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PREFATCE

In each chapter, there are five problem types:

= Exercises

= Problems

= Advanced Problems

= Design Problems/Continuous Design Problem

= Computer Problems

In total, there are over 1000 problems. The abundance of problems of in-
creasing complexity gives students confidence in their problem-solving
ability as they work their way from the exercises to the design and
computer-based problems.

It is assumed that instructors (and students) have access to MATLAB
and the Control System Toolbox or to LabVIEW and the MathScript RT
Module. All of the computer solutions in this Solution Manual were devel-
oped and tested on an Apple MacBook Pro platform using MATLAB 7.6
Release 2008a and the Control System Toolbox Version 8.1 and LabVIEW
2009. It is not possible to verify each solution on all the available computer
platforms that are compatible with MATLAB and LabVIEW MathScript
RT Module. Please forward any incompatibilities you encounter with the
scripts to Prof. Bishop at the email address given below.

The authors and the staff at Prentice Hall would like to establish an
open line of communication with the instructors using Modern Control

Systems. We encourage you to contact Prentice Hall with comments and
suggestions for this and future editions.

Robert H. Bishop  rhbishop@marquette.edu
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CHAPTER 1

Introduction to Control Systems

There are, in general, no unique solutions to the following exercises and
problems. Other equally valid block diagrams may be submitted by the

student.

Exercises

E1.1 A microprocessor controlled laser system:

Controller Process
Desired Error Micro- Currenti(t) Laser Power
power - processor out
output
Measurement
Measured Power
power Sensor

E1.2 A driver controlled cruise control system:

Controller Process
Foot pedal
Desired Driver car ?nd hetual
speed - Engine aU‘Od
spee
Measurement
Visual indication of speed Speedometer

E1.3 Although the principle of conservation of momentum explains much of
the process of fly-casting, there does not exist a comprehensive scientific
explanation of how a fly-fisher uses the small backward and forward mo-
tion of the fly rod to cast an almost weightless fly lure long distances (the

1
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2 CHAPTER 1 Introduction to Control Systems

current world-record is 236 ft). The fly lure is attached to a short invisible
leader about 15-ft long, which is in turn attached to a longer and thicker
Dacron line. The objective is cast the fly lure to a distant spot with dead-
eye accuracy so that the thicker part of the line touches the water first
and then the fly gently settles on the water just as an insect might.

Wind
Fly-fisher Controller disturbance orocess
Desired {})A";d a?dh ~$_. ROd, Iine, Actual
positionof ¥~ ﬂo ﬁyr? the and cast i
the fly y-fisher

Measurement

Vision of

Visual indication =
of the position of the ﬂy fisher

the fly

E1.4 An autofocus camera control system:

One-way trip time for the beam

_________________ Conversion factor
r 1 Ki (speed of light or
| sound)
|
I Receiver

Subject
Lens focusing
motor

|
Beam | : .
Emitter/ & _—— | Distance to subject
B ————————
|
|

Lens
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Exercises 3

E1.5 Tacking a sailboat as the wind shifts:

Controller Actuators Wind Process
Desired Error | Rudd d ,l\
esire Sailor uF ran 9, Sailboat Actual
sailboat - sal ac?Justment sailboat
direction direction

Measurement

Measured sailboat direction

Gyro compass

E1.6 An automated highway control system merging two lanes of traffic:

Controller Actuators Process
Desired Error Embedded *  Brakes,gasor [ Active » Actual
a - -t i a
gap computer steering vehicle gap
Measurement
Measured gap
Radar

E1.7 Using the speedometer, the driver calculates the difference between the
measured speed and the desired speed. The driver throotle knob or the
brakes as necessary to adjust the speed. If the current speed is not too
much over the desired speed, the driver may let friction and gravity slow
the motorcycle down.

Controller Actuators Process
Error
Desired Driver Throttle or ™ Motorcycle > Actual
speed - Y motorcycle
brakes speed

Measurement

Visual indication of speed

Speedometer
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4 CHAPTER 1 Introduction to Control Systems

E1.8 Human biofeedback control system:

Controller Process
to
blood vessels

Desired Hypothalumus » Actual
body - Human body body
temp temp
Measurement
Visual indication of |
body temperature TV dlsplay Body sensor
E1.9 E-enabled aircraft with ground-based flight path control:
Corrections to the Controller Aircraft
. flight path .
Desired —( "l Gels) " Gls) > Flight
Flight B Path
Path Meteorological Health Location
data Parameters and speed
Optimal y %
flight path
Ground-Based Computer Network
Optimal ) .
flight path Y Location
and speed
Meteorological Health
data Parameters
| —
Desired —( " Ge(s) G( > Flight
. Corrections to the cls s)
Flight flight path Path
Path Controller Aircraft

E1.10 Unmanned aerial vehicle used for crop monitoring in an autonomous

mode:
Trajectory Controller UAV
Specified —’% Flight
S Ges) G(s) £
o ig Trajectory
rajectory
Sensor
Locati?? v;/kilth . Map G;ound
respect to the groun . t
P £ Correlation ——— Camera
Algorithm
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Exercises 5

E1.11 An inverted pendulum control system using an optical encoder to measure
the angle of the pendulum and a motor producing a control torque:

Actuator Process
) Error Voltage Torque
Desired Controller Motor Pendulum > Angle
angle -
Measurement
Measured Optical
angle encoder

E1.12 In the video game, the player can serve as both the controller and the sen-
sor. The objective of the game might be to drive a car along a prescribed
path. The player controls the car trajectory using the joystick using the
visual queues from the game displayed on the computer monitor.

Controller Actuator Process

Desired Error Pl G
esire ayer > : > \/i » Game
Desir - y Joystick Video game objective
objective

Measurement

Player
(eyesight, tactile, etc.)
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6 CHAPTER 1

Problems

Introduction to Control Systems

P1.1 An automobile interior cabin temperature control system block diagram:

Controller
Desired Error Thermostat and
temperature §= air conditioning
set by the unit
driver

Process

Measured temperature

Automobile

cabin

Measurement

Temperature
sensor

P1.2 A human operator controlled valve system:

Error *

Desired
fluid -
output *

Visual indication
of fluid output *

Controller

Process

Valve

Measurement

* = operator functions

P1.3 A chemical composition control block diagram:

Error

Desired
chemical -
composition

Measured chemical

Meter

Tank

Automobile
cabin temperature

Fluid

output

Controller

Process

Valve

Measurement

composition

Infrared analyzer

Mixer tube

» Chemical
composition
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Problems 7

P1.4 A nuclear reactor control block diagram:

Controller Process
Error
Desired Motor and Reactor Output
ower level - .
p ampllﬁer and rods power level
Measurement
Measured chemical .
composition lonization chamber

P1.5 A light seeking control system to track the sun:

Measurement Controller
Desired Controller Process
Dual Ligh carriage e Motor
ua intensit i position rror inputs
Light —{ Y ;‘[ajeaory O Motor, » Photocell
source Photocells anner - K carriage, carriage
and gears position

P1.6 If you assume that increasing worker’s wages results in increased prices,
then by delaying or falsifying cost-of-living data you could reduce or elim-
inate the pressure to increase worker’s wages, thus stabilizing prices. This
would work only if there were no other factors forcing the cost-of-living
up. Government price and wage economic guidelines would take the place
of additional “controllers” in the block diagram, as shown in the block

diagram.
Process Controller
Market-based prices
Initial Government Prices
wages - IndUStry price
guidelines
Controller
Government [« K4
Wage increases wage Cost-of-living
guidelines
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8 CHAPTER 1 Introduction to Control Systems

P1.7 Assume that the cannon fires initially at exactly 5:00 p.m.. We have a
positive feedback system. Denote by At the time lost per day, and the
net time error by Ep. Then the follwoing relationships hold:

At =4/3 min. + 3 min. = 13/3 min.
and
Er =12 days x 13/3 min./day .
Therefore, the net time error after 15 days is
Epr = 52 min.

P1.8 The student-teacher learning process:

Controller Process

Error Lectures

Desired > Knowledge
knowledge - Teacher Student

Measurement

Exams
Measured knowledge

P1.9 A human arm control system:

Controller Process
u e s
Desired Arm
- i rve signal Arm & .
arm Brain Nerve signals location
. muscles d
location
Y ¥4
Measurement
. s Pressure
Visual indication of Eves and
arm location y
pressure

receptors
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Problems 9

P1.10 An aircraft flight path control system using GPS:

Controller Actuators Process
Error .

Desired Compu'ter Ailerons, elevators, —  aircraft Flight
flight path - Auto-pilot rudder, and path
from air traffic engine power
controllers

Measurement

Measured flight path Global Positioning |«
System

P1.11 The accuracy of the clock is dependent upon a constant flow from the
orifice; the flow is dependent upon the height of the water in the float
tank. The height of the water is controlled by the float. The control system
controls only the height of the water. Any errors due to enlargement of
the orifice or evaporation of the water in the lower tank is not accounted
for. The control system can be seen as:

Controller Process
EeeISiLetdof Float level Flow from » Actual
Hivciahel upper tank height
in float tank to float tank

P1.12 Assume that the turret and fantail are at 90°, if 6,, # 6p-90°. The fantail
operates on the error signal 8, - f7, and as the fantail turns, it drives the
turret to turn.

