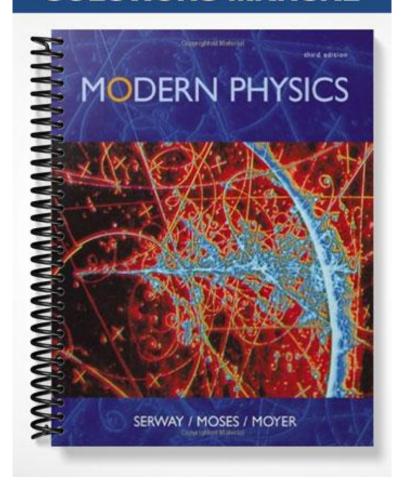
SOLUTIONS MANUAL



2

Relativity II

2-1
$$p = \frac{mv}{\left[1 - \left(v^2/c^2\right)\right]^{1/2}}$$

(a)
$$p = \frac{\left(1.67 \times 10^{-27} \text{ kg}\right) (0.01c)}{\left[1 - \left(0.01c/c\right)^2\right]^{1/2}} = 5.01 \times 10^{-21} \text{ kg} \cdot \text{m/s}$$

(b)
$$p = \frac{(1.67 \times 10^{-27} \text{ kg})(0.5c)}{\left[1 - (0.5c/c)^2\right]^{1/2}} = 2.89 \times 10^{-19} \text{ kg} \cdot \text{m/s}$$

(c)
$$p = \frac{(1.67 \times 10^{-27} \text{ kg})(0.9c)}{\left[1 - (0.9c/c)^2\right]^{1/2}} = 1.03 \times 10^{-18} \text{ kg} \cdot \text{m/s}$$

(d)
$$\frac{1.00 \text{ MeV}}{c} = \frac{1.602 \times 10^{-13} \text{ J}}{2.998 \times 10^8 \text{ m/s}} = 5.34 \times 10^{-22} \text{ kg} \cdot \text{m/s so for (a)}$$

$$p = \frac{(5.01 \times 10^{-21} \text{ kg} \cdot \text{m/s})(100 \text{ MeV/}c)}{5.34 \times 10^{-22} \text{ kg} \cdot \text{m/s}} = 9.38 \text{ MeV/}c$$

Similarly, for (b) p = 540 MeV/c and for (c) p = 1930 MeV/c.

2-2 (a) Scalar equations can be considered in this case because relativistic and classical velocities are in the same direction.

$$p = \gamma \, mv = 1.90 \, mv = \frac{mv}{\left[1 - \left(v/c\right)^2\right]^{1/2}} \Rightarrow \frac{1}{\left[1 - \left(v/c\right)^2\right]^{1/2}} = 1.90 \Rightarrow v = \left[1 - \left(\frac{1}{1.90}\right)^2\right]^{1/2} c$$

$$= 0.85c$$

(b) No change, because the masses cancel each other.

2-3 As **F** is parallel to **v**, scalar equations are used. Relativistic momentum is given by $p = \gamma mv = \frac{mv}{\left[1 - (v/c)^2\right]^{1/2}}, \text{ and relativistic force is given by}$

$$F = \frac{dp}{dt} = \frac{d}{dt} \left\{ \frac{mv}{\left[1 - (v/c)^2\right]^{1/2}} \right\}$$
$$F = \frac{dp}{dt} = \frac{m}{\left[1 - \left(v^2/c^2\right)\right]^{3/2}} \left(\frac{dv}{dt}\right)$$

- 2-4 (a) Using the results of Problem 2-3, $qE = m\left(1 \frac{v^2}{c^2}\right)^{-3/2} \left(\frac{dv}{dt}\right)$, or $a = \frac{dv}{dt} = \left(\frac{qE}{m}\right)\left(1 \frac{v^2}{c^2}\right)^{3/2}$. Here v is a function of t and q, E, M, and c are parameters.
 - (b) As expected; as $v \rightarrow c$, $a \rightarrow 0$ because in general no speed can exceed c, the speed of light.
 - (c) Separating variables, $\frac{dv}{\left(1-v^2/c^2\right)^{3/2}} = \left(\frac{qE}{m}\right)dt$, or $\int_0^v \frac{dv}{\left(1-v^2/c^2\right)^{3/2}} = \int_0^t \frac{qE}{m}dt$,

