SOLUTIONS MANUAL




CHAPTER 1
Solving Equations

Exercises 1.1

1(a) Check that f(z) = 2® —9 satisfies f(2) = —1 and f(3) = 27—9 = 18. By the Intermediate
Value Theorem, f(2)f(3) < 0 implies the existence of a root between x = 2 and x = 3.

1(b) Define f(z) = 323 + 2? — z — 5. Check that f(1) = —2 and f(2) = 21, so there is a root
in [1,2].

1(c) Define f(x) = cos? x — x + 6. Check that f(6) > 0 and f(7) < 0. There is a root in [6, 7].

2(a [0,1]
2(b) [-1,0]
2(0) [1,2]

3 (a) Start with f(x) = z® + 9 on [2, 3], where f(2) < 0 and f(3) > 0. The first step is
to evaluate f(3) = 32 > 0, which implies the new interval is [2, 2]. The second step is to
evaluate f(9) = 22 — 9 > 0, giving the interval [2, 9]. The best estimate is the midpoint
T, = L.

3(b) Star?%[ with f(z) = 32® +2? —z—5o0n [1, 2], where f(1) > O and f(2) < 0. Since f(2) > 0,
the second interval is [1, 3]. Since f(2) > 0, the third interval is [1, 2]. The best estimate is
the endpoint z, = 3.

3 (c) Start with f(z) = cos® x +6 —z on [6, 7], where f(6) > 0 and f(7) < 0. Since f(6.5) > 0,
the second interval is [6.5,7]. Since f(6.75) > 0, the third interval is [6.75,7]. The best

estimate is the midpoint x, = 6.875.

4(a) 0.875
4 () —0.875
4(c) 1.625

5(a) Setting f(z) = z* — 23 — 10, check that f(2) = —2 and f(3) = 44, so there is a root in
2,3].

5(b) According to (1.1), the error after n steps is less than (3 —2)/2""!. Ensuring that the error is
less than 1079 requires (%)NJrl < 1071, or 27t > 10'°, which yields n > 10/ log;((2) —1 =~
32.2. Therefore 33 steps are required.

6 Bisection Method converges to 0, but 0 is not a root.
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Computer Problems 1.1

1(a) There is arootin |2, 3] (see Exercise 1.1.1). In MATLAB , use bisect (p. 28). Six correct

decimal places corresponds to error tolerances 5 x 1077, according to Def. 1.3. The calling
sequence

>> f=inline('x"3-9");
>> xc=bisect (f, 2,3, 5e-7)

returns the approximate root 2.080083.
1 (b) Similar to (a), on interval [1, 2]. The command

>> xc=bisect (inline (' 3x"3+x"2-x-5"),1,2,5e-7)

returns the approximate root 1.169726.
1 (c) Similar to (a), on interval [6, 7]. The command

>> xc=bisect (inline (' cos (x) "2+6-x"),6,7,5e-7)
returns the approximate root 6.776092.

2 (a) 0.75487767
2(b) —0.97089892
2 (c) 1.59214294

3 (a) Plots for parts (a) - (c) are:

2+ 2
1+ 1+
/N ;
2 A 1 2 -2 -1 1 2
-1+
21 -2

(b) (c)

In part (a), it is clear from the graph that there is a root in each of the three intervals
[—2,—1], [-1,0], and [1, 2]. The command

>> bisect (inline (’2xx"3-6xx-1"),-2,-1,5e-7)

yields the first approximate root —1.641783. Repeating for the next two intervals gives the
approximate roots —0.168254 and 1.810038.

(b) There are roots in [—2, —1], [0.5,0.5], and [0.5, 1.5]. Using bisect as in part (a) yields
the approximate roots —1.023482, 0.163823, and 0.788942.

(¢) There are roots in [—1.7, —0.7], [-0.7,0.3], and [0.3, 1.3]. Using bisect as in part (a) yields
the approximate roots —0.818094, 0, and 0.506308.
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4 (a) [1,2],27 steps, 1.41421356
4((b) |1, ], 27 steps, 1.73205081

2
4 (c) [2,3],27 steps, 2.23606798

—

5(a) There is aroot in the interval [1, 2]. Eight decimal place accuracy implies an error tolerance
of 5 x 107, The command

>> bisect (inline('x"3-2"),1,2,5e-9)

yields the approximate cube root 1.25992105 in 27 steps.