) gqw =Wind angle
Wind gr = Fantail angle
qr = Turret angle

Controller Process
Error Torque

qw i q
aw - Fantail Gears & turret T

Turret

Fantail

ar
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10 CHAPTER 1 Introduction to Control Systems

P1.13 This scheme assumes the person adjusts the hot water for temperature
control, and then adjusts the cold water for flow rate control.

Controller Process
Error
Desired water —bO Valve adjust Hot water =
temperature - system wgter
3
()__> Actual
water temperature
and flow rate
Desired water »() Valve adjust Cold water
flow rate - system Cold
water

Measurement

Measured water flow

Human: visual
Measured water temperature and touch

P1.14 If the rewards in a specific trade is greater than the average reward, there
is a positive influx of workers, since

q(t) = fi(c(t) — (1))

If an influx of workers occurs, then reward in specific trade decreases,

since
c(t) = —fa(q(t)).
Controller Process
E t
Average - Si(e(t)-r(0)) 40 £(q(D) Total of
rewards = rewards
(1) ()
P1.15 A computer controlled fuel injection system:
Controller Process
Desired Electronic ‘ High Pressure Fuel Fuel
Fuel - Control Unit Supply Pump and Pressure
Pressure Electronic Fuel
Measurement InJectors

Measured fuel pressure

Fuel Pressure
Sensor
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Problems 11

P1.16 With the onset of a fever, the body thermostat is turned up. The body
adjusts by shivering and less blood flows to the skin surface. Aspirin acts
to lowers the thermal set-point in the brain.

Controller Process
Desired temperature Adjustments » Body
or set-point from body - within the Body temperature
thermostat in the brain body

Measurement

Measured body temperature

Internal sensor

P1.17 Hitting a baseball is arguably one of the most difficult feats in all of sports.
Given that pitchers may throw the ball at speeds of 90 mph (or higher!),
batters have only about 0.1 second to make the decision to swing—with
bat speeds aproaching 90 mph. The key to hitting a baseball a long dis-
tance is to make contact with the ball with a high bat velocity. This is
more important than the bat’s weight, which is usually around 33 ounces
(compared to Ty Cobb’s bat which was 41 ounces!). Since the pitcher can
throw a variety of pitches (fast ball, curve ball, slider, etc.), a batter must
decide if the ball is going to enter the strike zone and if possible, decide
the type of pitch. The batter uses his/her vision as the sensor in the feed-
back loop. A high degree of eye-hand coordination is key to success—that
is, an accurate feedback control system.

P1.18 Define the following variables: p = output pressure, f; = spring force
= Kz, f; = diaphragm force = Ap, and f, = valve force = f; - fy4.
The motion of the valve is described by § = f,/m where m is the valve
mass. The output pressure is proportional to the valve displacement, thus
p = cy , where c is the constant of proportionality.

Spring Constant of
proportionality

Valve position
Screw  —n K Valve > Output
displacement - y ¢ pressure
x(®) o

Diaphragm area

Ja

A <
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12 CHAPTER 1 Introduction to Control Systems

P1.19 A control system to keep a car at a given relative position offset from a

lead car:
Position of
Throttl
rottle Follower follower
car

Position 3
Fuel ——  Lead car orreag—C)
throttle of lead
(fuel)

Video camera

position| & processing
algorithms [+—— Reference
photo

= Relative

Actuator . Controller

Desired relative position

P1.20 A control system for a high-performance car with an adjustable wing:

Process
Controller Actuator
Road —
Adjustable conditions
Desired Computer [ % Race Car » Road
road - wing adhesion
adhesion
Measurement
- K Tire internal
Measured road adhesion strain gauges

P1.21 A control system for a twin-lift helicopter system:

Measurement
Measured separation
distance Radar
Controller Process
Desired separation _;O—p Separation distance
ditence Helicopter
Pilot P
Desired altitude —O—b » Altitude
Measurement
Measured altitude
Altimeter
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Problems 13

P1.22 The desired building deflection would not necessarily be zero. Rather it
would be prescribed so that the building is allowed moderate movement
up to a point, and then active control is applied if the movement is larger
than some predetermined amount.

Process
Controller

Desired HydraUIlc > Bu”dmg Deflection
deflection - stiffeners
Measurement
- K Strain gauges
Measured deflection on truss structure

P1.23 The human-like face of the robot might have micro-actuators placed at
strategic points on the interior of the malleable facial structure. Coopera-
tive control of the micro-actuators would then enable the robot to achieve
various facial expressions.

Controller Process
Error
Desired X Voltage Electro- ) » Actuator
actuator - Amplifier mechanical position
position actuator
Measurement
Position
Measured position sensor

P1.24 We might envision a sensor embedded in a “gutter” at the base of the
windshield which measures water levels—higher water levels corresponds
to higher intensity rain. This information would be used to modulate the
wiper blade speed.

Controller Process
Desired Electronic N nger blade Wiper
wiper speed  § - Control Unit and motor blade
speed
Measurement
K Water depth
Measured water level sensor
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14 CHAPTER 1 Introduction to Control Systems

P1.25 A feedback control system for the space traffic control:

Controller Actuator Process
Error . i
Desired Control e/ Reaction Applied satellit Actual
orbit position 1 = law commands control jets forces atellite orbit position

Measurement

Measured orbit position

Radar or GPS “

P1.26 Earth-based control of a microrover to point the camera:

Microrover

Camera position Controller

Receiver/ command
. > G(s) » Camera » Camera
Transmitter Gc(s) Rover ne
position Position
G
)
2
Measured camera
position
Sensor
P1.27 Control of a methanol fuel cell:
Recharging
Controller System Methanol water Fuel Cell
Desired solution Charge
Charge - GC(S) GR(S) G(S) Level
Level
Sensor
Measured charge level

H(s) [«
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Advanced Problems 15

Advanced Problems

AP1.1 Control of a robotic microsurgical device:

= Microsurgical

Controller robotic manipulator

» End-effector

GC(S ) G(S) Position

End-effector
Position

Sensor

H(s) [«

AP1.2 An advanced wind energy system viewed as a mechatronic system:

STRUCTURAL DESIGN OF THE TOWER
ELECTRICAL AND POWER SYSTEMS

SENSORS
Rotor rotational sensor
Wind speed and direction sensor CONTROL SYSTEM DESIGN AND ANALYSIS
ACTUATORS . . . ELECTRICAL SYSTEM DESIGN AND ANALYSIS
Motors for manipulatiing the propeller pitch Physical System Modeling POWER GENERATION AND STORAGE

Sensors and Actuators

Signals and Systems

Computers and
Logic Systems

Software and
Data Acquisition

CONTROLLER ALGORITHMS COMPUTER EQUIPMENT FOR CONTROLLING THE SYSTEM
DATA ACQUISTION: WIND SPEED AND DIRECTION SAFETY MONITORING SYSTEMS

ROTOR ANGULAR SPEED
PROPELLOR PITCH ANGLE

AP1.3 The automatic parallel parking system might use multiple ultrasound
sensors to measure distances to the parked automobiles and the curb.
The sensor measurements would be processed by an on-board computer
to determine the steering wheel, accelerator, and brake inputs to avoid
collision and to properly align the vehicle in the desired space.
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16 CHAPTER 1 Introduction to Control Systems

Even though the sensors may accurately measure the distance between
the two parked vehicles, there will be a problem if the available space is
not big enough to accommodate the parking car.

Controller Actuators Process
Error H
Desired On-board Steering wheel, |, Automobile » Actual
automobile - computer accelerator, and automobile
position brake position

Measurement

Position of automobile

relative to parked cars
and curb

Ultrasound

AP1.4 There are various control methods that can be considered, including plac-
ing the controller in the feedforward loop (as in Figure 1.3). The adaptive
optics block diagram below shows the controller in the feedback loop, as
an alternative control system architecture.

Astronomical Process
object
4 .
o _mﬂ, Astronomical Compensated
y 9 telescope image
N mirror
Measurement
Wavefront — Wavefront Wavefront
corrector reconstructor sensor

Actuator & controller

AP1.5 The control system might have an inner loop for controlling the acceler-
ation and an outer loop to reach the desired floor level precisely.

Error Desired ~\ Error Elevator ‘
Desired ——{ J——={ Controller #2 — » Controller #1 —» motor. I Elevator > Floor
accelera 5
o [~ - cables, etc.
Inner
Outer Loop
Loop Acceleration
Measured acceleration | Measurement [€
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Advanced Problems 17

AP1.6 An obstacle avoidance control system would keep the robotic vacuum
cleaner from colliding with furniture but it would not necessarily put the
vacuum cleaner on an optimal path to reach the entire floor. This would
require another sensor to measure position in the room, a digital map of
the room layout, and a control system in the outer loop.

