SOLUTIONS MANUAL

Modern
Semiconductor Devices
for Integrated Circuits

Chenming Calvin Hu

Chapter 2

Mobility

2.1 (a) The mean free time between collisions using Equation (2.2.4b) is

$$
\mu_{n}=\frac{q \tau_{m n}}{m_{n}} \rightarrow \tau_{m n}=\frac{\mu_{n} m_{n}}{q}=2.85 \times 10^{-13} \mathrm{sec}
$$

where μ_{n} is given to be $500 \mathrm{~cm}^{2} / \mathrm{Vsec}\left(=0.05 \mathrm{~m}^{2} / \mathrm{Vsec}\right)$, and m_{n} is assumed to be m_{0}.
(b) We need to find the drift velocity first:

$$
v_{d}=\mu_{n} \boldsymbol{\varepsilon}=50000 \mathrm{~cm} / \mathrm{sec} .
$$

The distance traveled by drift between collisions is

$$
d=v_{d} \tau_{m n}=0.14 \mathrm{~nm} .
$$

2.2 From the thermal velocity example, we know that the approximate thermal velocity of an electron in silicon is
$v_{t h}=\sqrt{\frac{3 k T}{m}}=2.29 \times 10^{7} \mathrm{~cm} / \mathrm{sec}$.
Consequently, the drift velocity $\left(\mathrm{v}_{\mathrm{d}}\right)$ is $(1 / 10) \mathrm{v}_{\mathrm{th}}=2.29 \times 10^{6} \mathrm{~cm} / \mathrm{sec}$, and the time it takes for an electron to traverse a region of $1 \mu \mathrm{~m}$ in width is
$t=\frac{10^{-4} \mathrm{~cm}}{2.29 \times 10^{6} \mathrm{~cm} / \mathrm{sec}}=4.37 \times 10^{-11} \mathrm{sec}$.
Next, we need to find the mean free time between collisions using Equation (2.2.4b):
$\mu_{n}=\frac{q \tau_{m n}}{m_{n}} \rightarrow \tau_{m n}=\frac{\mu_{n} m_{n}}{q}=2.10 \times 10^{-13} \mathrm{sec}$
where μ_{n} is $1400 \mathrm{~cm}^{2} / \mathrm{Vsec}\left(=0.14 \mathrm{~m}^{2} / \mathrm{Vsec}\right.$, for lightly doped silicon, given in Table $2-1$), and m_{n} is $0.26 \mathrm{~m}_{0}$ (given in Table 1-3). So, the average number of collision is

$$
\frac{t}{\tau_{m n}}=207.7 \text { collision } \Rightarrow 207 \text { collisions }
$$

In order to find the voltage applied across the region, we need to calculate the electric field using Equation (2.2.3b):

$$
v_{d}=-\mu_{n} \varepsilon \rightarrow \varepsilon=\frac{v_{d}}{\mu_{n}}=\frac{2.29 \times 10^{6} \mathrm{~cm} / \mathrm{sec}}{1400 \mathrm{~cm}^{2} / V \mathrm{sec}}=1635.71 \mathrm{Vcm}^{-1} .
$$

Then, the voltage across the region is

$$
V=\boldsymbol{\varepsilon} \times \text { width }=1635.71 \mathrm{Vcm}^{-1} \times 10^{-4} \mathrm{~cm}=0.16 \mathrm{~V} .
$$

2.3 (a)

(b) If we combine μ_{1} and μ_{2},
$\log [\mu]$

The total mobility at 300 K is

$$
\mu_{\text {TOTAL }}(300 K)=\left(\frac{1}{\mu_{1}(300 K)}+\frac{1}{\mu_{2}(300 K)}\right)^{-1}=502.55 \mathrm{~cm}^{2} / V \mathrm{sec} .
$$

(c) The applied electric field is

$$
\varepsilon=\frac{V}{l}=\frac{1 V}{1 \mathrm{~mm}}=10 \mathrm{~V} / \mathrm{cm} .
$$

The current density is

$$
J_{\text {ndrift }}=q \mu_{n} n \mathcal{E}=q \mu_{n} N_{d} \mathcal{E}=80.41 \mathrm{~A} / \mathrm{cm}^{2} .
$$

