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Relativity II

2-1 p=

[1-(%/*)]

1.67x107% kg)(0.01c
(a) p= ( 8) ) 5.01x10*" kg-m/s

[1-(001c/c)*

1.67x107% kg )(0.5¢
(b) pz( g)(z ):2.89><10’19 kg-m/s

[1-(05¢/c7 ]’

1.67x10% kg)(0.9¢
(c) p:( ) ):1.o3x10*18 kg-m/s

[1-(09¢/c)]"”

1.00 MeV  1.602x107" ]

d = =5.34x10"% kg-m/s so for (a
@ c 2.998x10° m/s g/ @
5.01x107%" kg-m/s)(100 MeV/c
P:( gzz/ )( / )=9.38 MeV/c
5.34x10™ kg-m/s
Similarly, for (b) p =540 MeV/c and for (c) p=1930 MeV/c.
2-2 (a) Scalar equations can be considered in this case because relativistic and classical
velocities are in the same direction.
2742
p=ymo=190mp=—"" 7= ! 7 :1.90:0{1—(L) } c
|:1—(Z)/C)2:| [1—(U/C)z:| 1.90
=0.85¢

(b) No change, because the masses cancel each other.
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18 CHAPTER 2 RELATIVITY II

2-3 As F is parallel to v, scalar equations are used. Relativistic momentum is given by

mo N o
p=ymo=s————, and relativistic force is given by

[1-(v/c)* ]

F_d_pzd mo

Cdt 4t [1_(v/c)2]1/2

2 3/2 d
2-4 (a) Using the results of Problem 2-3, gE =m (1 —0—2] (d_zt]) , Or
c

dv (qE v* 2 . .
a=—-=|—||1 - . Here v is a function of ¢ and g, E, M, and c are parameters.

dt m c
b As expected; as v — ¢, a — 0 because in general no speed can exceed ¢, the speed of
p g P p
light.
E [4 t gE
O] Separating variables, L:s/z :(q—) dt, or Id—vw =Iq—dt ,
(1—02/c2) m 0(1—02/62) oM
0| _am
YN
(1 v /c ) 0
R LY
(1_02/C2 )1/2 m

() =)
o[l )
o (gEtmo)’
1+(qEt/mc)

02 = (qEet)’
(mc)? +(qE1§)2

Note that the limiting behavior of vas t -0 and t — o is reasonable. As
dx qEct

dt [(mc)z +(th)2]1/2 ’




2-5

2-6
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t

——

= qiE{[(mcf +(gEt)? T/z —mc} .
0

Ast—>0, x—>0,and t > o, x — ct; reasonable results.

This is the case where we use the relativistic form of Newton’s second law, but unlike

dp

Problem 2-3 in which F is parallel to v, here F is perpendicular to vand F =—- so that

F:qva:d—P:i L
dt dt 1—(0/6)2

Assuming that B is perpendicular to the plane of the orbit of g, the force is radially inward,
and we find

d mo
F=¢gvB| , =—<¢—w—"—".
qv |rad1al dt { 1_(U/C)2 }

As the force is perpendicular to v, it does no work on the charge and the magnitude (but not
the direction) of v remains constant in time. Thus,

i{ mo }: m @
| J1-(o/e) ) 1-(ofc)* 4

2
Identifying (%) as the centripetal acceleration where the scalar equation % = (U—]
" Jradial

m " v? qBr 2\
gives quB|_ . = [W} (7) or v= (7j (1 - C—ZJ . Finally, the period T is
- radial
2y 2wy 27 m 1 qB v? 12
TandT: 2/ 22 2 21/2'Asf=?,f=(ﬁj[l_c_zJ ‘
(qBr/m)(1-v Je ) (4B)(1-v Je )

Using Equation 2.4 p=¢ BR=(1.60x10"" C)BR kg-m/C-s=1.60x10""BR kg-m/s.To
convert kg-m/s to MeV/c, use
(10°)(1.60x107" C)(1 J/C)
3.00x10° m/s
(1.60x107" BR kg-m/s)(1 MeV/c)
5.34x107* kg-m/s

1 MeV/c= =5.34x102 kg-m/s, so that

p= —300BR MeV/c.
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27 E=ym, p=ymu; E* =(ym®)'; p? =(ymu)’;
E?—p*c = (yme® )" =(ymu)’ =y {(mc? )" ~(me)? u? |
~ (mc?)’ (1_2‘_;}(1_2‘_3_1 = (mc?)" QED.
B < e st

28 (a) Ep =mc? =(1.67x107 kg)(3x10° m/s)’ =1.503x107'" ] =939.4 MeV (Numerical

round off gives a slightly larger value for the proton mass)

-10
(b) E=ymc* = 150310 T _ 4 81310710 J ~3.01x10° MeV

(1-(0.95¢/c)?)"*

(c) K=E-mc®>=4.813x10"1 J-1.503x107° 1 =3.31x1071° J =2.07x10°> MeV

2-9 (a) When K =(y—1)mc* =5mc*, y=6 and E =y mc* =6(0.5110 MeV) =3.07 MeV .