Process
Error M MOtOI‘S, Robotic Distance
Desired > D> » Sta
Jesiree Controller wheels, etc. vacuum from
distance - cleaner
from obstacles
obstacles
Infrared |

Measured distance from obstacle Sensors
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18 CHAPTER 1 Introduction to Control Systems

Design Problems

CDP1.1 The machine tool with the movable table in a feedback control configu-

ration:
Controller Actuator Process
Error . itioni i
Desired Amplifier Positioning Machine Actual
position - motor tool with position
x table x
Measurement

Measured position Position sensor

DP1.1 Use the stereo system and amplifiers to cancel out the noise by emitting
signals 180° out of phase with the noise.

Controller Process
Noise
Desired sonal | Shift phase Positioning Machine Noise
noise =0 - by 180 deg motor tool with cabin
table
Measurement
Microphone

DP1.2 An automobile cruise control system:

. Controller Process
Desired
shaft El .
Desired —¥ 1/K speed | miitorll’c —H Valve Automobile K > Actual
speed - A d
auto and engine speed.
set by
driver
Measurement
Shaft speed
Measured shaft speed sensor Drive shaf t speed
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Design Problems 19

DP1.3 An automoted cow milking system:

Measurement

Cow location

Vision system

Controller Actuator Process
Location
) of cup _
> Motor and Robot arm and Cowand |+ wmilk
Desired cup - gears cup gripper milker
location

Measurement

Vision system

Measured cup location

DP1.4 A feedback control system for a robot welder:

Controller Process
Voltage
Desired Error Computer and Motor and Weld
position amplifier arm top
position

Measurement

Vision camera

Measured position

DP1.5 A control system for one wheel of a traction control system:

Engine torque Anti5|ip
controller
Wheel
C T+ Wheel speed
- d dynamics Sensor
+ +
Actual slip - ()__’ 'smli;asured
1/Ry | Rw = Radius of wheel
Vehicle
dynamics Vehicle speed Sensor

Antiskid
Brake torque controller
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20 CHAPTER 1 Introduction to Control Systems

DP1.6 A vibration damping system for the Hubble Space Telescope:

Controller Actuators Process
E Signalto
Desired rror Computer Ger and cancel the jitter Spacec!’aft Jitter of
jitter=0 - reaction wheels dynamics vibration
Measurement
Rate gyro a
Measurement of 0.05 Hz jitter sensor

DP1.7 A control system for a nanorobot:

Controller Actuators Process
Desired Error Bio- Pl " Actual
esire > > » Actual
nanorobot - computer ane surtaces Nanorobot nanorobot
position and propellers position

Measurement

External beacons

Many concepts from underwater robotics can be applied to nanorobotics
within the bloodstream. For example, plane surfaces and propellers can
provide the required actuation with screw drives providing the propul-
sion. The nanorobots can use signals from beacons located outside the
skin as sensors to determine their position. The nanorobots use energy
from the chemical reaction of oxygen and glucose available in the human
body. The control system requires a bio-computer—an innovation that is
not yet available.

For further reading, see A. Cavalcanti, L. Rosen, L. C. Kretly, M. Rosen-
feld, and S. Einav, “Nanorobotic Challenges n Biomedical Application,
Design, and Control,” IEEE ICECS Intl Conf. on Electronics, Circuits
and Systems, Tel-Aviv, Israel, December 2004.

DP1.8 The feedback control system might use gyros and/or accelerometers to
measure angle change and assuming the HTV was originally in the vertical
position, the feedback would retain the vertical position using commands
to motors and other actuators that produced torques and could move the
HTYV forward and backward.
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Design Problems

. Error
Desired angle

from vertical (0°) -

Controller

Process

Motors,

wheels, etc.

Gyros &

Measured angle from vertical

HTV

21

» Angle from
» g

-

accelerometers

vertical
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Mathematical Models of Systems

Exercises

E2.1 We have for the open-loop

and for the closed-loop

e=r—y and y=e>.
So,e=r—e?and e’ +e—r=0.
16
14 -
12t 8
101 : 8
> 8} i
6 open-loop .
W |
2F closed-loop: —
0 L L L L L L
0 0.5 1 1.5 2 25 3 35 4
r
FIGURE E2.1

Plot of open-loop versus closed-loop.

For example, if 7 = 1, then e? + e — 1 = 0 implies that e = 0.618. Thus,
y = 0.382. A plot y versus r is shown in Figure E2.1.

22
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Exercises 23

E2.2 Define

f(T) —R= Roe_o'lT

and
AR=f(T)— f(Tp) , AT =T -1y .
Then,
of
AR = f(T) - [(To) = = AT+ ..
or T=T()=20°
where
of —0.1T;
— = —0.1Rge” "% = —135,
or T=TH=20° ’

when Ry = 10,000€2. Thus, the linear approximation is computed by
considering only the first-order terms in the Taylor series expansion, and
is given by

AR = —135AT .

E2.3 The spring constant for the equilibrium point is found graphically by
estimating the slope of a line tangent to the force versus displacement
curve at the point y = 0.5cm, see Figure E2.3. The slope of the line is

K~1.
2
15 .
1L Spring breaks |
05 .
O . -
G
g 05 .
8
-1+ -
1.5 .
2+ -
251 Spring compresses b
-3 i i i i i i i i i
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25 3
y=Displacement (cm)
FIGURE E2.3

Spring force as a function of displacement.
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24 CHAPTER 2 Mathematical Models of Systems
E2.4 Since
1
R(s) = -
(5) =~
we have
4 5
Y(s) = (s +50) '
s(s+20)(s + 10)

The partial fraction expansion of Y(s) is given by

A1 A2 A3
S s+20 s+4+10

Y(s)
where
Ai=1, Ay =0.6and A3 =—-16.
Using the Laplace transform table, we find that
y(t) =1 +0.6e720F — 1,671 .

The final value is computed using the final value theorem:

. . 4(s + 50)
A y(t) = s | e S0+ 200y ~

E2.5 The circuit diagram is shown in Figure E2.5.

R,
NN
v
AL o §R1
o + +
+
Vin VO

i|-e

FIGURE E2.5
Noninverting op-amp circuit.

With an ideal op-amp, we have

Vo = A(vip, —v7),
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Exercises 25

where A is very large. We have the relationship

Ri+ R» o
Therefore,
R
Vo = A(’Um — RITIszo),
and solving for v, yields
A
Vo = 7AR1 Vin-
L+ 7vm

Since A > 1, it follows that 1+ A8 ~ _Af

€A Tl ~ Tl Fhen the expression for
v, simplifies to

Ry + Ry
Vo = Tl’l)z'n.

E2.6 Given

y=flz)=e

and the operating point x, = 1, we have the linear approximation
of
Y= 1) = o)+ G| (w—wo) e

€ =T,

where
d
flz,) =e, % . =e, and x—x,=x—1.

Therefore, we obtain the linear approximation y = ex.

E2.7 The block diagram is shown in Figure E2.7.

+ E3(s)
R(s) Gy(s) |—f Gy(s) > 1(s)

I
=
n
<

7 Y

FIGURE E2.7
Block diagram model.
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26 CHAPTER 2 Mathematical Models of Systems

Starting at the output we obtain
I(s) = G1(s)Ga(s)E(s).
But E(s) = R(s) — H(s)I(s), so
I(s) = G1(s)G2(s) [R(s) — H(s)I(s)].
Solving for I(s) yields the closed-loop transfer function

I(s) _ G1(s)Ga(s)
R(s) 14 Gi(s)Ga(s)H(s)

E2.8 The block diagram is shown in Figure E2.8.

FIGURE E2.8
Block diagram model.

Starting at the output we obtain
1 1
Y(s) = gZ(s) = ;Gg(s)A(s).

But A(s) = G1(s)[—H2(s)Z(s) — Hs(s)A(s) + W(s)] and Z(s) = sY(s),

Y(s) = —G1(s)Ga(s)Ha(s)Y (s) — G1(s)Hs(s)Y (s) + %Gl(s)Gg(s)W(s).
Substituting W (s) = KE(s) — Hi(s)Z(s) into the above equation yields

Y(s) = —G1(s)Ga(s)Ha(s)Y (s) — G1(s)Hs(s)Y (s)
+ G1()G(s) [KE(s) — Hi()2(s)
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Exercises 27

and with F(s) = R(s) — Y (s) and Z(s) = sY(s) this reduces to
Y(s) = [=G1(s)Ga(s) (Ha(s) + Hi(s)) — Gi(s)Hs(s)
S GUG)KTY (5) + G (5)Gals) K R(s).

Solving for Y'(s) yields the transfer function

B KG1(s)Ga(s)/s
N 1+ Gl (S)GQ(S) [(HQ(S) + Hl(s)] + Gl (S)Hg(s) + KGl (S)GQ(S)/S.

E2.9 From Figure E2.9, we observe that

T(s)

Fy(s) = Ga(s)U(s)
and
Fr(s) = Gs(s)U(s) .

