

-8-

CHAPTER 2 SYMMETRIC ENCRYPTION AND
MESSAGE CONFIDENTIALITY

AA N S W E R S T O N S W E R S T O QQ U E S T I O N SU E S T I O N S
2.1 Plaintext, encryption algorithm, secret key, ciphertext, decryption algorithm.

2.2 Permutation and substitution.

2.3 One secret key.

2.4 A stream cipher is one that encrypts a digital data stream one bit or one byte at a

time. A block cipher is one in which a block of plaintext is treated as a whole and
used to produce a ciphertext block of equal length.

2.5 Cryptanalysis and brute force.

2.6 In some modes, the plaintext does not pass through the encryption function, but is

XORed with the output of the encryption function. The math works out that for
decryption in these cases, the encryption function must also be used.

2.7 With triple encryption, a plaintext block is encrypted by passing it through an

encryption algorithm; the result is then passed through the same encryption
algorithm again; the result of the second encryption is passed through the same
encryption algorithm a third time. Typically, the second stage uses the decryption
algorithm rather than the encryption algorithm.

2.8 There is no cryptographic significance to the use of decryption for the second

stage. Its only advantage is that it allows users of 3DES to decrypt data encrypted
by users of the older single DES by repeating the key.

-9-

AA N S W E R S T O N S W E R S T O PP R O B L E M SR O B L E M S
2.1 a.

2 8 10 7 9 6 3 1 4 5
C R Y P T O G A H I
B E A T T H E T H I
R D P I L L A R F R
O M T H E L E F T O
U T S I D E T H E L
Y C E U M T H E A T
R E T O N I G H T A
T S E V E N I F Y O
U A R E D I S T R U
S T F U L B R I N G
T W O F R I E N D S

4 2 8 10 5 6 3 7 1 9
N E T W O R K S C U
T R F H E H F T I N
B R O U Y R T U S T
E A E T H G I S R E
H F T E A T Y R N D
I R O L T A O U G S
H L L E T I N I B I
T I H I U O V E U F
E D M T C E S A T W
T L E D M N E D L R
A P T S E T E R F O

 ISRNG BUTLF RRAFR LIDLP FTIYO NVSEE TBEHI HTETA
 EYHAT TUCME HRGTA IOENT TUSRU IEADR FOETO LHMET
 NTEDS IFWRO HUTEL EITDS

 b. The two matrices are used in reverse order. First, the ciphertext is laid out in

columns in the second matrix, taking into account the order dictated by the
second memory word. Then, the contents of the second matrix are read left to
right, top to bottom and laid out in columns in the first matrix, taking into
account the order dictated by the first memory word. The plaintext is then read
left to right, top to bottom.

 c. Although this is a weak method, it may have use with time-sensitive
information and an adversary without immediate access to good cryptanalysis
(e.g., tactical use). Plus it doesn't require anything more than paper and pencil,
and can be easily remembered.

2.2 a. Let –X be the additive inverse of X. That is –X

€

+ X = 0. Then:
P = (C

€

+ –K1) ⊕ K0
 b. First, calculate –C'. Then –C' = (P' ⊕ K0)

€

+ (–K1). We then have:

-10-

 C

€

+ –C' = (P ⊕ K0)

€

+ (P' ⊕ K0)
 However, the operations

€

+ and ⊕ are not associative or distributive with
one another, so it is not possible to solve this equation for K0.

-11-

2.3 a. The constants ensure that encryption/decryption in each round is different.
 b. First two rounds:

Delta1

K0

L0

L1

L2 R2

R0

R1

K1

< < 4

> > 5

Delta2

K2

K3

< < 4

> > 5

-12-

 c. First, let's define the encryption process:
 L2 = L0

€

+ [(R0 << 4)

€

+ K0] ⊕ [R0

€

+ δ1] ⊕ [(R0 >> 5)

€

+ K1]
 R2 = R0

€

+ [(L2 << 4)

€

+ K2] ⊕ [L2

€

+ δ2] ⊕ [(L2 >> 5)

€

+ K3]

 Now the decryption process. The input is the ciphertext (L2, R2), and the output

is the plaintext (L0, R0). Decryption is essentially the same as encryption, with
the subkeys and delta values applied in reverse order. Also note that it is not
necessary to use subtraction because there is an even number of additions in
each equation.

 R0 = R2

€

+ [(L2 << 4)

€

+ K2] ⊕ [L2

€

+ δ2] ⊕ [(L2 >> 5)

€

+ K3]

 L0 = L2

€

+ [(R0 << 4)

€

+ K0] ⊕ [R0

€

+ δ1] ⊕ [(R0 >> 5)

€

+ K1]

-13-

 d.

