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CHAPTER 2  SYMMETRIC ENCRYPTION AND 
MESSAGE CONFIDENTIALITY 

 

AA N S W E R S  T O  N S W E R S  T O  QQ U E S T I O N SU E S T I O N S   
2.1 Plaintext, encryption algorithm, secret key, ciphertext, decryption algorithm. 
 
2.2 Permutation and substitution. 
 
2.3 One secret key. 
 
2.4 A stream cipher is one that encrypts a digital data stream one bit or one byte at a 

time. A block cipher is one in which a block of plaintext is treated as a whole and 
used to produce a ciphertext block of equal length. 

 
2.5 Cryptanalysis and brute force. 
 
2.6 In some modes, the plaintext does not pass through the encryption function, but is 

XORed with the output of the encryption function. The math works out that for 
decryption in these cases, the encryption function must also be used. 

 
2.7 With triple encryption, a plaintext block is encrypted by passing it through an 

encryption algorithm; the result is then passed through the same encryption 
algorithm again; the result of the second encryption is passed through the same 
encryption algorithm a third time. Typically, the second stage uses the decryption 
algorithm rather than the encryption algorithm. 

 
2.8 There is no cryptographic significance to the use of decryption for the second 

stage. Its only advantage is that it allows users of 3DES to decrypt data encrypted 
by users of the older single DES by repeating the key. 
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AA N S W E R S  T O  N S W E R S  T O  PP R O B L E M SR O B L E M S   
2.1 a.  

2 8 10 7 9 6 3 1 4 5 
C R Y P T O G A H I 
B E A T T H E T H I 
R D P I L L A R F R 
O M T H E L E F T O 
U T S I D E T H E L 
Y C E U M T H E A T 
R E T O N I G H T A 
T S E V E N I F Y O 
U A R E D I S T R U 
S T F U L B R I N G 
T W O F R I E N D S 

 
4 2 8 10 5 6 3 7 1 9 
N E T W O R K S C U 
T R F H E H F T I N 
B R O U Y R T U S T 
E A E T H G I S R E 
H F T E A T Y R N D 
I R O L T A O U G S 
H L L E T I N I B I 
T I H I U O V E U F 
E D M T C E S A T W 
T L E D M N E D L R 
A P T S E T E R F O 

 
  ISRNG  BUTLF  RRAFR  LIDLP  FTIYO  NVSEE  TBEHI  HTETA 
  EYHAT  TUCME  HRGTA  IOENT  TUSRU  IEADR  FOETO  LHMET 
  NTEDS  IFWRO  HUTEL  EITDS 
 
 b. The two matrices are used in reverse order. First, the ciphertext is laid out in 

columns in the second matrix, taking into account the order dictated by the 
second memory word. Then, the contents of the second matrix are read left to 
right, top to bottom and laid out in columns in the first matrix, taking into 
account the order dictated by the first memory word. The plaintext is then read 
left to right, top to bottom. 

 c. Although this is a weak method, it may have use with time-sensitive 
information and an adversary without immediate access to good cryptanalysis 
(e.g., tactical use). Plus it doesn't require anything more than paper and pencil, 
and can be easily remembered. 

 
2.2 a. Let –X be the additive inverse of X. That is –X 

€ 

+  X = 0. Then: 
P = (C 

€ 

+  –K1) ⊕ K0 
 b. First, calculate –C'. Then –C' = (P' ⊕ K0) 

€ 

+  (–K1). We then have: 
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  C 

€ 

+  –C' = (P ⊕ K0) 

€ 

+  (P' ⊕ K0) 
  However, the operations 

€ 

+  and ⊕ are not associative or distributive with 
one another, so it is not possible to solve this equation for K0. 
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2.3 a. The constants ensure that encryption/decryption in each round is different. 
 b. First two rounds: 

Delta1

K0

L0

L1

L2 R2

R0

R1

K1

< < 4

> > 5

Delta2

K2

K3

< < 4

> > 5
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 c. First, let's define the encryption process: 
  L2 = L0 

€ 

+  [(R0 << 4) 

€ 

+  K0] ⊕ [R0 

€ 

+  δ1] ⊕ [(R0 >> 5) 

€ 

+  K1] 
  R2 = R0 

€ 

+  [(L2 << 4) 

€ 

+  K2] ⊕ [L2 

€ 

+  δ2] ⊕ [(L2 >> 5) 

€ 

+  K3] 
 
  Now the decryption process. The input is the ciphertext (L2, R2), and the output 

is the plaintext (L0, R0). Decryption is essentially the same as encryption, with 
the subkeys and delta values applied in reverse order. Also note that it is not 
necessary to use subtraction because there is an even number of additions in 
each equation. 

 
  R0 = R2 

€ 

+  [(L2 << 4) 

€ 

+  K2] ⊕ [L2 

€ 

+  δ2] ⊕ [(L2 >> 5) 

€ 

+  K3] 
 
  L0 = L2 

€ 

+  [(R0 << 4) 

€ 

+  K0] ⊕ [R0 

€ 

+  δ1] ⊕ [(R0 >> 5) 

€ 

+  K1] 
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 d. 