Then, solving for U(s) yields

1
U(S) = GQ(S) Ff(s)
and it follows that
Fals) = G2U(6)

Again, considering the block diagram in Figure E2.9 we determine
Fy(s) = G1(s)Ga(s)[R(s) — Ha(s)Fy(s) — Ha(s)FR(s)] -
But, from the previous result, we substitute for Fr(s) resulting in
Fy(s) = G1(s)Ga(s)R(s)—=G1(s)Ga(s) Ha(s) Fy (s)—=G1(s) Ha(s)Gs(s) Fy(s) -
Solving for F(s) yields

_ G1(s)Ga(s)
1+ G1(s)Ga(s)Ha(s) + G1(s)G3(s)Ha(s)

Fy(s) R(s) .
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E2.10

E2.11

CHAPTER 2 Mathematical Models of Systems

Hy(s)

UGs) Go(s) >F (s)

R(s) —HO— Gy(s)

Uis) L—» G3(s) » FR(s)

Hy(s)

FIGURE E2.9
Block diagram model.

The shock absorber block diagram is shown in Figure E2.10. The closed-
loop transfer function model is

Ge(s)Gp(5)G(s)

T(s) = .
1+ H(s)Ge(s)Gp(s)G(s)
PI
Controller Gear Motor Pis:;??;:;?n
+

R(s) G(s) > Gp(s) »> G(s) » Y(s)
Desired piston - Piston
travel travel

Sensor

H(s)

Piston travel
measurement

FIGURE E2.10
Shock absorber block diagram.

Let f denote the spring force (n) and = denote the deflection (m). Then
Af
= Ay
Computing the slope from the graph yields:
(a) o =—0.14m — K = Af/Az =10n / 0.04 m = 250 n/m
(b) 2o =0m — K =Af/Az =10n / 0.05 m = 200 n/m
(¢) 2,=0.35m - K =Af/Azx =3n / 0.05 m = 60 n/m
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Exercises 29

E2.12 The signal flow graph is shown in Fig. E2.12. Find Y (s) when R(s) = 0.

Y (s)

FIGURE E2.12
Signal flow graph.

The transfer function from Ty(s) to Y(s) is

¥ (s) = G(s)Ty(s) — K1K2G(s)Ty(s)  G(s)(1 — K1K2)Ty(s)
8= 1 - (—K2G(s)) T 1+ K.G(s) '

If we set
K\Ky,=1,

then Y(s) = 0 for any Ty(s).
E2.13 The transfer function from R(s), Ty(s), and N(s) to Y(s) is

K 1 K
Vis)= |— B S o B (S DY
(5) L?+103+K]R(3)+L2+103+K] als) L?+103+K] (5)
Therefore, we find that

1 K

YO ITs) = grqeerr 24 YONG) =G5k

E2.14 Since we want to compute the transfer function from Rs(s) to Yi(s), we
can assume that R; = 0 (application of the principle of superposition).
Then, starting at the output Y7(s) we obtain

Yi(s) = Ga(s) [-Hi(s)Y1(s) + Ga(s)Gs(s)W (s) + Go(s) W (s)],
[1+ Gs(s)Hi(s)] Yi(s) = [G3(s)Ga(s)Gs(s)W (s) + Ga(s)Go(s)] W (s).
Considering the signal W (s) (see Figure E2.14), we determine that
W(s) = Gs(s) [Ga(s) Ra(s) — Ha(s)W (s)],
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30 CHAPTER 2 Mathematical Models of Systems

I
=
—
wn
-
A

FIGURE E2.14
Block diagram model.

[14+ G5(s)Ha(s)| W (s) = G5(s)G4(s)Ra(s).

Substituting the expression for W (s) into the above equation for Y;(s)
yields

Yi(s) _ G2(5)G3(s)G4(s5)G5(s)Gs(s) + G3(s)G4(s)G5(s)Go(s)
Ro(s) 1+ Gs(s)Hi(s) + Gs(s)Ha(s) + Gs(s)Gs(s)Hy(s)Ha(s)

E2.15 For loop 1, we have

diy 1
Ryin + L1— /(21 — Zg)dt + R2(’Ll — ’LQ) = U(t) .
dt C1

And for loop 2, we have

dig 1
—/szt+L2_+R2(2—Zl) /(ig—il)dtzo.
d Cy

E2.16 The transfer function from R(s) to P(s) is
P(s) 4.2

R(s) s3+2s244s+42"°

The block diagram is shown in Figure E2.16a. The corresponding signal
flow graph is shown in Figure E2.16b for

4.2
s34+ 252 4+ 45 +4.2

P(s)/R(s) =
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V‘] (S) VZ(S) 06 q(S) 1
R(s > iy o = » P
) - 7 s §242s+4 (s)
(@)
06 !
V1 Vz < 2 +2s+4
R(s) ! 4 P(s)
(b)
FIGURE E2.16

(a) Block diagram, (b) Signal flow graph.

E2.17 A linear approximation for f is given by

Af = g Ax = 2kx,Ax = kAx
o |,_,,

where x, = 1/2, Af = f(x) — f(x,), and Az =z — x,.

E2.18 The linear approximation is given by

Ay = mAx
where
m = @
B 81’ T=xo ‘

(a) When z, = 1, we find that y, = 2.4, and y, = 13.2 when z, = 2.

(b) The slope m is computed as follows:

_ %

2
m= - =1+4.2x] .

r=xo

Therefore, m = 5.2 at z, = 1, and m = 18.8 at z, = 2.
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32 CHAPTER 2 Mathematical Models of Systems

E2.19 The output (with a step input) is

15(s + 1)

Y& = ey

The partial fraction expansion is
15 18 1 3 1

V(s) = — — =2 2 .
) =1 " 7537 2512

Taking the inverse Laplace transform yields

b 18 7 3 o

y(t) = a7 + 56_
E2.20 The input-output relationship is
Vo A(K-1)
Vv 1+ AK
where
Z1
K = 717,

Assume A > 1. Then,

where

R1 R2

! RCis+1 a 2 RyCos +1
Therefore,

VO(S) o Rg(Rlcls + 1) 2(8 + 1) ‘

V(s)  Ri(ReCos+1) s+2
E2.21 The equation of motion of the mass m, is
medp + (bg + bs)tp + katp = baZin + kaZin -
Taking the Laplace transform with zero initial conditions yields
[mes? + (ba + bs)s + ka] Xp(s) = [bas + ka) Xin(s) -
So, the transfer function is

X,(s) bas + kq 0.75s + 2

Xin(s)  mes?2+ (bg+bs)s+ kg s24+28s+2°
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E2.22

E2.23

E2.24

E2.25

E2.26

Exercises 33

The rotational velocity is

2(s+4) 1

BRI

Expanding in a partial fraction expansion yields

o Sl 1 13 1131
~ 5s 40s+5 2(s+1)2 8s+1°

Taking the inverse Laplace transform yields

8 1
(U(t) = g + E€_5t — gte_t — ge_t .

The closed-loop transfer function is

Y(S) - (8) o K1K2
R(S) a a 32+(K1 —|—K2K3—|—K1K2)S—|—K1K2K3 ’

The closed-loop tranfser function is

Y(s) ... 10
R(s) T(s) = s2+21s+10

Let = 0.6 and y = 0.8. Then, with y = az3, we have
0.8 = a(0.6)% .
Solving for a yields a = 3.704. A linear approximation is
Y — Yo = 3axi(x — x,)
or y = 4x — 1.6, where y, = 0.8 and z, = 0.6.
The equations of motion are

mixy + k‘(l’l — xg) =F
Molo + k((ﬂg - 1‘1) =0.

Taking the Laplace transform (with zero initial conditions) and solving
for Xy(s) yields

k

Xols) = (mas? + k)(mys? + k) — k?

F(s) .

Then, with m; = my = k = 1, we have

1

Xa(s)/F(s) = 2212



© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

34 CHAPTER 2 Mathematical Models of Systems

E2.27 The transfer function from Ty(s) to Y(s) is
GQ(S)
Y T, =7’
)/ Tals) = TG G s
E2.28 The transfer function is

Vo(s) _ ReRuC | RoBy

=24 144 .
V(s) R3 i RiR3 o

E2.29 (a) If

1

G(S) = m and H(S) = 2s + 15 s

then the closed-loop transfer function of Figure E2.28(a) and (b) (in
Dorf & Bishop) are equivalent.

(b) The closed-loop transfer function is

1
T(s) = s24+17s+65

E2.30 (a) The closed-loop transfer function is

G(s) 1 10 10

pr— —_ = h G :7-
T4 Ge) s  seltostan Vi GO = 5mTs

T(s)

0.8

0.7

0.6

0.5

0.4

Amplitude

0.3

0.2

0.1

0 1 2 3 4 5 6
Time sec

FIGURE E2.30
Step response.
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E2.31

Exercises 35

(b) The output Y (s) (when R(s) =1/s) is

_ 05 -025+0.05735 = —0.25—-0.0573;

Y _
() = 5~ 57143580 T s+ 1543589

(¢) The plot of y(t) is shown in Figure E2.30. The output is given by
1 1
t)=—-[1—-¢" (cos 19t — ——sin 19t>}
y(t) =3 { V 7o S0V

The partial fraction expansion is

a b
_|_
S+ p1 S+ p2

Vi(s) =
where p; =4 — 19.65 and ps = 4 4 19.65. Then, the residues are
a=-10.25 b=10.25.