$$\frac{v}{(1-v^{2}/c^{2})^{1/2}} \bigg|_{0}^{v} = \frac{qEt}{m}$$

$$\frac{v^{2}}{(1-v^{2}/c^{2})^{1/2}} = \left(\frac{qEt}{m}\right)^{2} = \frac{qEt}{m}$$

$$v^{2} = \left(\frac{qEt}{m}\right)^{2} - \left(\frac{v^{2}}{c^{2}}\right)\left(\frac{qEt}{m}\right)^{2}$$

$$v^{2} \left[1 + \left(\frac{qEt}{m}\right)^{2}\right] = \left(\frac{qEt}{m}\right)^{2}$$

$$v^{2} = \frac{(qEt/mc)^{2}}{1 + (qEt/mc)^{2}}$$

$$v^{2} = \frac{(qEct)^{2}}{(mc)^{2} + (qEt)^{2}}$$

Note that the limiting behavior of v as $t \to 0$ and $t \to \infty$ is reasonable. As

$$v = \frac{dx}{dt} = \frac{qEct}{\left[(mc)^2 + (qEt)^2 \right]^{1/2}},$$

$$x = qEc \left[(mc)^2 + (qEt)^2 \right]^{1/2} \left[\frac{1}{(qE)^2} \right]_0^t = \frac{c}{qE} \left\{ \left[(mc)^2 + (qEt)^2 \right]^{1/2} - mc \right\}.$$

As $t \to 0$, $x \to 0$, and $t \to \infty$, $x \to ct$; reasonable results.

2-5 This is the case where we use the relativistic form of Newton's second law, but unlike Problem 2-3 in which **F** is parallel to **v**, here **F** is perpendicular to **v** and $\mathbf{F} = \frac{d\mathbf{p}}{dt}$ so that

$$\mathbf{F} = q\mathbf{v} \times \mathbf{B} = \frac{d\mathbf{p}}{dt} = \frac{d}{dt} \left\{ \frac{mv}{\sqrt{1 - (v/c)^2}} \right\}.$$

Assuming that **B** is perpendicular to the plane of the orbit of q, the force is radially inward, and we find

$$\mathbf{F} = q\mathbf{v}\mathbf{B}\big|_{\text{radial}} = \frac{d}{dt} \left\{ \frac{mv}{\sqrt{1 - (v/c)^2}} \right\}.$$

As the force is perpendicular to \mathbf{v} , it does no work on the charge and the magnitude (but not the direction) of \mathbf{v} remains constant in time. Thus,

$$\frac{d}{dt} \left\{ \frac{mv}{\sqrt{1 - (v/c)^2}} \right\} = \frac{m}{\sqrt{1 - (v/c)^2}} \frac{dv}{dt}.$$

 $\begin{aligned} & \text{Identifying } \left(\frac{dv}{dt} \right) \text{ as the centripetal acceleration where the scalar equation } \frac{dv}{dt} = \left(\frac{v^2}{r} \right)_{\text{radial}} \\ & \text{gives } \left. qvB \right|_{\text{radial}} = \left[\frac{m}{1 - v^2/c^2} \right]^{1/2} \left(\frac{v^2}{r} \right)_{\text{radial}} \text{ or } v = \left(\frac{qBr}{m} \right) \left(1 - \frac{v^2}{c^2} \right)^{1/2} \text{. Finally, the period } T \text{ is } \\ & \frac{2\pi \, r}{v} \text{ and } T = \frac{2\pi \, r}{\left(qBr/m \right) \left(1 - v^2/c^2 \right)^{1/2}} = \frac{2\pi \, m}{\left(qB \right) \left(1 - v^2/c^2 \right)^{1/2}} \text{. As } f = \frac{1}{T} \text{, } f = \left(\frac{qB}{2\pi \, m} \right) \left(1 - \frac{v^2}{c^2} \right)^{1/2} \text{.} \end{aligned}$

Using Equation 2.4 $p = e^-BR = (1.60 \times 10^{-19} \text{ C})BR \text{ kg} \cdot \text{m/C} \cdot \text{s} = 1.60 \times 10^{-19} BR \text{ kg} \cdot \text{m/s}$. To convert kg·m/s to MeV/c, use