Delta1
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L2 R2

R0

R1

K1

< < 4
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< < 4

> > 5

 
 

2.4 To see that the same algorithm with a reversed key order produces the correct 
result, consider the Figure 2.2, which shows the encryption process going down 
the left-hand side and the decryption process going up the right-hand side for a 16-
round algorithm (the result would be the same for any number of rounds). For 
clarity, we use the notation LEi and REi for data traveling through the encryption 
algorithm and LDi and RDi for data traveling through the decryption algorithm. 
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The diagram indicates that, at every round, the intermediate value of the 
decryption process is equal to the corresponding value of the encryption process 
with the two halves of the value swapped. To put this another way, let the output 
of the ith encryption round be LEi||REi (Li concatenated with Ri). Then the 
corresponding input to the (16 – i)th decryption round is RDi||LDi. 

  Let us walk through the figure to demonstrate the validity of the preceding 
assertions. To simplify the diagram, it is unwrapped, not showing the swap that 
occurs at the end of each iteration. But note that the intermediate result at the end 
of the ith stage of the encryption process is the 2w-bit quantity formed by 
concatenating LEi and REi, and that the intermediate result at the end of the ith 
stage of the decryption process is the 2w-bit quantity formed by concatenating LDi 
and RDi. After the last iteration of the encryption process, the two halves of the 
output are swapped, so that the ciphertext is RE16||LE16. The output of that 
round is the ciphertext. Now take that ciphertext and use it as input to the same 
algorithm. The input to the first round is RE16||LE16, which is equal to the 32-bit 
swap of the output of the sixteenth round of the encryption process. 

  Now we would like to show that the output of the first round of the decryption 
process is equal to a 32-bit swap of the input to the sixteenth round of the 
encryption process. First, consider the encryption process. We see that: 

 
 LE16 = RE15  
 RE16 = LE15 ⊕ F(RE15, K16) 
 
 On the decryption side: 
 
 LD1 = RD0 = LE16 = RE15 
 RD1 = LD0 ⊕ F(RD0, K16) 
  = RE16 ⊕ F(RE15, K16) 
  = [LE15 ⊕ F(RE15,K16)] ⊕ F(RE15, K16) 
 
 The XOR has the following properties: 
 
  [A ⊕ B] ⊕ C  =  A ⊕ [B ⊕ C] 
  D ⊕ D = 0 
  E ⊕ 0 = E 
 
  Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first 

round of the decryption process is LE15||RE15, which is the 32-bit swap of the 
input to the sixteenth round of the encryption. This correspondence holds all the 
way through the 16 iterations, as is easily shown. We can cast this process in 
general terms. For the ith iteration of the encryption algorithm: 

 
 LEi = REi-1 
 REi = LEi-1 ⊕ F(REi-1, Ki) 
 
 Rearranging terms: 
 
 REi-1 = LEi 
 LEi-1 = REi ⊕ F(REi-1, Ki) = REi ⊕ F(LEi, Ki) 
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  Thus, we have described the inputs to the ith iteration as a function of the 

outputs, and these equations confirm the assignments shown in the right-hand 
side of the following figure. 

  Finally, we see that the output of the last round of the decryption process is 
RE0||LE0. A 32-bit swap recovers the original plaintext, demonstrating the 
validity of the Feistel decryption process. 

 
2.5 Because of the key schedule, the round functions used in rounds 9 through 16 are 

mirror images of the round functions used in rounds 1 through 8. From this fact 
we see that encryption and decryption are identical. We are given a ciphertext c. 
Let m' = c. Ask the encryption oracle to encrypt m'. The ciphertext returned by the 
oracle will be the decryption of c. 

 
2.6 For 1 ≤ i ≤ 128, take ci ∈ {0, 1}128 to be the string containing a 1 in position i and 

then zeros elsewhere. Obtain the decryption of these 128 ciphertexts. Let m1, m2, . . 
. , m128 be the corresponding plaintexts. Now, given any ciphertext c which does 
not consist of all zeros, there is a unique nonempty subset of the ci’s which we can 
XOR together to obtain c. Let I(c)  ⊆ {1, 2, . . . , 128} denote this subset. Observe 

 
 

€ 

c = ⊕
i∈I c( )

ci = ⊕
i∈I c( )

E mi( ) = E ⊕
i∈I c( )

mi
 

 
 

 

 
  

 
 Thus, we obtain the plaintext of c by computing 

€ 

⊕
i∈I c( )

mi . Let 0 be the all-zero 

string. Note that 0 = 0 ⊕ 0. From this we obtain E(0) = E(0 ⊕ 0) = E(0) ⊕ E(0) = 0. 
Thus, the plaintext of c = 0 is m = 0. Hence we can decrypt every c ∈ {0, 1}128.  