Drift

2.4 (a) From Figure $2-8$ on page 45 , we find the resistivity of the N-type sample doped with $1 \times 10^{16} \mathrm{~cm}^{-3}$ of phosphorous is $0.5 \Omega-\mathrm{cm}$.
(b) The acceptor density (boron) exceeds the donor density (P). Hence, the resulting conductivity is P-type, and the net dopant concentration is $\mathrm{N}_{\text {net }}=\left|\mathrm{N}_{\mathrm{d}}-\mathrm{N}_{\mathrm{a}}\right|=\mathrm{p}=$ $9 \times 10^{16} \mathrm{~cm}^{-3}$ of holes. However, the mobilities of electrons and holes depend on the total dopant concentration, $\mathrm{N}_{\mathrm{T}}=1.1 \times 10^{17} \mathrm{~cm}^{-3}$. So, we have to use Equation (2.2.14) to calculate the resistivity. From Figure $2-5, \mu_{p}\left(\mathrm{~N}_{\mathrm{T}}=1.1 \times 10^{17} \mathrm{~cm}^{-3}\right)$ is $250 \mathrm{~cm}^{2} / \mathrm{Vsec}$. The resistivity is

$$
\rho=\frac{1}{\sigma}=\frac{1}{q N_{n e t} \mu_{p}}=\frac{1}{q \times 9 \times 10^{16} \mathrm{~cm}^{-3} \times\left(250 \mathrm{~cm}^{2} / V \mathrm{sec}\right)}=0.28 \Omega \mathrm{~cm} .
$$

(c) For the sample in part (a),

$$
\begin{gathered}
E_{c}-E_{f}=k T \ln \left(\frac{N_{c}}{N_{d}}\right)=0.026 V \ln \left(\frac{2.8 \times 10^{19} \mathrm{~cm}^{-3}}{10^{16} \mathrm{~cm}^{-3}}\right)=0.21 \mathrm{eV} . \\
\hdashline \begin{array}{cl}
& \mathrm{E}_{\mathrm{c}} \\
\hdashline & \mathrm{E}_{\mathrm{f}}
\end{array} \\
\\
\end{gathered}
$$

For the sample in part (b),
$E_{f}-E_{v}=k T \ln \left(\frac{N_{v}}{N_{\text {net }}}\right)=0.026 \mathrm{~V} \ln \left(\frac{1.04 \times 10^{19} \mathrm{~cm}^{-3}}{9 \times 10^{16} \mathrm{~cm}^{-3}}\right)=0.12 \mathrm{eV}$
$\longrightarrow \quad E_{c}$

2.5 (a) Sample 1: N-type \square Holes are minority carriers.
$\mathrm{p}=\mathrm{n}_{\mathrm{i}}^{2} / \mathrm{N}_{\mathrm{d}}=\left(10^{10} \mathrm{~cm}^{-3}\right)^{2} / 10^{17} \mathrm{~cm}^{-3}=10^{2} \mathrm{~cm}^{-3}$
Sample 2: P-type \square Electrons are minority carriers.
$\mathrm{n}=\mathrm{n}_{\mathrm{i}}^{2} / \mathrm{N}_{\mathrm{a}}=\left(10^{10} \mathrm{~cm}^{-3}\right)^{2} / 10^{15} \mathrm{~cm}^{-3}=10^{5} \mathrm{~cm}^{-3}$
Sample 3: N-type \square Holes are minority carriers.
$\mathrm{p}=\mathrm{n}_{\mathrm{i}}^{2} / \mathrm{N}_{\mathrm{net}}=\left(10^{10} \mathrm{~cm}^{-3}\right)^{2} /\left(9.9 \times 10^{17} \mathrm{~cm}^{-3}\right) \approx 10^{2} \mathrm{~cm}^{-3}$
(b) Sample 1: $\mathrm{N}_{\mathrm{d}}=10^{17} \mathrm{~cm}^{-3}$
$\mu_{\mathrm{n}}\left(\mathrm{N}_{\mathrm{d}}=10^{17} \mathrm{~cm}^{-3}\right)=750 \mathrm{~cm}^{2} / \mathrm{Vsec}$ (from Figure 2-4)
$\sigma=\mathrm{qN}_{\mathrm{d}} \mu_{\mathrm{n}}=12 \Omega^{-1} \mathrm{~cm}^{-1}$
Sample 2: $\mathrm{N}_{\mathrm{a}}=10^{15} \mathrm{~cm}^{-3}$
$\mu_{\mathrm{p}}\left(\mathrm{N}_{\mathrm{a}}=10^{15} \mathrm{~cm}^{-3}\right)=480 \mathrm{~cm}^{2} / \mathrm{Vsec}$ (from Figure 2-4) $\sigma=\mathrm{qN}_{\mathrm{a}} \mu_{\mathrm{p}}=12 \Omega^{-1} \mathrm{~cm}^{-1}$