1 MeV/
$$c = \frac{(10^6)(1.60 \times 10^{-19} \text{ C})(1 \text{ J/C})}{3.00 \times 10^8 \text{ m/s}} = 5.34 \times 10^{-22} \text{ kg} \cdot \text{m/s}$$
, so that
$$p = \frac{(1.60 \times 10^{-19} BR \text{ kg} \cdot \text{m/s})(1 \text{ MeV/}c)}{5.34 \times 10^{-22} \text{ kg} \cdot \text{m/s}} = 300 BR \text{ MeV/}c.$$

2-7
$$E = \gamma mc^2$$
, $p = \gamma mu$; $E^2 = (\gamma mc^2)^2$; $p^2 = (\gamma mu)^2$;

$$E^{2} - p^{2}c^{2} = (\gamma mc^{2})^{2} - (\gamma mu)^{2}c^{2} = \gamma^{2} \left\{ (mc^{2})^{2} - (mc)^{2}u^{2} \right\}$$
$$= (mc^{2})^{2} \left(1 - \frac{u^{2}}{c^{2}} \right) \left(1 - \frac{u^{2}}{c^{2}} \right)^{-1} = (mc^{2})^{2} \text{ Q.E.D.}$$
$$E^{2} = p^{2}c^{2} + (mc^{2})^{2}$$

2-8 (a)
$$E_R = mc^2 = (1.67 \times 10^{-27} \text{ kg})(3 \times 10^8 \text{ m/s})^2 = 1.503 \times 10^{-10} \text{ J} = 939.4 \text{ MeV}$$
 (Numerical round off gives a slightly larger value for the proton mass)

(b)
$$E = \gamma mc^2 = \frac{1.503 \times 10^{-10} \text{ J}}{\left(1 - \left(0.95c/c\right)^2\right)^{1/2}} = 4.813 \times 10^{-10} \text{ J} \approx 3.01 \times 10^3 \text{ MeV}$$

(c)
$$K = E - mc^2 = 4.813 \times 10^{-10} \text{ J} - 1.503 \times 10^{-10} \text{ J} = 3.31 \times 10^{-10} \text{ J} = 2.07 \times 10^3 \text{ MeV}$$

2-9 (a) When
$$K = (\gamma - 1) mc^2 = 5mc^2$$
, $\gamma = 6$ and $E = \gamma mc^2 = 6(0.5110 \text{ MeV}) = 3.07 \text{ MeV}$.

(b)
$$\frac{1}{\gamma} = \left[1 - \left(\frac{v}{c}\right)^2\right]^{1/2} \text{ and } v = c \left[1 - \left(\frac{1}{\gamma}\right)^2\right]^{1/2} = c \left[1 - \left(\frac{1}{6}\right)^2\right]^{1/2} = 0.986c$$

$$2-10 \qquad E = \gamma \, mc^2 \; ; \; 1.5 mc^2 = \gamma \, mc^2 \; ; \; \gamma = 1.5 \Rightarrow 1.5 = \frac{1}{\left\lceil 1 - \left(v^2/c^2\right)\right\rceil^{1/2}} \; ; \; v = c \left[1 - \left(\frac{1}{1.5}\right)^2\right]^{1/2} = 0.75 c$$

2-11 (a)
$$K = 50 \times 10^9 \text{ eV}$$
; $mc^2 = 938.27 \text{ MeV}$;

$$E = K + mc^{2} = (50 \times 10^{9} \text{ eV}) + (938.27 \times 10^{6} \text{ eV}) = 50 938.3 \text{ MeV}$$

$$E^{2} = p^{2}c^{2} + m^{2}c^{4} \Rightarrow p = \left[\frac{E^{2} - m^{2}c^{4}}{c^{2}}\right]^{1/2}$$

$$p = \frac{\left[(50 938.3 \text{ MeV})^{2} - (938.27 \text{ MeV})^{2}\right]^{1/2}}{c} = 5.09 \times 10^{10} \text{ eV/}c$$

$$= \frac{5.09 \times 10^{10} \text{ eV}}{3 \times 10^{8} \text{ m/s}} (1.6 \times 10^{-19} \text{ J/eV}) = 2.71 \times 10^{-17} \text{ kg} \cdot \text{m/s}$$