Delta1

K0

L0

L1

L2 R2

R0

R1

K1

< < 4

> > 5

Delta2

K2

K3

< < 4

> > 5

2.4 To see that the same algorithm with a reversed key order produces the correct
result, consider the Figure 2.2, which shows the encryption process going down
the left-hand side and the decryption process going up the right-hand side for a 16-
round algorithm (the result would be the same for any number of rounds). For
clarity, we use the notation LEi and REi for data traveling through the encryption
algorithm and LDi and RDi for data traveling through the decryption algorithm.

-14-

The diagram indicates that, at every round, the intermediate value of the
decryption process is equal to the corresponding value of the encryption process
with the two halves of the value swapped. To put this another way, let the output
of the ith encryption round be LEi||REi (Li concatenated with Ri). Then the
corresponding input to the (16 – i)th decryption round is RDi||LDi.

 Let us walk through the figure to demonstrate the validity of the preceding
assertions. To simplify the diagram, it is unwrapped, not showing the swap that
occurs at the end of each iteration. But note that the intermediate result at the end
of the ith stage of the encryption process is the 2w-bit quantity formed by
concatenating LEi and REi, and that the intermediate result at the end of the ith
stage of the decryption process is the 2w-bit quantity formed by concatenating LDi
and RDi. After the last iteration of the encryption process, the two halves of the
output are swapped, so that the ciphertext is RE16||LE16. The output of that
round is the ciphertext. Now take that ciphertext and use it as input to the same
algorithm. The input to the first round is RE16||LE16, which is equal to the 32-bit
swap of the output of the sixteenth round of the encryption process.

 Now we would like to show that the output of the first round of the decryption
process is equal to a 32-bit swap of the input to the sixteenth round of the
encryption process. First, consider the encryption process. We see that:

 LE16 = RE15
 RE16 = LE15 ⊕ F(RE15, K16)

 On the decryption side:

 LD1 = RD0 = LE16 = RE15
 RD1 = LD0 ⊕ F(RD0, K16)
 = RE16 ⊕ F(RE15, K16)
 = [LE15 ⊕ F(RE15,K16)] ⊕ F(RE15, K16)

 The XOR has the following properties:

 [A ⊕ B] ⊕ C = A ⊕ [B ⊕ C]
 D ⊕ D = 0
 E ⊕ 0 = E

 Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first

round of the decryption process is LE15||RE15, which is the 32-bit swap of the
input to the sixteenth round of the encryption. This correspondence holds all the
way through the 16 iterations, as is easily shown. We can cast this process in
general terms. For the ith iteration of the encryption algorithm:

 LEi = REi-1
 REi = LEi-1 ⊕ F(REi-1, Ki)

 Rearranging terms:

 REi-1 = LEi
 LEi-1 = REi ⊕ F(REi-1, Ki) = REi ⊕ F(LEi, Ki)

-15-

 Thus, we have described the inputs to the ith iteration as a function of the

outputs, and these equations confirm the assignments shown in the right-hand
side of the following figure.

 Finally, we see that the output of the last round of the decryption process is
RE0||LE0. A 32-bit swap recovers the original plaintext, demonstrating the
validity of the Feistel decryption process.

2.5 Because of the key schedule, the round functions used in rounds 9 through 16 are

mirror images of the round functions used in rounds 1 through 8. From this fact
we see that encryption and decryption are identical. We are given a ciphertext c.
Let m' = c. Ask the encryption oracle to encrypt m'. The ciphertext returned by the
oracle will be the decryption of c.

2.6 For 1 ≤ i ≤ 128, take ci ∈ {0, 1}128 to be the string containing a 1 in position i and

then zeros elsewhere. Obtain the decryption of these 128 ciphertexts. Let m1, m2, . .
. , m128 be the corresponding plaintexts. Now, given any ciphertext c which does
not consist of all zeros, there is a unique nonempty subset of the ci’s which we can
XOR together to obtain c. Let I(c) ⊆ {1, 2, . . . , 128} denote this subset. Observe

€

c = ⊕
i∈I c()

ci = ⊕
i∈I c()

E mi() = E ⊕
i∈I c()

mi










 Thus, we obtain the plaintext of c by computing

€

⊕
i∈I c()

mi . Let 0 be the all-zero

string. Note that 0 = 0 ⊕ 0. From this we obtain E(0) = E(0 ⊕ 0) = E(0) ⊕ E(0) = 0.
Thus, the plaintext of c = 0 is m = 0. Hence we can decrypt every c ∈ {0, 1}128.

