1 = 2 and x2 = 0 yields x3 = −1
5

and x4 ≈ −0.11996018
from formula (1.37).

3 (b) Applying the IQI formula gives x3 ≈ 1.75771279 and x4 ≈ 1.66253117.
3 (c) Applying IQI as in (a) and (b) yields x3 ≈ 1.13948155 and x4 ≈ 1.12927246.

4 10.25 m

5 Setting A = f(a), B = f(b), C = f(c), and y = 0 in (1.35) gives

P (0) =
af(b)f(c)

(f(a)− f(b))(f(a)− f(c))
+

bf(a)f(c)

(f(b)− f(a))(f(b)− f(c))

+
cf(a)f(b)

(f(c)− f(a))(f(c)− f(b))

=
af(b)−f(c)

f(a)
+ bf(c)−f(a)

f(b)
+ cf(a)−f(b)

f(c)

(1− f(b)
f(a)

)(f(a)
f(c)

− 1)(1− f(c)
f(b)

)

=
as(1− qs) + bqs(r − q) + c(q − 1)

(q − 1)(r − 1)(s− 1)

= c +
as(1− r) + br(r − q)− c(r2 − qr − rs + s)

(q − 1)(r − 1)(s− 1)

= c− (c− b)r(r − q) + (c− a)s(1− r)

(q − 1)(r − 1)(s− 1)
.

Computer Problems 1.5

1 (a) Applying the Secant Method formula on page 65 shows convergence to the root 1.76929235
1 (b) 1.67282170
1 (c) 1.12998050.
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2 (a) 1.76929235
2 (b) 1.67282170
2 (c) 1.12998050

3 (a) Applying formula (1.37) for Inverse Quadratic Interpolation shows convergence to 1.76929235.
3 (b) Similar to part (a). Converges to 1.67282170
3 (c) Similar to part (a). Converges to 1.129998050.

4 −1.381298, superlinear; −2/3, linear; 0.205183, superlinear; 1/2, superlinear; 1.176116,
superlinear

5 The MATLAB command

>> fzero(’1/x’,[-2,1])

converges to zero, although there is no root there.

6 fzero fails in both cases because the functions never cross zero