(b)
$$E = \gamma mc^{2} = \frac{mc^{2}}{\left[1 - (v/c)^{2}\right]^{1/2}} \Rightarrow v = c \left[1 - \left(\frac{mc^{2}}{E}\right)^{2}\right]^{1/2}$$
$$= \left(3 \times 10^{8} \text{ m/s}\right) \left[1 - \left(\frac{938.27 \text{ MeV}}{50 \text{ 938.3 MeV}}\right)^{2}\right]^{1/2} = 2.999 \text{ } 5 \times 10^{8} \text{ m/s}$$

- 2-12 (a) When $K_e = K_p$, $m_e c^2 \left(\gamma_e 1\right) = m_p c^2 \left(\gamma_p 1\right)$. In this case $m_e c^2 = 0.5110$ MeV and $m_p c^2 = 938$ MeV, $\gamma_e = \left[1 (0.75)^2\right]^{1/2} = 1.5119$. Substituting these values into the first equation, we find $\gamma_p = 1 + \frac{m_e c^2 \left(\gamma 1\right)}{m_p c^2} = 1 + \frac{\left(0.5110\right)\left(1.5119 1\right)}{939} = 1.000$ 279. But $\gamma_p = \frac{1}{\left[1 \left(u_p/c\right)^2\right]^{1/2}}$; therefore $u_p = c\left(1 \gamma_p^{-2}\right)^{1/2} = 0.023$ 6c.
 - (b) When $p_e = p_p$, $\gamma_p m_p u_p = \gamma_e m_e u_e$ or $u_p = \left(\frac{\gamma_e}{\gamma_p}\right) \left(\frac{m_e}{m_p}\right) u_e$,

$$u_p = \left(\frac{1.5119}{1.000279}\right) \left[\frac{0.5110/c^2}{939/c^2}\right] (0.75c) = 6.17 \times 10^{-4} c.$$

- 2-13 (a) $E = 400mc^{2} = \gamma mc^{2}$ $\gamma = \left(1 \frac{v^{2}}{c^{2}}\right)^{-1/2} = 400$ $\left(1 \frac{v^{2}}{c^{2}}\right) = \left(\frac{1}{400}\right)^{2}$ $\frac{v}{c} = \left[1 \frac{1}{400^{2}}\right]^{1/2}$ v = 0.999997c
 - (b) $K = E mc^2 = (400 1) mc^2 = 399 mc^2 = (399)(938.3 \text{ MeV}) = 3.744 \times 10^5 \text{ MeV}$
- 2-14 (a) $E = mc^2$ $m = \frac{E}{c^2} = \frac{4 \times 10^{26} \text{ J}}{(3.0 \times 10^8 \text{ m/s})^2} = 4.4 \times 10^9 \text{ kg}$
 - (b) $t = \frac{(2.0 \times 10^{30}) \text{ kg}}{4.4 \times 10^9 \text{ kg/s}} = 4.5 \times 10^{20} \text{ s} = 1.4 \times 10^{13} \text{ years}$
- 2-15 (a) $K = \gamma mc^2 mc^2 = Vq \text{ and so, } \gamma^2 = \left(1 + \frac{Vq}{mc^2}\right)^2 \text{ and } \frac{v}{c} = \left\{1 \left(1 + \frac{Vq}{mc^2}\right)^{-2}\right\}^{1/2}$

$$\frac{v}{c} = \left\{ 1 - \frac{1}{1 + (5.0 \times 10^4 \text{ eV/0.511 MeV})^2} \right\}^{1/2} = 0.4127$$

or v = 0.413c.