12 272 12
b) Hl_(g)j andv:{l_(zn :{1_(5)1 _ 0.986¢
V4

272
i) } =0.75¢

210  E=ymc*; 1.5mc* =ymc®; y=15=15=

2-11  (a) K=50x10° eV ; mc* =938.27 MeV;

E=K+mc? =(50x107 eV)+(938.27x10° eV) =50 938.3 MeV
2 2 472

E? :p2c2 +m?*ct :p:{—E C;ﬂ ¢ }
[(50938.3 MeV)? -(938.27 Mev)? |

p= =5.09x10" eV/c
c

5.09%x10" eV
3x108 m/s

- _:,H_H
[1—(2)/C)2 T/z E

 (3x10° m/s){l_[ 938.27 MeV ]2

(1.6x107" J/eV)=271x10"" kg-m/s

12

=2.999 5x10° m/s
50 938.3 MeV
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2-12  (a) When K, =K,, m,c* (y, 1) = mr,c2 (7/;: —1) . In this case m,c* =0.5110 MeV and
mpc2 =938 MeV, y, = [1 —-(0.75)? ]1/ 2 1.5119 . Substituting these values into the

m,e (7=1) _, (05110)(15119-1)

m,,c2 939

1 o\1)2
Y= therefore u, :c(1—7p2)/ =0.023 6¢ .

[1_(”;0/0) J

=1.000 279 . But

first equation, we find y, =1+

Ve |[ m.
(b) When p, =p,, y,m,u, =y, m.u, or u, = == u,,
Vp J\ MMy

15119 [ 0.5110/c? o
U, = — (0.75¢) =6.17x10*c..
1.000279 )| 939/c

2-13  (a) E = 400mc* = y mc?

(b) K = E—mc?® =(400-1)mc? =399mc? =(399)(938.3 MeV) = 3.744x10° MeV

2-14  (a) E=mc?

26
Lo 2T a0 kg
¢ (3.0><108 m/s)

m=

2.0x10%) k
(b) t= W =45x10% s=1.4x10" years
Ax g/s

Vq 2 v q 27112
2-15  (a) K =y mc* —mc* = Vg and so, y* :(1+—2j and —={1—(1+—j }

mc c I’VZC2

12
L L St =04127
¢ 1+(5.0x10* eV/0.511 MeV)

or v=0413c.
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(b) K=%m02 =Vq

Vg2 [2(5.0x10* eV)] "
( j ik St G T R

m 0.511 MeV/c?

(o) The error in using the classical expression is approximately 43 x100% or about 7.5%
in speed.

216 (@) InSth d of the particleis uand p=— "™ Eo M g
a e speed of the particleis u and p = S 5uz E= N
(1—1) Je ) (1—u Je )

E2—p*®)=m?c*. In §', u’:ﬁ,and
( P ) 1—uv/c2

_ mu' _ m[(u—v)/(l—uv/cz)] m[(u—v)/(l—uv/cZ)]
Vi=@/ey  i-[w-v)/(1-u0/?)] (1/¢*) \/1 (u- v)/l uo/* Y’

T’I’ZC2 71’ZC2 mc

E'= =
\/1_(”,/6)2 Jl—[(u—v)/(l—uv/c l/c \/1 (u—- v)/l uv/c

(b) Using these expressions for E’ and p', one obtains (E'2 —-p?c? ) =m?c*, and since

E* —p*c® =m?c*, it follows that, E> —p"c* = E2 —p*c?.

2-17  Am=my, —my, —myy, (an atomic unit of mass, the u, is one-twelfth the mass of the *C atom
or 1.660 54x107> kg)
Am =(226.0254-22.017 5-4.002 6) u=0.0053 u
E=(Am)(931 MeV/u)=(0.0053 u)(931 MeV/u)=4.9 MeV
2-18  (a) The mass difference of the two nuclei is

Am =54927 9 u—549244u=0.0035u
AE = (931 MeV/u)(0.003 5 u) = 3.26 MeV.