5 (b) There is a root in the interval [1,2]. Using bisect as in (a) gives the approximate cube
root 1.44224957 in 27 steps.

5 (c) There is a root in the interval [1,2]. Using bisect as in (a) gives the approximate cube
root 1.70997595 in 27 steps.

6 0.785398

7 Trial and error, or a plot of f(x) = det(A) — 1000, shows that f(—18)f(—17) < 0 and
f(9)f(10) < 0. Applying bisect to f(x) yields the roots —17.188498 and 9.708299. The
backward errors of the roots are |f(—17.188498)| = 0.0018 and | f(9.708299)| = 0.00014.

8 2.948011

9 The desired height is the root of the function f(H) = 7H?*(1 — H) — 1. Using

>> bisect (inline ('pi*H"2% (1-H/3)-1"),0,1,0.001)

gives the solution 636 mm.

Exercises 1.2

1) ¢(z) =202z — 1)73, and |¢/(1)| = 2 < 1. Theorem 1.6 implies that FPI is locally
convergent to r = 1.
1(b) ¢(x)= %xQ, and |¢'(1)] = 3

5 > 1; FPI diverges from 7 = 1.
1(¢) ¢'(x) =cosz+ 1,and |¢'(0)] =

2 > 1; FPI diverges from r = 0.

2 (a) locally convergent
2 (b) locally convergent
2 (c¢) divergent

3 (a) Solve ;2% + iz = x to find the fixed points 7 = 0,1. The derivative ¢'(z) =
By Theorem 1.6, [¢/(0)] = & < 1 implies that FPI converges to r = 0, and |¢'(1)| =
implies that FPI diverges from r = 1.

3 (b) Solve 2® — {1z + 2 = = to find the fixed points r = 3, 2. The derivative ¢'(z) = 2z —

=
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|9'(3)| = 3 < 1 implies that FPI is locally convergent to r = 1. |¢/(3)| = 2 > 1 implies that
FPI diverges from r = 2.

4 (a) FPI diverges from 3/2, while 1 is locally convergent

4 (b) FPI diverges from 1, while —1/2 is locally convergent

5 (a) There is a variety of answers, obtained by rearranging the equation 23 — z + ¢® = 0 to
isolate x. For example, 7 = 2 + €%, x = /r — e*, v = In(x — 23).

1 1
5(b) Asin (a), rearrange 3z~*+92° = 2” to isolate 2. For example, v = — +922, & = 9 54"
x x
x5 — 925
r=—"
3
6 (a) Faster than Bisection Method
6 (b) FPI diverges from the fixed point 1.2
7 Solving x* = for x results in the two separate equations ¢, (x) = 5 and go(x) =

1—
— Tx First notice that ¢;(x) returns only positive numbers, and g»(x) only negative.

Therefore —1 cannot be a fixed point of ¢; (x), and % cannot be a fixed point of g»(x). Check

1
1 1 1 1 - -
that g1(3) = 3 and gi(z) = N T 191(5)] = 5 < 1 confirms that FPI with g,(z) is
1
locally convergent to » = 1. Likewise, —1)=—-1,d)(z) = ————and |¢,(-1)| = L
y converg 2 p(—1) = —1, gh(2) = s and |gy(~1)| = }

implies that FPI with go(x) is locally convergent to r = —1.

8 For a positive number A, consider applying Fixed Point Iteration to g(x) = (x + A/z)/2. Note
that ¢'(v/A) = 0, so FPI is locally convergent to v/A by Theorem 1.6. A simple sketch of
y = g(x) shows that FPI converges to /A for all positive initial guesses.

9 Define g(z) = (v + A/2?)/2. Since |¢'(V/A)| = 1 < 1, FPIis locally convergent to the cube

root \?/Z
10 w=2/3

11 (a) Substitute roots and check.
11 (b) ¢'(z) = —5+ 15z — 222, FPI diverges from all three roots, because [¢'(1 — /3/5)| =

1g'(1 4+ 1/3/5)| = 2 and |¢'(1)| = 2.5.

12 [Initial guesses 0,1 and 2 all lead to » = 1. Neaby initial guesses cause FPI to move away
from the divergent fixed point 1 and oscillate chaotically.
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13 The slopes of g at r; and r3 imply that the graph of y = g(z) must pass through the line y = x
at x = ry from below the line to above the line. Therefore ¢'(r2) must belong to the interval
(1, 00).