(b)
$$K = \frac{1}{2}mv^2 = Vq$$

$$v = \left(\frac{2Vq}{m}\right)^{1/2} = \left\{\frac{2(5.0 \times 10^4 \text{ eV})}{0.511 \text{ MeV}/c^2}\right\}^{1/2} = 0.442c$$

- (c) The error in using the classical expression is approximately $\frac{3}{40} \times 100\%$ or about 7.5% in speed.
- 2-16 (a) In *S* the speed of the particle is *u* and $p = \frac{mu}{\left(1 v^2/c^2\right)^{1/2}}$, $E = \frac{mc^2}{\left(1 u^2/c^2\right)^{1/2}}$, and $\left(E^2 p^2c^2\right) = m^2c^4$. In *S'*, $u' = \frac{u v}{1 uv/c^2}$, and

$$p' = \frac{mu'}{\sqrt{1 - (u'/c)^2}} = \frac{m\left[(u - v)/(1 - uv/c^2)\right]}{\sqrt{1 - \left[(u - v)/(1 - uv/c^2)\right]^2 \left(1/c^2\right)}} = \frac{m\left[(u - v)/(1 - uv/c^2)\right]}{\sqrt{1 - (u - v)^2/(1 - uv/c^2)^2}}$$

$$E' = \frac{mc^2}{\sqrt{1 - (u'/c)^2}} = \frac{mc^2}{\sqrt{1 - \left[(u - v)/(1 - uv/c^2)\right]^2 \left(1/c^2\right)}} = \frac{mc^2}{\sqrt{1 - (u - v)^2/(1 - uv/c^2)^2}}$$

- (b) Using these expressions for E' and p', one obtains $\left(E'^2 p'^2c^2\right) = m^2c^4$, and since $E^2 p^2c^2 = m^2c^4$, it follows that, $E'^2 p'^2c^2 = E^2 p^2c^2$.
- 2-17 $\Delta m = m_{\text{Ra}} m_{\text{Rn}} m_{\text{He}}$ (an atomic unit of mass, the u, is one-twelfth the mass of the ^{12}C atom or $1.660~54 \times 10^{-27}~\text{kg}$)

$$\Delta m = (226.025 4 - 22.017 5 - 4.002 6) u = 0.005 3 u$$

 $E = (\Delta m)(931 \text{ MeV/u}) = (0.005 3 u)(931 \text{ MeV/u}) = 4.9 \text{ MeV}$

2-18 (a) The mass difference of the two nuclei is

$$\Delta m = 54.927 \ 9 \ u - 54.924 \ 4 \ u = 0.003 \ 5 \ u$$

 $\Delta E = (931 \ MeV/u)(0.003 \ 5 \ u) = 3.26 \ MeV.$

(b) The rest energy for an electron is 0.511 MeV. Therefore,

$$K = 3.26 \text{ MeV} - 0.511 \text{ MeV} = 2.75 \text{ MeV}$$
.

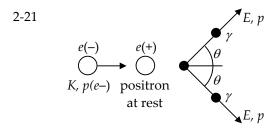
2-19
$$\Delta m = 6m_p + 6m_n - m_C = [6(1.007\ 276) + 6(1.008\ 665) - 12] u = 0.095\ 646\ u$$
,

$$\Delta E = (931.49 \text{ MeV/u})(0.095646 \text{ u}) = 89.09 \text{ MeV}$$
.

Therefore the energy per nucleon $=\frac{89.09 \text{ MeV}}{12} = 7.42 \text{ MeV}$.

2-20
$$\Delta m = m - m_p - m_e = 1.008 665 \text{ u} - 1.007 276 \text{ u} - 0.000 548 5 \text{ u} = 8.404 \times 10^{-4} \text{ u}$$

 $E = c^2 \left(8.404 \times 10^{-4} \text{ u} \right) = \left(8.404 \times 10^{-4} \text{ u} \right) \left(931.5 \text{ MeV/u} \right) = 0.783 \text{ MeV}.$



Conservation of mass-energy requires $K + 2mc^2 = 2E$ where K is the electron's kinetic energy, M is the electron's mass, and E is the gamma ray's energy.

$$E = \frac{K}{2} + mc^2 = (0.500 + 0.511) \text{ MeV} = 1.011 \text{ MeV}.$$

Conservation of momentum requires that $p_{e^-} = 2p\cos\theta$ where p_{e^-} is the initial momentum of the electron and p is the gamma ray's momentum, $\frac{E}{c} = 1.011 \text{ MeV}/c$. Using

 $E_{e^-}^2 = p_{e^-}^2 c^2 + (mc^2)^2$ where E_{e^-} is the electron's total energy, $E_{e^-} = K + mc^2$, yields

$$p_{e^-} = \frac{1}{c} \sqrt{K^2 + 2Kmc^2} = \frac{\sqrt{(1.00)^2 + 2\,(1.00)\,(0.511)}~\text{MeV}}{c} = 1.422~\text{MeV}/c~.$$

Finally, $\cos \theta = \frac{p_{e^{-}}}{2p} = 0.703$; $\theta = 45.3^{\circ}$.