(b) The rest energy for an electron is 0.511 MeV. Therefore,

K =326 MeV -0.511 MeV =2.75 MeV .
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219 Am=6m, +6m, —mc =[6(1.007 276)+6(1.008 665)~12] u = 0.095 646 u,,

AE=(931.49 MeV/u)(0.095 646 u)=89.09 MeV .

Therefore the energy per nucleon = % =7.42 MeV .

2-20 Am=m —m, —m, =1.008 665 u—-1.007 276 u—0.000 548 5 u = 8.404x107* u

E=c?(8404x10™" u)=(8404x10"* u)(931.5 MeV/u)=0.783 MeV .

221 Ep

) ) )

O— 0O

K, p(e-) positron

at rest
Ep

Conservation of mass-energy requires K +2mc* =2E where K is the electron’s kinetic energy,
m is the electron’s mass, and E is the gamma ray’s energy.

E= %4‘ mc? =(0.500+0.511) MeV =1.011 MeV .

Conservation of momentum requires that p,. =2pcos@ where p . is the initial momentum

of the electron and p is the gamma ray’s momentum, E_ 1.011 MeV/c . Using
c

E2

2
- = pez, ? + (mcz) where E - is the electron’s total energy, E- =K+ mc?, yields
e

2
) - 1 ok J(1.00)% +2(1.00)(0.511) MeV _ 1422 MeV/e.
C C

Finally, cos@ = Z‘f’ =0.703; 0 =45.3°.
p

2-22  (a) Using the results of Problem 2-6 and substituting numerical values

p(in MeV/c) = 300BR = (300)(2.00 T)(0.343 m) = 206 MeV/c.
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2-23

2-24

CHAPTER 2 RELATIVITY II

(b)

Since the momentum of the K is zero before the decay, conservation of momentum
requires the pion momenta to be equal in magnitude and opposite in direction. The

p mu/«/l—uZ/cz u u_pe

pion’s speed u may be found by noting that — = =— Oor —
E mcz/\ll—uz/cz c? c E

where p is the pion momentum and E is the pion’s total energy. Thus for either pion,

c c
u_pe_ P =T where m is the pion’s mass. Finally,

¢ E [p2c2+(mc2)]

L 206 MeV =0.827.

¢ /(206 MeV)? +(104 MeV)?

Conservation of mass-energy requires that E ., =2E where E, is the total energy of

a pion. As the K pion decays at rest,

Ego =myoc® =2,p?c? +(mc® ) =24(206)2 +(140) MeV =498 MeV,

or m 498 MeV/ .

K =

In this problem, M is the mass of the initial particle, #y; is the mass of the lighter fragment, v,
is the speed of the lighter fragment, m,, is the mass of the heavier fragment, and v, is the

speed of the heavier fragment. Conservation of mass-energy leads to

mc* e

2= +
e e

Mc

From the conservation of momentum one obtains

(m,)(0.987¢)(6.22) = (1, ) (0.868¢) (2.01)
~ (m,)(0.868¢)(2.01)
©(0.987)(6.22)

1 = 0284mh

Substituting in this value and numerical quantities in the mass-energy conservation equation,
one obtains 3.34x107% kg = 6.22m; +2.01m, which in turn gives

3.34x10% k
3.34x10"7 kg =(6.22)(0.284) m, +2.01m, or my, = — 8 _884x10 kg and

3.78

m, =(0.284)m, =2.51x107% kg.

The moving observer sees the charge as stationary, so she says it feels no magnetic force.

q(E+vxB)=g(E'+zero), E'=E+vxB.
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2-25  (a) The x component of the gravitational force between a light particle of mass m and the
M. GMgmb
Sunis given by F, = zsm sing = —sm3/2 . The change in momentum in the x
r ( b2 + yz )

0 GMgmb
direction is given by Ap, = [ Fdt= | s"7__dt . To convert dt to dy, assume the

i - (b2 + y2 )3/2
deflection is very small and that the position of the light particle is given by vy =—ct

d
for x=0.Thus dt=—"7 and we get
c

o0

Ap. — GMgmb —* dy _ 2GMgmb *¥ dy _ 2GMgmb y
Pr =7 C 2. 2V\32 c 2. 2\32 c 2/ 2 12\12
+oo(b +y) 0<b +y) b(y +b) o
B 2GMSmb( 1 j_ 2GMgm
- c ) b
A
From Figure P2.25(b), Hzﬁ so we find 0= 2GMsm = 2GMs .
me cb(me)  bc?