The inverse Laplace transform is

v(t) = —10.25eTAH196)t 1 10.25e(—47196)F — 90 474 5in 19.6¢ .
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Problems

P2.1 The integrodifferential equations, obtained by Kirchoft’s voltage law to
each loop, are as follows:

d(iy —i2)

7 + Rao(ip —i2) = v(t) (loop 1)

1
Ry + o /hdt + Ly

and

d(ig —i1)

pm =0 (loop2).

1
Rsio + R /igdt + Ro(ia —i1) + Ly
2

P2.2 The differential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have
Mgy + ki2(yr — y2) + bin + kayr = F()
Maijo + k12(y2 —y1) =0 .

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.2, where C; — M; , Ly — 1/ky , L1o — 1/k12 , and R — 1/b.

F(0) D C, — R DL

FIGURE P2.2
Analagous electric circuit.

P2.3 The differential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have

M3y + kxq —I—k‘(l‘l —.1'2) = F(t)
MfL"z—l—k?(fL'g —acl) +biy=0.

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.3, where

C—-M L—1/k R—1/b.
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Problems 37

ro() L - . ==c §R

)

FIGURE P2.3
Analagous electric circuit.

P2.4 (a) The linear approximation around v;, = 0 is v, = 0v;,, see Fig-
ure P2.4(a).
(b) The linear approximation around vy, = 1 is v, = 2v;, — 1, see Fig-
ure P2.4(b).
(a) (b)
0.4 T T T 4 T T
35 :
03} .
3r 7
02t 1 /
/
25 P
/
01f 4 /
2t / .
/
7
e o - — S 15¢f 4 :
linear approximation
‘I - -
_0‘| = .
05 7% 1
/
02 | . f
of / i
/
03 F . /
-05 , linear approximation -
/
04 ; ; ; p / ;
-1 -0.5 0 05 1 -1 0 1 2
vin vin
FIGURE P2.4

Nonlinear functions and approximations.
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38 CHAPTER 2 Mathematical Models of Systems

P2.5 Given
Q=K(P —P)Y?.

Let 0P = P, — P, and 0P, = operating point. Using a Taylor series
expansion of (), we have

0Q
Q=0Q,+ —= §P —G6P,) +---
O6P | rsr, )
where
oQ K
o= K&PY/? d == = —§p Y2,
v o A G5B, 2

Define AQ = Q — Q, and AP = §P — §P,. Then, dropping higher-order
terms in the Taylor series expansion yields

AQ = mAP
where
K
~29p?
P2.6 From P2.1 we have
1 d(iy —1
Ryiy + a/ildt + L1% + Ro(iy — i) = v(t)
and
Riia + — /'dt+R(' )+ L diz =) _,
7 — |1 19 — 1 SR v
312 oy 2 2(22 — 11 1 7t

Taking the Laplace transform and using the fact that the initial voltage
across (Y is 10v yields

1
[Ri+ 5+ Lis+ Ralla(s) + [~ Rz — Lys]Ia(s) = 0
1
and

1 10
[—RQ — Lls]ll(é’) + [Llé’ + R3 + ——+ R2]12(3) = -
(s s

Rewriting in matrix form we have

Ry + &= + Lis + Ry —Ry — Lys

—Ry — Lis L18+R3+CL2S+R2
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Solving for Iy yields

n(s) \ 1| Lis+Rs+ g5 + Ry Ry + Lys 0
I(s) A Ry + Lis Ri+ &~ + Lis+ R ~10/s
or
—10(R; +1/Cys+ Lis+ R
h(s) = =t et )
where

1 1
A= (R +—+Lis+ Ry)(L1s+ R3+ — + Ry) — (Ry + Lys)* .
Cis Css

P2.7 Consider the differentiating op-amp circuit in Figure P2.7. For an ideal
op-amp, the voltage gain (as a function of frequency) is

ZQ(S)
Va(s) = —
2(s) Zl(s)Vl(S),
where
Ry
] = —
" 14 R Cs

and Zy = Ry are the respective circuit impedances. Therefore, we obtain

Ry(1+ RCs)

Va(s) = — [ ] Vi(s).

Ry
VA
1 VA
2

C R,

+ N +
Vi(s) V,(s)

o + o -

FIGURE P2.7
Differentiating op-amp circuit.
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40 CHAPTER 2 Mathematical Models of Systems
P2.8 Let
Ga+C's —C's —Go
A= —C's G1+2Cs —C's
—G2 —C's Cs+ G2
Then,
Ajj Vs Al /A
P = I —_ = .

Vi NG or orvl Anh/A

Therefore, the transfer function is

—Cs 20s+ Gy
Vs Ajg -Gy —Cs
1 11 2Cs + Gy —C's
—Cs Cs+ Gy
Pole-zero map (x:poles and o:zeros)
3 T T T
2r o il
1+ i
3
o) or x X il
£E
_’| - -
2k o —
-3 i i i i i i i
-8 -7 6 -5 -4 3 2 -1 0
Real Axis
FIGURE P2.8

Pole-zero map.
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P2.9

Problems 41

B C2R1R252+2CR1$+ 1
© C2R1R2s? + (2R + Ry)Cs + 1

Using Ry = 0.5, Ry = 1, and C = 0.5, we have

s +4s+8  (s+2+25)(s+2—2j)
s2+85+8  (s+4+V8)(s+4—8)

T(s) =

The pole-zero map is shown in Figure P2.8.

From P2.3 we have

Mz + kxq —|—k7($1 — 1‘2) = F(t)
Mi’g—kk‘(l’g—wl)—kbi’g =0.

Taking the Laplace transform of both equations and writing the result in

matrix form, it follows that

Ms? 4 2k —k X1(s) F(s)
—k Ms? 4 bs + k Xo(s) 0

Pole zero map
0.4 T

02 O 4

Imag Axis
o
T
I

02 o 7

-03 .

1 1 1
-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0
Real Axis

FIGURE P2.9
Pole-zero map.
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42 CHAPTER 2 Mathematical Models of Systems
or
X1(s) 1| Ms?+bs+k k F(s)
Xo(s) A k Ms? + 2k 0

where A = (Ms? + bs + k)(Ms? + 2k) — k? . So,

~ Xi(s)  Ms*+bs+k
G = Frgy = A '

When b/k =1, M =1, b*/Mk = 0.04, we have

52 +0.04s + 0.04

G(s) = .
(8) = ST 70.045% 7 0.1252 + 0.00325 F 0.0016

The pole-zero map is shown in Figure P2.9.

P2.10 From P2.2 we have

Mgy + ki2(y1 — y2) + by1 + kiyr = F(t)
Myijs + k12(y2 —y1) =0 .

Taking the Laplace transform of both equations and writing the result in
matrix form, it follows that

M,s? 4+ bs + k1 + k1o —k19 Yi(s) B F(s)
[ —k1o Mys? + ko ( Ya(s) ) - ( 0 )
or
Yi(s) 1 Mys? + k1o k12 F(s)
( Ya(s) ) A Ry Mis?tbs+E R ( 0 )
where

A= (M282 + k12)(M182 +bs+ k1 + ki2) — k‘%z .
So, when f(t) = asinw,t, we have that Y7(s) is given by

(IMQUJO(SZ + ]{712/M2)
(s? +w3)A(s)

Yi(s) =

For motionless response (in the steady-state), set the zero of the transfer
function so that

o ko
(o)

k
2, Fi2y 2 9 _
(3+?‘2) s*+w, or w; L
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Problems 43

P2.11 The transfer functions from V,(s) to Vy(s) and from Vjy(s) to 6(s) are:

K1K>
(Lgs + Ry)(Les + Re)
K
(Js2+ f8)((La+ La)s + Ry + Ry) + K3Kpns

The block diagram for 6(s)/V,(s) is shown in Figure P2.11, where

N 9(3) Vd(s) N KlKQKm
POV =y e T A

Va(s)/Ve(s) = ,and

0(s)/Va(s) =

where

A(s) = s(Les+ Re)(Lgs+ Rq)((Js+b)((Lag+ La)s + Ra+ Ry) + K K3) .

Iq Vd lq T w
Ve — o — 1L ol Ky | 1| i Ky —i@—» 1 m
c L cs+Re L s+Rq (L oL Js+Ra+Ra [ Km [ s > —=d

wa
K3

nl=

%)

A

FIGURE P2.11
Block diagram.

P2.12 The open-loop transfer function is

Y(s) K
R(s) s+20°
With R(s) =1/s, we have
K
Yis) = s(s+20)

The partial fraction expansion is

K /1 1
Vis)= = (= -
(5) 20<s s+20)’

and the inverse Laplace transform is

y(t) = 5o (1- ).

As t — o0, it follows that y(t) — K/20. So we choose K = 20 so that y(t)
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P2.13

P2.14

CHAPTER 2 Mathematical Models of Systems

approaches 1. Alternatively we can use the final value theorem to obtain

) K
Y(t)tsoo = llir(l] sY(s) = 30 = 1.

It follows that choosing K = 20 leads to y(t) — 1 as t — oo.