2-22 (a) Using the results of Problem 2-6 and substituting numerical values

$$p(\text{in MeV}/c) = 300BR = (300)(2.00 \text{ T})(0.343 \text{ m}) = 206 \text{ MeV}/c$$
.

Since the momentum of the K^0 is zero before the decay, conservation of momentum requires the pion momenta to be equal in magnitude and opposite in direction. The

pion's speed
$$u$$
 may be found by noting that $\frac{p}{E} = \frac{mu/\sqrt{1 - u^2/c^2}}{mc^2/\sqrt{1 - u^2/c^2}} = \frac{u}{c^2}$ or $\frac{u}{c} = \frac{pc}{E}$

where p is the pion momentum and E is the pion's total energy. Thus for either pion,

$$\frac{u}{c} = \frac{pc}{E} = \frac{pc}{\left[p^2c^2 + \left(mc^2\right)^2\right]^{1/2}}$$
 where *m* is the pion's mass. Finally,

$$\frac{u}{c} = \frac{206 \text{ MeV}}{\sqrt{(206 \text{ MeV})^2 + (104 \text{ MeV})^2}} = 0.827.$$

(b) Conservation of mass-energy requires that $E_{K^0} = 2E$ where E_{K^0} is the total energy of a pion. As the K^0 pion decays at rest,

$$E_{\rm K^0}=m_{\rm K^0}c^2=2\sqrt{p^2c^2+\left(mc^2\right)^2}=2\sqrt{(206)^2+(140)^2}~{\rm MeV}=498~{\rm MeV}\,,$$
 or $m_{\rm K^0}=498~{\rm MeV}/c^2$.

2-23 In this problem, M is the mass of the initial particle, m_l is the mass of the lighter fragment, v_l is the speed of the lighter fragment, m_h is the mass of the heavier fragment, and v_h is the speed of the heavier fragment. Conservation of mass-energy leads to

$$Mc^2 = \frac{m_l c^2}{\sqrt{1 - v_l^2/c^2}} + \frac{m_h c^2}{\sqrt{1 - v_h^2/c^2}}$$

From the conservation of momentum one obtains

$$(m_l)(0.987c)(6.22) = (m_h)(0.868c)(2.01)$$

$$m_l = \frac{(m_h)(0.868c)(2.01)}{(0.987)(6.22)} = 0.284m_h$$

Substituting in this value and numerical quantities in the mass-energy conservation equation, one obtains $3.34 \times 10^{-27} \text{ kg} = 6.22 m_l + 2.01 m_h$ which in turn gives

$$3.34 \times 10^{-27} \text{ kg} = (6.22)(0.284) m_l + 2.01 m_h \text{ or } m_h = \frac{3.34 \times 10^{-27} \text{ kg}}{3.78} = 8.84 \times 10^{-28} \text{ kg and}$$

 $m_l = (0.284) m_h = 2.51 \times 10^{-28} \text{ kg}$.

2-24 The moving observer sees the charge as stationary, so she says it feels no magnetic force.

$$q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) = q(\mathbf{E}' + \text{zero}), \ \mathbf{E}' = \mathbf{E} + \mathbf{v} \times \mathbf{B}.$$