 
2.7 a.  Pair Probability 
  00  (0.5 – ∂)2 = 0.25 – ∂ + ∂2 
  01  (0.5 – ∂) × (0.5 + ∂) = 0.25 – ∂2 
  10  (0.5 + ∂) × (0.5 – ∂) = 0.25 – ∂2 
  11  (0.5 + ∂)2 = 0.25 + ∂ + ∂2 
 
 b. Because 01 and 10 have equal probability in the initial sequence, in the 

modified sequence, the probability of a 0 is 0.5 and the probability of a 1 is 0.5. 
 c. The probability of any particular pair being discarded is equal to the 

probability that the pair is either 00 or 11, which is 0.5 + 2∂2, so the expected 
number of input bits to produce x output bits is x/(0.25 – ∂2). 

 d. The algorithm produces a totally predictable sequence of exactly alternating 1's 
and 0's. 

 
2.8 a. For the sequence of input bits a1, a2, …, an, the output bit b is defined as: 
 

b = a1 ⊕ a2 ⊕  … ⊕  an 
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 b. 0.5 – 2∂2 
 c. 0.5 – 8∂4 
 d. The limit as n goes to infinity is 0.5. 
 
2.9 Use a key of length 255 bytes. The first two bytes are zero; that is K[0] = K[1] = 0. 

Thereafter, we have: K[2] = 255; K[3] = 254; … K[255]= 2. 
 
2.10 a. Simply store i, j, and S, which requires 8 + 8 + (256 × 8) = 2064 bits 
 b. The number of states is [256! × 2562] ≈ 21700. Therefore, 1700 bits are required. 
 
2.11 a. By taking the first 80 bits of v || c, we obtain the initialization vector, v. Since v, 

c, k are known, the message can be recovered (i.e., decrypted) by computing 
RC4(v || k) ⊕  c. 

 b. If the adversary observes that vi = vj for distinct i, j then he/she knows that the 
same key stream was used to encrypt both mi and mj. In this case, the messages 
mi and mj may be vulnerable to the type of cryptanalysis carried out in part (a). 

 c. Since the key is fixed, the key stream varies with the choice of the 80-bit v, 

which is selected randomly. Thus, after approximately 

€ 

π
2
280 ≈ 240 messages 

are sent, we expect the same v, and hence the same key stream, to be used more 
than once. 

 d. The key k should be changed sometime before 240 messages are sent. 
 
2.12 a. No. For example, suppose C1 is corrupted. The output block P3 depends only 

on the input blocks C2 and C3. 
 b. An error in P1 affects C1. But since C1 is input to the calculation of C2, C2 is 

affected. This effect carries through indefinitely, so that all ciphertext blocks are 
affected.  However, at the receiving end, the decryption algorithm restores the 
correct plaintext for blocks except the one in error. You can show this by 
writing out the equations for the decryption. Therefore, the error only effects 
the corresponding decrypted plaintext block. 

 
 2.13 In CBC encryption, the input block to each forward cipher operation (except the 

first) depends on the result of the previous forward cipher operation, so the 
forward cipher operations cannot be performed in parallel. In CBC decryption, 
however, the input blocks for the inverse cipher function (i.e., the ciphertext 
blocks) are immediately available, so that multiple inverse cipher operations can 
be performed in parallel. 

 
2.14 If an error occurs in transmission of ciphertext block Ci, then this error 

propagates to the recovered plaintext blocks Pi and Pi+1. 
 
2.15 After decryption, the last byte of the last block is used to determine the amount of 

padding that must be stripped off. Therefore there must be at least one byte of 
padding. 
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2.16 a. Assume that the last block of plaintext is only L bytes long, where L < 2w/8. 

The encryption sequence is as follows (The description in RFC 2040 has an 
error; the description here is correct.): 

 1. Encrypt the first (N – 2) blocks using the traditional CBC technique. 
 2. XOR PN–1 with the previous ciphertext block CN–2 to create YN–1. 
 3. Encrypt YN–1 to create EN–1. 
 4. Select the first L bytes of EN–1 to create CN. 
 5. Pad PN with zeros at the end and exclusive-OR with EN–1 to create YN. 
 6. Encrypt YN to create CN–1. 
  The last two blocks of the ciphertext are CN–1 and CN. 
 b. PN–1 = CN–2 ⊕ D(K, [CN || X]) 

  PN || X = (CN || 00…0) ⊕ D(K, [CN–1]) 
  PN = left-hand portion of (PN || X) 
  where || is the concatenation function 
 
2.17 a. Assume that the last block (PN) has j bits. After encrypting the last full block 

(PN–1), encrypt the ciphertext (CN–1) again, select the leftmost j bits of the 
encrypted ciphertext, and XOR that with the short block to generate the output 
ciphertext. 

 b. While an attacker cannot recover the last plaintext block, he can change it 
systematically by changing individual bits in the ciphertext. If the last few bits 
of the plaintext contain essential information, this is a weakness. 

 
2.18 Nine plaintext characters are affected. The plaintext character corresponding to the 

ciphertext character is obviously altered. In addition, the altered ciphertext 
character enters the shift register and is not removed until the next eight characters 
are processed. 