14 4(1)=1

15 Let z belong to [a, b]. By the Mean Value Theorem, |g(x¢) —r| < Blxg—r| < |xo—r|. Since
r belongs to [a,b], x1 = g(x) does also, and by extension, so does xs, x3, etc. Similarly,
|z1 — r| < Blzg — r| extends to |z; — r| < B’|zq — r|, which converges to zero as i — oo.

16 1If x1 = g(x1) and x5 = g(x2) are both fixed points, then by the Mean Value Theorem, there
exists ¢ between x; and x5 for which o — 1 = g(22) — g(z1) = ¢'(¢)(z2 — 1), which implies
¢'(¢) = 1, a contradiction.

17 (a) Solving v — 23 = z yields 2 = 0, or z = 0.

17 (b) Assume 0 < xy < 1. Then 2} < z¢, and s0 0 < z1 = z9 — 23 < ¢y < 1. The same
argument implies by induction that zp > z; > x9 > ... > 0.

17 (¢) The limit L = lim x; exists because the x; form a bounded monotonic sequence. Since
g(x) is continuous, ¢g(L) = ¢(lim x;) = lim g(x;) = lim 2,47 = L, so L is a fixed point,
and by (a), L = 0.

18 (a) = = x + 2% implies x = 0

18 (b) If0 < zy, then ;4 = x; + 23 = z;(1 + 2?) > ;.

18 (¢) ¢'(0) = 1, but the z; move away from r = 0.

44c

2+ (c+ 1)z —2 32+ (c+1)

19 (a) Setg(z) = . Then ¢'(z) = ,and |¢'(1)] = |
c
for c < —2. By Theorem 1.6, FPI is locally convergent to r = 1 if ¢ < —2.
19() ¢(1)=0if c = —4.

| <1

20 By Taylor’s Theorem, g(z;) = g(r) + ¢'(r)(z; — ) + ¢"(c)(x — r)? /2, where c is between z;
and r. Thus e;11 = |r — z;1| = [¢"(c)|(r — x;)?/2 = |¢"(c)|e? /2. In the limit, ¢ converges to
T.

21 By factoring or the Quadratic Formula, the roots of the equation are —% and }L. Set g(z) =

= — x%. Using the cobweb diagram of g(x), it is clear that initial guesses in (—2, 3) converge
to 75 = 7, and initial guesses in (—oo, —2) U (2, 0o) diverge to —oo under FPI. Initial guesses
—% and % limit on —g.

22 The open interval (—4/3,4/3) of initial guesses converge to the fixed point 1/3; the two initial
guesses —4/3,4/3 lead to —4/3.
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Computer Problems 1.2

1
1 (a) Define g(x) = (22 + 2)3, for example. Using the fpi code, the command
>> x=fpi(inline (' (2*x+2) " (1/3)"),1/2,20)

yields the solution 1.76929235 to 8 correct decimal places.

1 (b) Define g(z) = In(7 — z). Using fpi as in part (a) returns the solution 1.67282170 to 8
correct decimal places.

1(c) Define g(z) = In(4 — sinx). Using £p1i as in part (a) returns the solution 1.12998050 to 8
correct decimal places.

2 (a) 0.75487767
2(b) —0.97089892
2 (c) 1.59214294

3 (a) Iterate g(x) = (x + 3/x)/2 with starting guess 1. After 4 steps of FPI, the results is
1.73205081 to 8 correct places.

3 (b) Tterate g(z) = (x + 5/x)/2 with starting guess 1. After 5 steps of FPI, the results is
2.23606798 to 8 correct places.

4 (a) 1.25992105
4 (b) 1.44224957
4 (c) 1.70997595

5 Tterating g(x) = cos® x with initial guess xy = 1 results in 0.641714 to six correct places after
350 steps. Checking |¢’(0.641714)| ~ 0.96 verifies that FPI is locally convergent by Theorem
1.6.

6 (a) —1.641784,—0.168254,1.810038
6 (b) —1.023482,0.163822,0.788941
6 (c) —0.818094,0,0.506308.

7 (a) Almost all numbers between 0 and 1.
7 (b) Almost all numbers between 1 and 2.
7 (¢) Any number greater than 3 or less than —1 will work.