2-25 (a) The x component of the gravitational force between a light particle of mass m and the Sun is given by $F_x = \frac{GM_Sm}{r^2}\sin\phi = \frac{GM_Smb}{\left(b^2+y^2\right)^{3/2}}$. The change in momentum in the x direction is given by $\Delta p_x = \int\limits_{-\infty}^{\infty} F_x dt = \int\limits_{-\infty}^{\infty} \frac{GM_Smb}{\left(b^2+y^2\right)^{3/2}} dt$. To convert dt to dy, assume the deflection is very small and that the position of the light particle is given by y=-ct for x=0. Thus $dt=-\frac{dy}{c}$ and we get

$$\Delta p_{x} = -\frac{GM_{S}mb}{c} \int_{+\infty}^{-\infty} \frac{dy}{\left(b^{2} + y^{2}\right)^{3/2}} = \frac{2GM_{S}mb}{c} \int_{0}^{+\infty} \frac{dy}{\left(b^{2} + y^{2}\right)^{3/2}} = \frac{2GM_{S}mb}{c} \frac{y}{b^{2}\left(y^{2} + b^{2}\right)^{1/2}} \bigg|_{0}^{\infty}$$

$$= \frac{2GM_{S}mb}{c} \left(\frac{1}{b^{2}}\right) = \frac{2GM_{S}m}{cb}$$

From Figure P2.25(b), $\theta \cong \frac{\Delta p_x}{mc}$ so we find $\theta \cong \frac{2GM_Sm}{cb(mc)} = \frac{2GM_S}{bc^2}$.

(b) For $b = R_S = 6.96 \times 10^8$ m and $M_S = 1.99 \times 10^{30}$ kg

$$\theta = \frac{2(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)(1.99 \times 10^{30} \text{ kg})}{(6.96 \times 10^8 \text{ m})(3.00 \times 10^8 \text{ m/s})^2} = 4.24 \times 10^{-6} \text{ rad} = 2.43 \times 10^{-4} \text{ deg}$$

- - (a) Dividing gives $\frac{v}{c} = \frac{1452}{3108} = 0.467$ v = 0.467c
 - (b) Now by substitution $3108 \text{ kg} \sqrt{1 0.467^2} = M = 2.75 \times 10^3 \text{ kg}$.
- 2-27 If the energy required to remove a mass m from the surface is equal to its rest energy mc^2 , then $\frac{GM_{\rm S}m}{R_g}=mc^2$ and $R_g=\frac{GM_{\rm S}}{c^2}=\frac{\left(6.67\times10^{-11}~{\rm N\cdot m^2/kg^2}\right)\left(1.99\times10^{30}~{\rm kg}\right)}{\left(3.00\times10^8~{\rm m/s}\right)^2}$, $R_g=1.47\times10^3~{\rm m}=1.47~{\rm km}$.
- 2-28 (a) The charged battery stores energy

$$E = \mathcal{P} t = (1.20 \text{ J/s})(50 \text{ min})(60 \text{ s/min}) = 3600 \text{ J}$$

so its mass excess is $\Delta m = \frac{E}{c^2} = \frac{3600 \text{ J}}{\left(3 \times 10^8 \text{ m/s}\right)^2} = 4.00 \times 10^{-14} \text{ kg}$.

- (b) $\frac{\Delta m}{m} = \frac{4.00 \times 10^{-14} \text{ kg}}{25 \times 10^{-3} \text{ kg}} = 1.60 \times 10^{-12} \text{ too small to measure.}$
- 2-29 The energy of the first fragment is given by $E_1^2 = p_1^2 c^2 + \left(m_1 c^2\right)^2 = (1.75 \text{ MeV})^2 + (1.00 \text{ MeV})^2$; $E_1 = 2.02 \text{ MeV}$. For the second, $E_2^2 = (2.00 \text{ MeV})^2 + (1.50 \text{ MeV})^2$; $E_2 = 2.50 \text{ MeV}$.
 - (a) Energy is conserved, so the unstable object had E = 4.52 MeV. Each component of momentum is conserved, so the original object moved with

$$p^2 = p_x^2 + p_y^2 = \left(\frac{1.75 \text{ MeV}}{c}\right)^2 + \left(\frac{2.00 \text{ MeV}}{c}\right)^2.$$

Then for $(4.52 \text{ MeV})^2 = (1.75 \text{ MeV})^2 + (2.00 \text{ MeV})^2 + (mc^2)^2$; $m = 3.65 \text{ MeV}/c^2$.

(b) Now
$$E = \gamma mc^2$$
 gives 4.52 MeV = $\frac{1}{\sqrt{1 - v^2/c^2}}$ 3.65 MeV; $1 - \frac{v^2}{c^2} = 0.654$ and $v = 0.589c$.