The motor torque is given by

Tr(5) = (Jins% 4 bys)0m(s) + (Jps* + brs)nfp(s)
n((Jps? + bys)/n? + Jps? +brs)0r(s)

where
n=0r(s)/0n(s) = gear ratio .
But
T (s) = Kinly(s)
and
1(5) = 1 Vy(s)
(Lg+Lys)s + Ry + Ry
and
Vi(s) = KT (s) = ﬁvf(s) .
Combining the above expressions yields
0r(s) _ K,K,
Vi(s)  nAi(s)As(s)
where
Aq(s) = Jrs? +brs + 7Jm32n—; b
and

Aa(s) = (Lgs + Lys + Ry + Ry)(Ry + Lys) .
For a field-controlled dc electric motor we have

wlo)/Vyls) = Sl B
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With a step input of Vi (s) = 80/s, the final value of w(t) is

e 80K, Km
W(t) 100 = ;1_1[)1(1) sw(s) = Rib 24 or R~ 0.03 .

Solving for w(t) yields

80K, 1 S0K.
t) = mﬁ‘l{ }: M o=/ Ity 9 4(1_ /Ity
w0 =R oo T Ry e ) = A

At t=1/2, w(t) =1, so
w(1/2) =241 —e /I =1 implies b/J = 1.08 sec .

Therefore,

0.0324

w(s)/Vy(s) = S11.08°

P2.15 Summing the forces in the vertical direction and using Newton’s Second
Law we obtain

i+ —x=0.
m
The system has no damping and no external inputs. Taking the Laplace

transform yields

o oS
24+ k/m

)

X(s)

where we used the fact that 2(0) = o and #(0) = 0. Then taking the
inverse Laplace transform yields

k
t) = —t .
x(t) JUOCOSHm

P2.16 Using Cramer’s rule, we have

)

or




© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

46 CHAPTER 2 Mathematical Models of Systems

where A = 4(1) — 2(1.5) = 1 . Therefore,

4(6) — 1.5(11) —2(6) 4 1(11)

T = 1 =75 and z9 = 0 =-1.
The signal flow graph is shown in Figure P2.16.
FIGURE P2.16
Signal flow graph.
So,
6(1) — 1.5(1L 11(3) + 5L (6
xlz—() 3(4):7.5 and z2 = () 32():—1.
1—3 1—3

P2.17 (a) For mass 1 and 2, we have

Mz + Kl(wl — 1’2) + bl(ig — j}l) =0
MoZo + Kg(wg — wg) + bz(w'g — 562) + Kl(wg — xl) =0.

(b) Taking the Laplace transform yields
(M1$2 + b18 + Kl)Xl(S) — KlXQ(S) = blng(S)
= (

—Kle(S) + (M282 + bos + Ky + KQ)XQ(S) bos + Kg)Xg(S) .
(c) Let
Gl(s) = Ko + bas
Ga(s) = 1/p(s)
Gs(s) =1/q(s)
Gy(s) = sby
where
p(s) = 82M2 +sfo+ K1+ Ko
and

q(s) = $2My + sfi+ Ky .
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Problems a7

The signal flow graph is shown in Figure P2.17.

3 X‘I
FIGURE P2.17
Signal flow graph.
(d) The transfer function from X3(s) to X1(s) is
Xi1(s) _ K1G1(s)Ga2(s)Gs(s) + Ga(s)Gs(s)
Xg(s) 1-— K%Gg(s)Gg(s)
P2.18 The signal flow graph is shown in Figure P2.18.
I v, L
z, Y, zZ,
\"
Y -z, v,

FIGURE P2.18
Signal flow graph.

The transfer function is

Va(s) Y12,Y37,4
Vi(s) 14+ Y1Zo + Y320 + Y324+ Y1 222,Y5

P2.19 For a noninerting op-amp circuit, depicted in Figure P2.19a, the voltage
gain (as a function of frequency) is

Z1(8) + Za(s)

Vo(s) = 70

Vin(s),

where Z;(s) and Zs(s) are the impedances of the respective circuits. In
the case of the voltage follower circuit, shown in Figure P2.19b, we have
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(a)

FIGURE P2.19
(a) Noninverting op-amp circuit. (b) Voltage follower circuit.

Z1 = oo (open circuit) and Zy = 0. Therefore, the transfer function is

W 4
‘/;n(s) N Z -

P2.20 (a) Assume R, > Ry and R, > Ry. Then Ry = R; + Ry = Ry, and

Vgs = VUin — Vo

where we neglect i;,, since Ry > R,. At node S, we have

Vo gmlls

Vo ( )
== Vgs — Vip — U or - .
9ImUgs Im\Vin o s 1 " R.

R
(b) With g,, Rs = 20, we have
20

vo _ 20 _
o T 21 0.95 .

(¢) The block diagram is shown in Figure P2.20.

Vin(s) 8mRs > vo(s)
FIGURE P2.20
Block diagram model.
P2.21 From the geometry we find that
lh—1 l
Az =k=——2(z—y) - 7y
I I



© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Problems 49

The flow rate balance yields

A% = pAz which implies Y(s) = ———=

By combining the above results it follows that

Y(s) = k(B2 (o) - Y(5) - 2Y ()

Therefore, the signal flow graph is shown in Figure P2.21. Using Mason’s

FIGURE P2.21
Signal flow graph.

gain formula we find that the transfer function is given by

(O v . ¢
X(S) 1+lﬁ§s+k(llll;Al§)p S+K2+K1’
where
k(ll — lg)p ZZP
K=———"" d Ky=-—-="-.
! LA P B2

P2.22 (a) The equations of motion for the two masses are

o5 L\? L
ML"6, + MgL6y + k 3 (91—92):§f(t)

2
ML*0y + MgL6y + k <§> (63 —601)=0.

With 91 = w1 and 92 = wy, we have

. (g9 Kk k Q)
“1—‘(z+m)91+m92+m

) k g k
= e (24 5 e, .
2= <L+4M>2
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a -
F(t) - Wi a9
—> 12ML[——— Vs [——————>| s
A
(@) b |<
1/s 4>W2 1/s 92 >
a -
Imag(s)
A
/+J C 2
9. k
(b) TINT Tam ™~
(0]
)0
- = Re(s)

FIGURE P2.22
(a) Block diagram. (b) Pole-zero map.
(b) Define a = g/L + k/4M and b = k/4M. Then

Oi(s) 1 s> +a
F(s) 2ML(s?2+a)?2—b? "

(c) The block diagram and pole-zero map are shown in Figure P2.22.
P2.23 The input-output ratio, V./Vip, is found to be

Vee  B(R—1)+hiRy
‘/i B _Bhre+hie(_hoe+Rf) .

P2.24 (a) The voltage gain is given by

Vo RpB152(R1 + Ra)

Vin  (R1+4 R2)(Rg + hie1) + Ri(R1 + R2)(1+ 1) + RiRLS1 B2
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(b) The current gain is found to be
1
< = BB, .
b1

(¢) The input impedance is

Vin _ (R1 + RQ)(RQ + hiel) + Rl(R1 + RQ)(l + 51) + R1 R, (152

1 R+ R»

)

and when S35 is very large, we have the approximation

Vin __ RpR1S152
ip1 Ri+Ry

P2.25 The transfer function from R(s) and Ty(s) to Y (s) is given by

(G(s)R(s) + Td(s))) +Ty(s) + Gs)R(s)

Also, we have that

when R(s) = 0. Therefore, the effect of the disturbance, Ty(s), is elimi-
nated.

P2.26 The equations of motion for the two mass model of the robot are

Mz +b(x —9)+ k(x —y) = F(t)
my+by—2)+kly—xz)=0.

Taking the Laplace transform and writing the result in matrix form yields

Ms? +bs+k  —(bs+k) X(s) F(s)
—(bs+k) ms®+bs+k Y (s) 0
Solving for Y (s) we find that

F(s)  s2s24 (14 2) (%er %)] .
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P2.27 The describing equation of motion is

2

. 1
mZ=mg—k— .

z

Defining

2
f('z»i) = _ki

mz2

leads to

Z = f(z,i) .

The equilibrium condition for i, and z,, found by solving the equation of
motion when

2=2=0,
is
2
k:zo_ 9
— =2z
mg

We linearize the equation of motion using a Taylor series approximation.
With the definitions

Az=2z—2, and Ai=1—1,,

we have Az =z and Az = % Therefore,

AZ = f(Z,’L) = f(Zoa'L.o) + % ij;’ Az + % fzj;’ A1 —+ .-
But f(z0,i,) = 0, and neglecting higher-order terms in the expansion
yields
< 2ki? 2ki,
Ay = Llop, Zlopn, .
mz3 mz2

Using the equilibrium condition which relates z, to i,, we determine that

. 2

Ar="In—Ini.

Zo 1o

Taking the Laplace transform yields the transfer function (valid around
the equilibrium point)

AZ(s) _ —gliy

Al(s) s2—2g/z,
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P2.28 The signal flow graph is shown in Figure P2.28.

FIGURE P2.28
Signal flow graph.