Exercises 1.3

1 (a) The forward error is |r — z.| = |0.75 — 0.74| = 0.01. The backward error is |f(z.)| =
14(0.74) — 3| = 0.04.
1(b) FE=|r—a.]=00lasin(a). BE = |f(0.74)| = (0.04)% = 0.0016.
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1(¢) FE=|r—x.]=001asin(a). BE = [f(0.74)] = (0.04)® = 0.000064.
1(d) FE=|r—x.]=0.01asin(a). BE = |f(0.74)| = (0.04)3 = 0.342.

2 (a) FE = 0.00003, BE = 10~
2 (b) FE = 0.00003, BE = 108
2 (¢) FE = 0.00003, BE = 10~'2
2 (d) FE = 0.00003, BE = 0.0464

3(a) Check derivatives: f(0) = f'(0) = 0, f”(0) = cos0 = 1. The multiplicity of the root r = 0
is 2.

3 (b) The forward error is |r — z.| = |0 — 0.0001| = 0.0001. The backward error is |f(z.)| =
| — c0s0.0001] ~ 5 x 107°.

4(a) 4
4(b) FE=10"2,BE= 108

5 The root of f(z) = ax — bisr = b/a. If x. is an approximate root, the forward error is
FE = |b/a—u.| while the backward error is BE = | f(z.)| = |az.—b| = |a||2—z.| = |a|FE.
Therefore the backward error is a factor of |a| larger than the forward error.

6() 1
6 (b) Let e be the backward error. By the Sensitivity Formula, the forward error Aris e/ f'(AY/") =
¢/ (nA®-1/n)

7@ Wi)=@-2)(x—-20)+(z—1)(z—-3)---(x—=20)+...+(z—1)--- (x — 19),
so W/(16) = (16 — 1)(16 — 2) - - - (16 — 15)(16 — 17)(16 — 18)(16 — 19)(16 — 20) = 15!4!
7 (b) For a general integer j between 1 and 20,
W(j) =G =10 =2)-- (D)(=1)(=2) -~ (§ = 20) = (=1)(j = 1)!(20 — j)!

8 (a) Predictedroota + Ar =a — ea
8 (b) Actualroota/(1+¢€)=a—ca+€e*a—ea+...

Computer Problems 1.3

1 (a) Check the derivatives of f(z) = sinxz — z to see that f(0) = f/(0) = f”(0) = 0 and
f"(0) = — cos 0 = —1, giving multiplicity 3.

1 () fzero returns v, = —2.0735 x 10~%. The forward error is 2.0735 x 10~® and MATLAB
reports the backward error to be | f(z.)| = 0. This means the true backward error is likely less
than machine epsilon.

2(a) m=9
2(b) z,=FE =0.0014, BE =0

3 (a) The MATLAB command
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>> xc=fzero (/! 2*xxXx*Ccox (X) —-2*x+sin(x"3)’,[-0.1,0.2])

returns x. = 0.00016881. The forward error is |x. — 7| = 0.00016881 and the backward error
is reported by MATLAB as | f(z.)| = 0.

3 (b) The bisection method with starting interval [—0.1, 0.2] stops after 13 steps, giving z. =
—0.00006103. Neither method can determine the root » = 0 to more than about 3 correct
decimal places.

4@ r+Ar=3-—2.7¢
4 (b) Predicted root = 3 — 0.0027 = 2.9973, actual root = 2.9973029

5 Touse (1.21), set f(z) = (x —1)(z — 2)(x — 3)(z —4), e = —107% and g(x) = 2°. Then near
the root r = 4, Ar ~ —eqg(r)/f'(r) = 45/6 ~ 0.00068267. According to (1.22), the error
magnification factor is |g(r)|/|r f'(r)| = 4°/24 ~ 170.7. £zero returns the approximate root
4.00068251, close to the guess 4.00068267 given by (1.21).

6 Actual root . = 14.856, predicted root = r + Ar = 15 — 0.14 = 14.86

Exercises 1.4

1(@) =1 =z0— (x3+20—2)/(322+1) =0—(=2)/(1) = 2,29 = 2—(2342-2)/(3(2?) +1) =
18/13.

1(b) vy =z — (25 — a2 +10—1)/(4a3 — 220+ 1) = 1525 = 1.