Sample 3: $\mathrm{N}_{\mathrm{T}}=\mathrm{N}_{\mathrm{d}}+\mathrm{N}_{\mathrm{a}}=1.01 \times 10^{17} \mathrm{~cm}^{-3}$ $\mu_{\mathrm{n}}\left(\mathrm{N}_{\mathrm{T}}=1.01 \times 10^{17} \mathrm{~cm}^{-3}\right.$) $=750 \mathrm{~cm}^{2} / \mathrm{Vsec}$ (from Figure 2-4) $\mathrm{N}_{\text {net }}=\mathrm{N}_{\mathrm{d}}-\mathrm{N}_{\mathrm{a}}=0.99 \times 10^{17} \mathrm{~cm}^{-3}$
$\sigma=\mathrm{qN}_{\text {net }} \mu_{\mathrm{n}}=11.88 \Omega^{-1} \mathrm{~cm}^{-1}$
(c) For Sample 1,

$$
E_{c}-E_{f}=k T \ln \left(\frac{N_{c}}{N_{d}}\right)=0.026 \mathrm{~V} \ln \left(\frac{2.8 \times 10^{19} \mathrm{~cm}^{-3}}{10^{17} \mathrm{~cm}^{-3}}\right)=0.15 \mathrm{eV} .
$$

\qquad

For Sample 2,

$$
\begin{aligned}
& E_{f}-E_{v}=k T \ln \left(\frac{N_{v}}{N_{a}}\right)=0.026 \mathrm{~V} \ln \left(\frac{1.04 \times 10^{19} \mathrm{~cm}^{-3}}{10^{15} \mathrm{~cm}^{-3}}\right)=0.24 \mathrm{eV} . \\
& \begin{array}{c}
\mathrm{E}_{\mathrm{c}} \\
\frac{\mathrm{E}_{\mathrm{i}}}{4} \\
\hdashline \cdots-\cdots \cdot \mathrm{E}_{\mathrm{f}} \\
\mathrm{E}_{\mathrm{v}}
\end{array}
\end{aligned}
$$

For Sample 3,

$$
\begin{aligned}
& E_{c}-E_{f}=k T \ln \left(\frac{N_{c}}{N_{n e t}=N_{d}-N_{a}}\right)=0.026 \mathrm{~V} \ln \left(\frac{2.8 \times 10^{19} \mathrm{~cm}^{-3}}{9.9 \times 10^{16} \mathrm{~cm}^{-3}}\right)=0.15 \mathrm{eV} .
\end{aligned}
$$

2.6 (a) From Figure $2-5, \mu_{\mathrm{n}}\left(\mathrm{N}_{\mathrm{d}}=10^{16} \mathrm{~cm}^{-3}\right.$ of As$)$ is $1250 \mathrm{~cm}^{2} / \mathrm{Vs}$. Using Equation (2.2.14), we find

$$
\rho=\frac{1}{\sigma}=\frac{1}{q n \mu_{n}}=0.5 \Omega \mathrm{~cm} .
$$

(b) The mobility of electrons in the sample depends not on the net dopant concentration but on the total dopant concentration N_{T} :

$$
N_{T}=N_{d}+N_{a}=2 \times 10^{16} \mathrm{~cm}^{-3} .
$$

From Figure 2-5,
$\mu_{n}\left(N_{T}\right)=1140 \mathrm{~cm}^{2} / V s$ and $\mu_{p}\left(N_{T}\right)=390 \mathrm{~cm}^{2} / V s$.
$\mathrm{N}_{\text {net }}=\mathrm{N}_{\mathrm{d}}-\mathrm{N}_{\mathrm{a}}=0$. Hence, we can assume that there are only intrinsic carriers in the sample. Using Equation (2.2.14),

$$
\begin{aligned}
\rho=\frac{1}{\sigma} & =\frac{1}{q n_{i} \mu_{n}+q p_{i} \mu_{p}}=\frac{1}{q n_{i}\left(\mu_{n}+\mu_{p}\right)} \\
& =\frac{1}{q \times 1 \times 10^{10} \mathrm{~cm}^{-3} \times(1140+390)\left(\mathrm{cm}^{2} / V \mathrm{sec}\right)} .
\end{aligned}
$$

The resistivity is $4.08 \times 10^{5} \Omega-\mathrm{cm}$.
(c) Now, the total dopant concentration $\left(\mathrm{N}_{\mathrm{T}}\right)$ is 0 . Using the electron and hole mobilities for lightly doped semiconductors (from Table 2.1), we have

$$
\mu_{n}=1400 \mathrm{~cm}^{2} / V \mathrm{sec} \text { and } \mu_{p}=470 \mathrm{~cm}^{2} / V \mathrm{sec} .
$$