(b) For b=Rs =6.96x10° m and Mg =1.99x10% kg

2(6.67x10"" N-m?/kg?)(1.99x10% k
0= ( e g)=4.24><10_6 rad =2.43x107* deg

(6.96x10° m)(3.00x10° m/s)’

900 kgc” 2 [ 22
2-26  Energy conservation: ;2 1400 kgc? + g _ M ; 3108 kg, |1 _v_2 =M.
c

Ji-0 Ji—085? \1-02/

900 kg (0.85 ’ 2
Momentum conservation: 0+ 8(085) = MZ/ = 1452 kg, [1 _0_2 = Mo .
c Cc

V1-085%  {1-v ¢
1452
(a) Dividing gives 222 0467 v=0.467c .
c 3108

(b) Now by substitution 3108 kgv1-0.467> = M =2.75x10° kg.

2-27  If the energy required to remove a mass m from the surface is equal to its rest energy mc?,
GMgm GM; (6:67x10™" N-m*/kg?)(1.99x10% kg)

=mc? and Rg = = 5
R ¢ (3.00x10° m/s)

then >

R, =1.47x10° m=1.47 km.

2-28  (a) The charged battery stores energy

E=2"t=(1.20 J/s)(50 min)(60 s/min)=3600 ]
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2-29

2-30

CHAPTER 2 RELATIVITY II

3600
so its mass excess is Am = E_ —] =4.00x10™" kg

c? (3 x10% m/s)

Am  4.00x107 kg

3 =1.60x10""? too small to measure.
m 25x107° kg

(b)
The energy of the first fragment is given by Ef = pic* + (mlc2 )2 =(1.75 MeV)? +(1.00 MeV)?;
E, =2.02 MeV . For the second, E5 =(2.00 MeV)? +(1.50 MeV)?; E, =2.50 MeV .

(a) Energy is conserved, so the unstable object had E =4.52 MeV . Each component of
momentum is conserved, so the original object moved with

s 2 o (175MeV\* [2.00 MeV\?
psz+py=( + )

c c

Then for (4.52 MeV)* =(1.75 MeV)” +(2.00 MeV)* +(mc’ )2 ; m=3.65MeV/c? .

2
b Now E =y mc® gives 452 MeV = ——— 365 MeV; 1 = 0.654 and
& 2
1- vz/c2 ¢

v=0.589c.

Take the two colliding protons as the system

E, = K +mc? C P1 O

E, = mc?

initial
E} =pic® +m?ct @_ff
p2 = 0

final

In the final state, E; = K; + Mc*: Ef = pic> + M*c*.

By energy conservation, E; +E, =E, so : p p :

E? +2EE, + E3 = E? Initial (beams)
pic? +m*ct +2(I<+mcz)mc2 +m*ct = pic? + M3t @3
By conservation of momentum, p; =p;. Final (beams)
2 4
Then M?c* = 2Kmc? +4m*c* = 4KLC+4mZC4

2mc?



MODERN PHYSICS 27

Mc? =2mc? /1+ Kz .
2mc
2

By contrast, for colliding beams in the original state, we have E; = K+mc® and E, = K +mc?*.

In the final state, E; = Mc?

E,+E, = E;: K+mc* +K+mc* = Mc?

Mc? +2mc? (1+ K > j
2mc

2-31 Conservation of momentum y mu :

mu m(-u) My 2mu

+ = = .
\/1—uZ/c2 3\/1—uz/c2 \/1—vf2/c2 3\/1—u2/c2

Conservation of energy y mc*:

me? 2 Mc? 4mc?

mc B _ '
\/1—142/C2 +3\/l—u2/c2 _Jl—vf/cz 3\/1—uz/c2

2
To start solving we can divide: v; = ZM = % . Then

M _ 4m _ M
J1-2 /4 312/ (1)2)[4-12/c?
M= 2mw[4—u2/02

3«/1—u2/c2

. 4m . . .
Note that when v << ¢, this reduces to M = 5 in agreement with the classical result.

_energy 27

2-32 a = =2.00x10"% W
@ P At 100x107" s

(b) The kinetic energy of one electron with v=0.999 9¢ is
1

J1-0.999 92

=572x10712 ]

(7 =Dymc? { ](9.11x10—31 kg)(3x10° m/s)’ =69.7(8.20x107 J)
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Then we require % 2])=N (5.72 x10712 ])

2x107* ]

_ 7
:m—350xlo .

2-33  The energy that arrives in one year is

E=o At=(179x10" J/s)(3.16x10” s)=5.66x10** J.

24
Thus, mo E__ 5:66x10 ]

=6.28x10” kg .
c? (3.00><108 rn/s)2
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