1(c) w1 =wo— (2§ —x0—1)/(200 — 1) = =120 = —2.

2(@) x; =0.8,25 = 0.756818

2(b) 1 =-0.2,29 = 0.180856

2(C) 1 = T2 =2

3 (a) According to Theorem 1.11, f’(—1) = 8 implies that convergence to » = —1 is quadratic,
with e;q & |f"(=1)/(2f(=1))|e? = | — 40/(2)(8)]e? = 2.5¢Z; f'(0) = —1 implies conver-
gence to r = 0 is quadratic, e;,; ~ 2¢2; f'(1) = f”(1) = 0 and f”’(1) = 12 implies that
convergence to - = 1 is linear, ¢;11 ~ Ze;.

3(b) f'(—3) = —27/4 implies that convergence to r = —3 is quadratic, with error relationship
ei1 ~ [27/2(—20)|e? = 2¢Z; f'(1) = f”(1) = 0 and f”(1) = 18 implies that convergence to

r = 1is linear, e;11 ~ Ze¢;.

4@ r=-1/2e;11 = 1.6e31=3/4,¢;41 = %ei

4(b) r=-1¢41 = %Gz; =3, €41 = %6?
5 Convergence to r = 0 is quadratic since f'(0) = —1 # 0, so Newton’s Method converges

. . 1 . . . 1 1
faster than the Bisection Method. Convergence to r = 3 is linear since f'(5) = f"(3) = 0
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and f”(3) = 24, with e;11 =~ Ze;. Since S = 2 > 1, Newton’s Method will converge to
r= % slower than the Bisection Method.

6 Many possible answers; for example, f(x) = ze~® with initial guess greater than 1.

7 Computing derivatives, f'(2) = f”(2) = 0 and f"”(2) = 6 implies that » = 2 is a triple
root. Therefore Newton’s Method does not converge quadratically, but converges linearly and
eiv1/€; — 2 according to Theorem 1.12.

8 z1=1x9— (axg+0b)/a=—b/a
9 Since f'(x) = 2x, Newton’s Method is

w?—A oz A x4+ Al

Lit1 = Li —

11 The n'* root of A is the real root of f(x) = 2™ — A = 0. Newton’s Method applied to the
equation is

—A n-—1 A (n—1)x; + AfaP™!
1 = x; + = .

Tit1 = Tj — o
i

nx n

n—
7

n nx

Since f'(A) = nA"~!, Theorem 1.11 implies that Newton’s Method converges quadratically
as long as A # 0.

12 Ts50 = 250

13 (a) Newton’s Method converges quadratically to » = 2 since f'(2) = 8 # 0, and e5 ~
£1(2)/(2F(2))ed = 2(1076)* = 0.75 x 10712,

13 (b) Since f/(0) = —4 and f”(0) = 0, Theorem 1.11 implies that lim e; (/e = 0, and no
useful estimate of e5 follows. Essentially, convergence is faster than quadratic. Reverting to

. , x — 4z, 213
the definition of Newton’s Method, z;,; = x; — 5 = - , and because r = 0,
3y — 4 3y — 4
2e? 2x 10718
€iy1 = ‘362261 1 ‘ SubStltutlng €4 = 1076 ylelds €5 = ‘3>(>1<OT_4’ ~ 0.5 x 10_18.

Computer Problems 1.4

1 (a) Newton’s Method is x;41 = z; — (z7 — 2z; — 2)/(32? — 2). Setting zo = 1 yields
x7 = 1.76929235 to eight decimal places.
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1 (b) Applying Newton’s Method with xy = 1 yields x5 = 1.67282170 to eight places.
1 (c) Applying Newton’s Method with 2y = 1 yields x3 = 1.12998050 to eight places.

2 (a) 0.75487767
2 (b) —0.97089892
2(c) 1.59214294

3 (a) Newton’s Method converges linearly to x. = —0.6666648. Subtracting z. from x; shows
error ratios |z;41 — x.|/|z; — z.| ~ %, implying a multiplicity 3 root. Applying Modified
Newton’s Method with m = 3 and g = 0.5 converges to . = —%.