2.7 a. Pair Probability
 00 (0.5 – ∂)2 = 0.25 – ∂ + ∂2
 01 (0.5 – ∂) × (0.5 + ∂) = 0.25 – ∂2
 10 (0.5 + ∂) × (0.5 – ∂) = 0.25 – ∂2
 11 (0.5 + ∂)2 = 0.25 + ∂ + ∂2

 b. Because 01 and 10 have equal probability in the initial sequence, in the

modified sequence, the probability of a 0 is 0.5 and the probability of a 1 is 0.5.
 c. The probability of any particular pair being discarded is equal to the

probability that the pair is either 00 or 11, which is 0.5 + 2∂2, so the expected
number of input bits to produce x output bits is x/(0.25 – ∂2).

 d. The algorithm produces a totally predictable sequence of exactly alternating 1's
and 0's.

2.8 a. For the sequence of input bits a1, a2, …, an, the output bit b is defined as:

b = a1 ⊕ a2 ⊕ … ⊕ an

-16-

 b. 0.5 – 2∂2
 c. 0.5 – 8∂4
 d. The limit as n goes to infinity is 0.5.

2.9 Use a key of length 255 bytes. The first two bytes are zero; that is K[0] = K[1] = 0.

Thereafter, we have: K[2] = 255; K[3] = 254; … K[255]= 2.

2.10 a. Simply store i, j, and S, which requires 8 + 8 + (256 × 8) = 2064 bits
 b. The number of states is [256! × 2562] ≈ 21700. Therefore, 1700 bits are required.

2.11 a. By taking the first 80 bits of v || c, we obtain the initialization vector, v. Since v,

c, k are known, the message can be recovered (i.e., decrypted) by computing
RC4(v || k) ⊕ c.

 b. If the adversary observes that vi = vj for distinct i, j then he/she knows that the
same key stream was used to encrypt both mi and mj. In this case, the messages
mi and mj may be vulnerable to the type of cryptanalysis carried out in part (a).

 c. Since the key is fixed, the key stream varies with the choice of the 80-bit v,

which is selected randomly. Thus, after approximately

€

π
2
280 ≈ 240 messages

are sent, we expect the same v, and hence the same key stream, to be used more
than once.

 d. The key k should be changed sometime before 240 messages are sent.

2.12 a. No. For example, suppose C1 is corrupted. The output block P3 depends only

on the input blocks C2 and C3.
 b. An error in P1 affects C1. But since C1 is input to the calculation of C2, C2 is

affected. This effect carries through indefinitely, so that all ciphertext blocks are
affected. However, at the receiving end, the decryption algorithm restores the
correct plaintext for blocks except the one in error. You can show this by
writing out the equations for the decryption. Therefore, the error only effects
the corresponding decrypted plaintext block.

 2.13 In CBC encryption, the input block to each forward cipher operation (except the

first) depends on the result of the previous forward cipher operation, so the
forward cipher operations cannot be performed in parallel. In CBC decryption,
however, the input blocks for the inverse cipher function (i.e., the ciphertext
blocks) are immediately available, so that multiple inverse cipher operations can
be performed in parallel.

2.14 If an error occurs in transmission of ciphertext block Ci, then this error

propagates to the recovered plaintext blocks Pi and Pi+1.

2.15 After decryption, the last byte of the last block is used to determine the amount of

padding that must be stripped off. Therefore there must be at least one byte of
padding.

-17-

2.16 a. Assume that the last block of plaintext is only L bytes long, where L < 2w/8.

The encryption sequence is as follows (The description in RFC 2040 has an
error; the description here is correct.):

 1. Encrypt the first (N – 2) blocks using the traditional CBC technique.
 2. XOR PN–1 with the previous ciphertext block CN–2 to create YN–1.
 3. Encrypt YN–1 to create EN–1.
 4. Select the first L bytes of EN–1 to create CN.
 5. Pad PN with zeros at the end and exclusive-OR with EN–1 to create YN.
 6. Encrypt YN to create CN–1.
 The last two blocks of the ciphertext are CN–1 and CN.
 b. PN–1 = CN–2 ⊕ D(K, [CN || X])

 PN || X = (CN || 00…0) ⊕ D(K, [CN–1])
 PN = left-hand portion of (PN || X)
 where || is the concatenation function

2.17 a. Assume that the last block (PN) has j bits. After encrypting the last full block

(PN–1), encrypt the ciphertext (CN–1) again, select the leftmost j bits of the
encrypted ciphertext, and XOR that with the short block to generate the output
ciphertext.

 b. While an attacker cannot recover the last plaintext block, he can change it
systematically by changing individual bits in the ciphertext. If the last few bits
of the plaintext contain essential information, this is a weakness.

2.18 Nine plaintext characters are affected. The plaintext character corresponding to the

ciphertext character is obviously altered. In addition, the altered ciphertext
character enters the shift register and is not removed until the next eight characters
are processed.