2-30 Take the two colliding protons as the system

$$E_1 = K + mc^2$$

$$E_2 = mc^2$$
initial
$$E_1^2 = p_1^2 c^2 + m^2 c^4$$

$$p_2 = 0.$$
final

In the final state, $E_f = K_f + Mc^2$: $E_f^2 = p_f^2 c^2 + M^2 c^4$.

By energy conservation, $E_1 + E_2 = E_f$, so

$$E_1^2 + 2E_1E_2 + E_2^2 = E_{\rm f}^2$$

$$p_1^2c^2 + m^2c^4 + 2\left(K + mc^2\right)mc^2 + m^2c^4 = p_{\rm f}^2c^2 + M^2c^4$$

By conservation of momentum, $p_1 = p_f$.

Then
$$M^2c^4 = 2Kmc^2 + 4m^2c^4 = \frac{4Km^2c^4}{2mc^2} + 4m^2c^4$$

Initial (beams)

Final (beams)

$$Mc^2 = 2mc^2 \sqrt{1 + \frac{K}{2mc^2}} \; .$$

By contrast, for colliding beams in the original state, we have $E_1 = K + mc^2$ and $E_2 = K + mc^2$. In the final state, $E_f = Mc^2$

$$E_1 + E_2 = E_f$$
: $K + mc^2 + K + mc^2 = Mc^2$

$$Mc^2 + 2mc^2 \left(1 + \frac{K}{2mc^2}\right).$$

2-31 Conservation of momentum γmu :

$$\frac{mu}{\sqrt{1-u^2/c^2}} + \frac{m(-u)}{3\sqrt{1-u^2/c^2}} = \frac{Mv_{\rm f}}{\sqrt{1-v_{\rm f}^2/c^2}} = \frac{2mu}{3\sqrt{1-u^2/c^2}} \ .$$

Conservation of energy γmc^2 :

$$\frac{mc^2}{\sqrt{1-u^2/c^2}} + \frac{mc^2}{3\sqrt{1-u^2/c^2}} = \frac{Mc^2}{\sqrt{1-v_{\rm f}^2/c^2}} = \frac{4mc^2}{3\sqrt{1-u^2/c^2}} \ .$$

To start solving we can divide: $v_{\rm f} = \frac{2u}{4} = \frac{u}{2}$. Then

$$\frac{M}{\sqrt{1 - u^2/4c^2}} = \frac{4m}{3\sqrt{1 - u^2/c^2}} = \frac{M}{(1/2)\sqrt{4 - u^2/c^2}}$$
$$M = \frac{2m\sqrt{4 - u^2/c^2}}{3\sqrt{1 - u^2/c^2}}$$

Note that when $v \ll c$, this reduces to $M = \frac{4m}{3}$, in agreement with the classical result.

2-32 (a)
$$\rho = \frac{\text{energy}}{\Delta t} = \frac{2 \text{ J}}{100 \times 10^{-15} \text{ s}} = 2.00 \times 10^{13} \text{ W}$$

(b) The kinetic energy of one electron with $v = 0.999 \ 9c$ is

$$(\gamma - 1) mc^{2} = \left(\frac{1}{\sqrt{1 - 0.999 \, 9^{2}}}\right) (9.11 \times 10^{-31} \, \text{kg}) (3 \times 10^{8} \, \text{m/s})^{2} = 69.7 \, (8.20 \times 10^{-14} \, \text{J})$$
$$= 5.72 \times 10^{-12} \, \text{J}$$

Then we require $\frac{0.01}{100}(2 \text{ J}) = N(5.72 \times 10^{-12} \text{ J})$

$$N = \frac{2 \times 10^{-4} \text{ J}}{5.72 \times 10^{-12} \text{ J}} = 3.50 \times 10^7.$$

2-33 The energy that arrives in one year is

$$E = \mathcal{O} \Delta t = (1.79 \times 10^{17} \text{ J/s})(3.16 \times 10^7 \text{ s}) = 5.66 \times 10^{24} \text{ J}.$$

Thus,
$$m = \frac{E}{c^2} = \frac{5.66 \times 10^{24} \text{ J}}{(3.00 \times 10^8 \text{ m/s})^2} = 6.28 \times 10^7 \text{ kg}.$$