3 (b) Newton’s Method converges linearly to x. = 0.166666669. The error ratios |z; 1 —x.|/|z;—
Te| & %, implying a multiplicity 2 root. Applying Modified Newton’s Method with m = 2 and
xo = 1 converges quadratically to 0.166666667 ~ %. In fact, one checks by direct substitution

that the root is r = 3.

4@ r=1,m=3
4Mb) r=2,m=2

5 The volume of the silo is 400 = 107r? + gmﬂ?’. Solving for r by Newton’s Method yields
3.2362 meters.

6 r=2.0201cm

7 Newton’s Method converges quadratically to —1.197624 and 1.530134, and converges linearly
to the root 0. The error ratio is |z;41 — 0|/|z; — 0] & 2, implying that = 0 is a multiplicity 4
root. This can be confirmed by evaluating the first four derivatives.

8 0.841069, quadratic convergence; 7/3 &~ 1.047198, linear convergence, m = 3; 2.300524,
quadratic convergence

9 Newton’s Method converges quadratically to 0.8571428571 with quadratic error ratio M =

[\]

lim e;, /e ~ 2.4, and converges linearly to the root 2 with error ratio S = lim e;,/e; ~ 3
1—00 1—00

10 —1.381298, quadratic convergence; —2/3, linear convergence, m = 2; 0.205183, quadratic
convergence; 1/2, quadratic convergence; 1.176116, quadratic convergence

11 Solving the ideal gas law for an initial approximation gives Vy, = nRT/P = 1.75. Applying
Newton’s Method to the non-ideal gas Van der Waal’s equation with initial guess V) = 1.75
converges to V' = 1.701.

12 initial guess = 2.87, solution V' = 2.66 L.

13 (a) The equation is equivalent to 1 — 3/(4z) = 0, and has the root rr = 3.

13 (b) Newton’s Method applied to f(z) = (1 — 3/ (4:c))% does not converge.
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Exercises 1.5

— 8
1 (a) Applying the Secant Method with o = 1 and 27 = 2 yields x5 = x1 — (21 = o) f(1) = -

f(z1) — f(zo) 5
and z3 ~ 1.742268.
1 (b) Using the Secant Method formula with 2y = 1 and x; = 2 as in (a) returns xo ~ 1.578707
and z3 ~ 1.660160.
1 (¢) The Secant Method yields x5 ~ 1.092907 and z3 ~ 1.119357.

2(b) zo =1.578707, 23 = 1.66016
2(c) xo =1.092907, 25 = 1.119357

3 (a) Applying IQI with g = 1, xy = 2 and 25 = 0 yields x3 = —% and x4 ~ —0.11996018
from formula (1.37).

3 (b) Applying the IQI formula gives x3 ~ 1.75771279 and =4, ~ 1.66253117.

3 (c) Applying IQI as in (a) and (b) yields z3 ~ 1.13948155 and x4 ~ 1.12927246.

4 10.25m

5 Setting A = f(a), B = f(b), C = f(c), and y = 0in (1.35) gives

) af (5)£(c) bF(a) F(0)
PO = G o) f@ =F@) T G0 = @) (76 = 7))
X ¢ (a)f(D)

(f(e) = fa))(f(c) — f(D))
OO L) oS

_ f®)yfla) _ I
(1= @) (Fo — DA = 75)

as(1—qs) +bgs(r —q) +c(qg—1)
(g—1D(r—1)(s—1)
as(1—r)+br(r—q) —c(r* —qr —rs+s)
(¢—1)(r—=1)(s—1)
(c=b)r(r—q)+ (c—a)s(l —r)
(¢—=1(r=1)(s-1) .

et C —

Computer Problems 1.5

1 (a) Applying the Secant Method formula on page 65 shows convergence to the root 1.76929235
1(b) 1.67282170
1(c) 1.12998050.
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2 (a) 1.76929235
2(b) 1.67282170
2 (c) 1.12998050

3(a) Applying formula (1.37) for Inverse Quadratic Interpolation shows convergence to 1.76929235.
3 (b) Similar to part (a). Converges to 1.67282170
3 (c¢) Similar to part (a). Converges to 1.129998050.

4 —1.381298, superlinear; —2/3, linear; 0.205183, superlinear; 1/2, superlinear; 1.176116,
superlinear

5 The MATLAB command

>> fzero(’1/x’,[-2,1])
converges to zero, although there is no root there.

6 fzero fails in both cases because the functions never cross zero