Using Equation (2.2.14),

$$
\begin{aligned}
\rho=\frac{1}{\sigma} & =\frac{1}{q n_{i} \mu_{n}+q p_{i} \mu_{p}}=\frac{1}{q n_{i}\left(\mu_{n}+\mu_{p}\right)} \\
& =\frac{1}{q \times 1 \times 10^{10} \mathrm{~cm}^{-3} \times(1400+470)\left(\mathrm{cm}^{2} / V \mathrm{sec}\right)} .
\end{aligned}
$$

The resistivity is $3.34 \times 10^{5} \Omega-\mathrm{cm}$. The resistivity of the doped sample in part (b) is higher due to ionized impurity scattering.
2.7 It is given that the sample is n-type, and the applied electric field \mathcal{E} is $1000 \mathrm{~V} / \mathrm{cm}$. The hole velocity v_{dp} is $2 \times 10^{5} \mathrm{~cm} / \mathrm{s}$.
(a) From the velocity and the applied electric field, we can calculate the mobility of holes:
$v_{d p}=\mu_{p} \varepsilon, \mu_{p}=v_{d p} / \varepsilon=2 \times 10^{5} / 1000=200 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$.
From Figure 2-5, we find N_{d} is equal to $4.5 \times 10^{17} / \mathrm{cm}^{3}$. Hence,
$n=\mathrm{N}_{\mathrm{d}}=4.5 \times 10^{17} / \mathrm{cm}^{3}$, and $p=n_{i}{ }^{2} / n=n_{i}{ }^{2} / N_{d}=10^{20} / 4.5 \times 10^{17}=222 / \mathrm{cm}^{3}$.
Clearly, the minority carriers are the holes.
(b) The Fermi level with respect to E_{c} is

$$
\mathrm{E}_{\mathrm{f}}=\mathrm{E}_{\mathrm{c}}-\mathrm{kT} \ln \left(\mathrm{~N}_{\mathrm{d}} / \mathrm{N}_{\mathrm{c}}\right)=\mathrm{E}_{\mathrm{c}}-0.107 \mathrm{eV} .
$$

(c) $\mathrm{R}=\rho \mathrm{L} / \mathrm{A}$. Using Equation (2.2.14), we first calculate the resistivity of the sample:
$\sigma=\mathrm{q}\left(\mu_{\mathrm{n}} \mathrm{n}+\mu_{\mathrm{p}} \mathrm{p}\right) \approx \mathrm{q} \mu_{\mathrm{n}} \mathrm{n}=1.6 \times 10^{-19} \times 400 \times 4.5 \times 10^{17}=28.8 / \Omega-\mathrm{cm}$, and $\rho=\sigma^{-1}=0.035 \Omega-\mathrm{cm}$.

Therefore, $\mathrm{R}=(0.035) \times 20 \mu \mathrm{~m} /(10 \mu \mathrm{~m} \times 1.5 \mu \mathrm{~m})=467 \Omega$.

Diffusion

2.8 (a) Using Equation (2.3.2),

$$
J=q n v=q D(d n / d x) .
$$

Therefore,
$v=D(1 / n)(d n / d x)=-D / \lambda .($ constant $)$
(b) $J=q \mu_{n} n \varepsilon=q n v$ and $v=\mu_{n} \varepsilon$.

Therefore, $\varepsilon=-D / \mu_{n} \lambda=-(k T / q) / \lambda$.
(c) $\varepsilon=-1000 \mathrm{~V} / \mathrm{cm}=-0.026 / \lambda$. Solving for λ yields $0.25 \mu \mathrm{~m}$.
2.9 (a) $\varepsilon=-\frac{d V}{d x}=\frac{1}{q} \frac{d E_{v}}{d x}=\frac{1}{q} \frac{\Delta}{L}=\frac{\Delta}{q L}$.
(b) E_{c} is parallel to E_{v}. Hence, we can calculate the electron concentration in terms of E_{c}.
$n(x)=n_{0} e^{-\left(E_{c}(x)-E_{c}(0)\right) / k T} \quad$ where $\quad E_{c}(x)-E_{c}(0)=(\Delta / L) x$.
Therefore, $n(x)=n_{0} e^{-x \Delta / L k T}$.
(c) $J_{n} q n \mu_{n} \varepsilon+q D_{n} \frac{d n}{d x}=0$
$q n_{i} e^{-\Delta x / L k T} \mu_{n} \frac{\Delta}{q L}+q D_{n} n_{i} e^{-\Delta x / L k T}\left(-\frac{\Delta}{L k T}\right)=0$
Therefore,

$$
\frac{\mu_{n}}{q}=\frac{D_{n}}{k T} \Rightarrow D_{n}=\frac{k T}{q} \mu_{n} .
$$