(a) The PGBDP loop gain is equal to -abed. This is a negative transmis-
sion since the population produces garbage which increases bacteria
and leads to diseases, thus reducing the population.

(b) The PMCP loop gain is equal to +efg. This is a positive transmis-
sion since the population leads to modernization which encourages
immigration, thus increasing the population.

(¢) The PMSDP loop gain is equal to +ehkd. This is a positive trans-
mission since the population leads to modernization and an increase
in sanitation facilities which reduces diseases, thus reducing the rate
of decreasing population.

(d) The PMSBDP loop gain is equal to +ehmed. This is a positive
transmission by similar argument as in (3).

P2.29 Assume the motor torque is proportional to the input current
T = ki .
Then, the equation of motion of the beam is
Jb=ki,

where J is the moment of inertia of the beam and shaft (neglecting the
inertia of the ball). We assume that forces acting on the ball are due to
gravity and friction. Hence, the motion of the ball is described by

mx = mgeop — bt
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P2.30

P2.31

CHAPTER 2 Mathematical Models of Systems

where m is the mass of the ball, b is the coefficient of friction, and we
have assumed small angles, so that sin ¢ = ¢. Taking the Laplace transfor
of both equations of motion and solving for X(s) yields

X(s)/1(s) = 82(%% .
Given
Hs) = 7'8]:— 1

where 7 = 4us = 4 x 107% seconds and 0.999 < k < 1.001. The step
response is

k 1k k

Y(s) = C— = )
() Ts+1 s s s+1/7

Taking the inverse Laplace transform yields
yt) =k —ke /T = k(1 —e7¥7) .

The final value is k. The time it takes to reach 98% of the final value is
t = 15.6us independent of k.

From the block diagram we have

Yl(S) = GQ(S)[Gl (S)El(s) + Gg(S)EQ(S)]
= Ga(s)G1(s)[Ri(s) — Hi(s)Y1(s)] + Ga2(s)G3(s) Ea(s) -

Therefore,

_ G1(s)Ga(s) G (s)Gs(s)
M) =17 G1(s)Ga(s)Hi(s) )+ 17 G1(3)Ga(s) Hi(5)

And, computing Es(s) (with Ra(s) = 0) we find

Ga(s)
Ga(s)

EQ(S) .

Es(s) = Hy(s)Ya(s) = Ha(s)Gs(s) Yi(s) + G5(s)Es(s)

or

Eo(s) = Ga(5)Go(s)Ha(s)

 Ga(s)(1— G5(3)G6(8)H2(3))Y1(3) .

Substituting Fs(s) into equation for Yi(s) yields

_ Gi(s)Ga(s)
1+ Gi(s)Ga(s)Hi(s)

Yi(s) Ry (s)
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N G3(s)Ga(s)Gg(s) Ha(s) Yis)
(1+ G1(5)Ga(s)H(s))(1 = G5(5)Go(s)Ha(s))

Finally, solving for Yj(s) yields
Yl(s) = Tl(S)Rl(S)
where

Tl(S) =
G1(5)Ga(s)(1 — G5(s)Ge(s)Ha(s))
(1+ G1(s)Ga(s)H1(s))(1 — G5(s)Ge(s)Ha(s)) — G3(s)Ga(s)Ge(s)Ha(s)

Similarly, for Y5(s) we obtain

Ya(s) = To(s)Ri(s) .

G1(s)G4a(5)Gs(s)
(1 + Gi(s)G2(s)Hi(s))(1 = G5(5)Go(s)Ha(s)) — Ga(s)Gal(s)Ge(s) Ha(s)

P2.32 The signal flow graph shows three loops:

Ly = -G1G3G4Hy
Lo = —GoG5GgHy
Ly = —H{GsGsGoG7G4HoG .

The transfer function Y5/R; is found to be

Yas) _ GiGsGoAi — GaGsGaly
Rl(s) 1— (L1 + Lo + L3) + (L1L2) ’

where for path 1
Ap=1
and for path 2
Ay=1—-1,.

Since we want Y5 to be independent of Ry, we need Y3/R; = 0. Therefore,
we require

G1GsGg — G2G5G6(1 + G1G3G4H2) =0.
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P2.33 The closed-loop transfer function is

Y(S) _ Gg(S)Gl(S)(GQ(s) + K5K6)
R(s) 1—Gs(s)(Hi(s) + Ke) + G3(s)G1(s)(Ga(s) + K5Ke)(Ha(s) + Kg) -

P2.34 The equations of motion are

mat1 + b — v2) + k1(y1 —y2) =0
madio + b(Y2 — 1) + k1(y2 — y1) + kaya = kox

Taking the Laplace transform yields
(m15° 4 bs + k1)Y1(s) — (bs + k1) Ya(s) = 0
(mgs® + bs + ki + ko) Ya(s) — (bs 4 k1) Yi(s) = k2 X (s)
Therefore, after solving for Y7(s)/X(s), we have
Ya(s) ko (bs + k1)

X(s)  (mys?+bs+ ki)(mos? +bs + ky + ka) — (bs + k1)?

P2.35 (a) We can redraw the block diagram as shown in Figure P2.35. Then,
Kl /S(S + 1) Kl

T(s) = - .
O TR+ Kas) s 1) - 2+ (1 Kaka)s - Kz

(b) The signal flow graph reveals two loops (both touching):

— K —Ki1 K>
1= d Ly = .
! s(s+1) o 2 s+1
Therefore,
K 1 K
T(s) 1/s(s +1) 1

T I+ Ki/s(s+ 1)+ K1Ka/(s +1) 2+ (1+ KaKq1)s+ K;
(¢) We want to choose K7 and K3 such that
s 4+ (1 + KoK1)s + Ky = s> + 205 + 100 = (s 4 10)? .

Therefore, K1 = 100 and 1 + Ky K7 = 20 or K9 = 0.19.
(d) The step response is shown in Figure P2.35.
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K -
R(S ) ﬁt 5 (5+1) Y (S)

1+Kys

0.9

08} ,
0.7F B :. : : B . 4

06 :.<---- time to 90% = 0.39 sec

y(t)

0.5 i ,
04+ i ,
ol | — "

ol | i

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
time(sec)

FIGURE P2.35
The equivalent block diagram and the system step response.

P2.36 (a) Given R(s) = 1/s%, the partial fraction expansion is

Y(s) = 24 3 8/3 3/4 1 13/12
o s2(s+2)(s+3)(s+4) s+2 s+3 s+4 s2 s

Therefore, using the Laplace transform table, we determine that the
ramp response is

8
O3t

3
u(t) =37 —ge e 27 =
(b) For the ramp input, y(t) ~ 0.21 at ¢t = 1. second (see Figure P2.36a).

(c) Given R(s) =1, the partial fraction expansion is

¥(s) = 24 _ 12241
C(s+2)(s+3)(s+4) s+2 s+3 s+4

Therefore, using the Laplace transform table, we determine that the
impulse response is

y(t) = 1272 — 24e730 41274 | t>0.
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(d) For the impulse input, y(¢) ~ 0.65 at t = 1 seconds (see Figure P2.36b).

(a) Ramp input (b) Impulse input
2 : : 08 : :
18}
0.7t .
1.6} |
0.6 : .
14} i
|
0.5f i .
1.2} |
|
g 1t Zo04f : .
|
0.8t :
0.3} | .
06 |
0.2t | 1
04t :
oal i |
021 \ [
| |
0 1 i 0 1 i
0 1 2 3 0 1 2 3
Time (sec) Time (sec)
FIGURE P2.36
(a) Ramp input response. (b) Impulse input response.
P2.37 The equations of motion are
d’x d?y
mi—s = — (k1 + ko)z + k and mo——s = ko(x — U .
L (k1 + k2)x + kay 2 g2 2(z —y) +
When m; =ms =1 and k1 = ko = 1, we have
d’x d*y
— =-2z+y and —S =x—-y+u.
dt? 4 at? Y
P2.38 The equation of motion for the system is
d*0 do
J—+b—+kO=0
az Tlar T ’

where k is the rotational spring constant and b is the viscous friction
coefficient. The initial conditions are §(0) = 6, and 6(0) = 0. Taking the
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Laplace transform yields
J(520(s) — s8,) + b(s6(s) — 6,) + kf(s) =0 .
Therefore,

(s + %90) _ (s +2¢wn)b,
(s> +4s+5) 2+ 2Awps+wi

0(s) =

Neglecting the mass of the rod, the moment of inertia is detemined to be
J=2Mr*=0.5kg-m? .

Also,

k b
Wy, = \/;— 0.02rad/s and (= T 0.01 .

Solving for 6(t), we find that

0, _ .
0(t) = VD = e St sin(wpy/1 — C2 t+¢) ,

where tan ¢ = /1 — (2/(). Therefore, the envelope decay is

95 = 700 e_cw”t .
V1=
So, with Cw, = 2 x 1074, 6, = 4000° and 0y = 10°, the elapsed time is
computed as

1 0

t=—1I 2
Con VI C20,

When ¢t < 0, we have the steady-state conditions

= 8.32 hours .

i1(0) =1A | v,(0) =2V and wv.(0) =5V,
where v.(0) is associated with the 1F capacitor. After ¢ > 0, we have

o
% + 21 + 4y — iz) = 10e

2 —2t

and

/igdt-l— 1029 +4(ig — il) —11=0.
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Taking the Laplace transform (using the initial conditions) yields

. 10 s+ 7
2(8[1—11(0))+2[1+4Il—4[2 = S—l-—2 or (S+3)[1($)—2[2(S) = s 12

and
1
[g[g—UC(O)]+1OIQ+4([2—I1) =I1i(s) or —bsli(s)+(14s+1)Ix(s) = 5s.

Solving for I5(s) yields
~ 5s(s? +6s+13)

I =
T (s +2)A(s)
where
s+ 3 —2
A(s) = = 145> + 335+ 3 .
—5s5  14s+1
Then,

Vo(s) = 101a(s) .
P2.40 The equations of motion are
J10 = K0 —601) —b(0y — 62) + T and  Joby = b(0; — 05) .
Taking the Laplace transform yields
(J15% + bs + K)B1(s) — bsOa(s) = Kba(s) + T(s)
and
(Jos? + bs)Ba(s) — bshi(s) =0 .
Solving for 6,(s) and 63(s), we find that

(K0s(s) + T(s))(J2s +b)
A(s)

01(s) = and Os(s) =

where
A(s) = Ji1Jos® + b(Jy + Jo)s® + JoKs + bK .

P2.41 Assume that the only external torques acting on the rocket are control
torques, T, and disturbance torques, Ty, and assume small angles, 6(t).
Using the small angle approximation, we have

h=V0



© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Problems 61

JO=T.+ 1Ty,

where J is the moment of inertia of the rocket and V' is the rocket velocity
(assumed constant). Now, suppose that the control torque is proportional
to the lateral displacement, as

T.(s)=—KH(s) ,

where the negative sign denotes a negative feedback system. The corre-
sponding block diagram is shown in Figure P2.41.

H gesired0 4:?— K

FIGURE P2.41
Block diagram.

+i
3
w |—=
N
n<<

H(s)

P2.42 (a) The equation of motion of the motor is

dw
JE—Tm—bUJ,

where J = 0.1, b = 0.06, and T;,, is the motor input torque.

(b) Given T),(s) = 1/s, and w(0) = 0.7, we take the Laplace transform
of the equation of motion yielding

sw(s) —w(0) + 0.6w(s) = 10T,

or
(s) 0.7s 4+ 10
w(s) = —— .
s(s+0.6)
Then, computing the partial fraction expansion, we find that

A B 16.67 15.97
w(s) = — = _ .
s s+0.6 s s+ 0.6

The step response, determined by taking the inverse Laplace trans-
form, is

w(t) = 16.67 — 15.97¢7°%  +>0.
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P2.43

P2.44

CHAPTER 2 Mathematical Models of Systems

The work done by each gear is equal to that of the other, therefore
T =TL05 .

Also, the travel distance is the same for each gear, so
716, = 6y, .

The number of teeth on each gear is proportional to the radius, or

r1No = roN7y .
So,
Om _ 12 _ N2
0, N’
and
N16,, = Nabp,
0 = % m = N, ,
where
n = Nj/Ny .
Finally,
T, 60, N
T, bn Ny
The inertia of the load is
mpLrt
=5

Also, from the dynamics we have
T5 = Jrwo + brwo
and
Ty =nTy = n(Jpws + brwa) .
So,

T = nz(JLdJl + wal) ,
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since
Wo = nwy .
Therefore, the torque at the motor shaft is
T =T+ Ty = n*(Jrwr + brwi) + Jndr + bpw -

P2.45 Let U(s) denote the human input and F'(s) the load input. The transfer
function is
G(s) + KGi(s) (s) + Ge(s) + KGi(s)
As) A(s)

P(s) = F(s)

where
A=1+GH(s)+Gi1KBH(s)+ G.E(s) + G1KE(s) .

P2.46 Consider the application of Newton’s law (3 F' = ma). From the mass
m, we obtain

myiy = F — ki(z1 — x2) — b1 (&1 — &2).
Taking the Laplace transform, and solving for X (s) yields

Xi(s) = ——F(s) + %XQ(S),

where
A1 = myps® + bis + k.
From the mass m; we obtain
myiy = —koxy — bodo + k1 (x1 — x2) + by (&1 — @2).
Taking the Laplace transform, and solving for Xs(s) yields

Xa(s) = S (o),

where
Ag = mys® + (by + bo)s + ky + ko.

Substituting Xa(s) above into the relationship fpr X;(s) yields the trans-
fer function

Xi(s) _ Aa(s)

F(S) Al(S)Ag(s) - (bls + k1)2
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P2.47 Using the following relationships

h(t) = / (1.66(t) — h(t))dt
w(t) = 6(t)
Tis(t) = Kia(t)
Ua(t) = 50v; (t) = 10z, t) + ’Ub(t)

we find the differential equation is
d3h K, \ d%h K,, dh 8K,
w*( *m)mﬂoma: 7
P2.48 (a) The transfer function is
Va(s) (14 sR101)(1+ sRoCy)

Vg .

VI(S) Rlcgs
(b) When Ry = 100 k2, Ry =200 k2, C; =1 puF and Cy = 0.1 uF, we
have

Va(s)  0.2(s +10)(s + 50)

Vi(s) s )

P2.49 (a) The closed-loop transfer function is

_ G(s) 6205
 14+G(s) s+ 1352 +1281s + 6205

T(s)

(b) The poles of T'(s) are s; = —5 and sp 3 = —4 £ 535.
(c) The partial fraction expansion (with a step input) is

~1.0122 n 0.0061 4 0.07165 ~ 0.0061 — 0.0716y
5+5 s+4+ 735 s+4—335

Y(s)=1

(d) The step response is shown in Figure P2.49. The real and complex
roots are close together and by looking at the poles in the s-plane we
have difficulty deciding which is dominant. However, the residue at
the real pole is much larger and thus dominates the response.
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Amplitude

0 0.2 0.4 0.6 0.8 1 1.2 14 16 1.8 2

Time (secs)

FIGURE P2.49
Step response.

P2.50 (a) The closed-loop transfer function is

B 14000
~ §3 44552 4 3100s + 14500

T(s)

(b) The poles of T'(s) are
s1 =—5 and sg3= —20 % 550.

(c) The partial fraction expansion (with a step input) is

~0.9655  1.0275 N 0.0310 — 0.03905  0.0310 + 0.0390;
s s+5 5+ 20 + 550 5420 — 550

Y(s)

(d) The step response is shown in Figure P2.50. The real root dominates
the response.

(e) The final value of y(t) is
Yss = ll_r% sY (s) = 0.9655 .
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Amplitude

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Time (secs)

FIGURE P2.50
Step response.

P2.51 Consider the free body diagram in Figure P2.51. Using Newton’s Law
and summing the forces on the two masses yields
Ml.'l"(t) + bll‘(t) + k‘ll'(t) = bly(t)
Maij(t) + b1y(t) + kay(t) = bia(t) + u(?)

u(f) u(?)

FIGURE P2.51
Free body diagram.
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Advanced Problems

AP2.1 The transfer function from V (s) to w(s) has the form

w(s) K,
V(s) Tms+1'

In the steady-state,

Wss :li_ri%s [%} g =5K,, .
So,
K, =70/5=14.
Also,

w(t) = Vi K (1 — e7/™)
where V (s) = V,,,/s. Solving for 7,,, yields

—t
In(1 — w(t)/wss)

Tm =

When t = 2, we have
-2
m=—————— = 3.57 .
m = Tn(1 — 30/70)
Therefore, the transfer function is
w(s) 14
V(s) 357s+1°

AP2.2 The closed-loop transfer function form R;(s) to Ya(s) is

Yg(s) _ G1G4G5(S) + G1G2G3G4G6(8)
Ri(s) A

where
A =[1+ G3G4Hy(s)][1 + G1G2H3(s)] .
If we select
Gs(s) = —G2G3Ge(s)

then the numerator is zero, and Y3(s)/Ri(s) = 0. The system is now
decoupled.
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AP2.3 (a) Computing the closed-loop transfer function:

G(s)Ge(s)
1+ Ge(s)G(s)H(s)

Then, with E(s) = R(s) — Y (s) we obtain
_ [14+Gels)G(s)(H(s) — 1)
20 = [ S et ) M-

If we require that E(s) = 0 for any input, we need 1+ G.(s)G(s)(H(s) —
1)=0or

Y(s) = [ } R(s) .

Ge(s)G(s) =1 n(s)

H) == m66 "~ d

Since we require H(s) to be a causal system, the order of the numerator
polynomial, n(s), must be less than or equal to the order of the denom-
inator polynomial, d(s). This will be true, in general, only if both G.(s)
and G(s) are proper rational functions (that is, the numerator and de-
nominator polynomials have the same order). Therefore, making £ = 0
for any input R(s) is possible only in certain circumstances.

(b) The transfer function from Ty(s) to Y (s) is

B Ga(s)G(s)
Yis) = [1 n GC(S)G(S)H(S)} Ta(s) -

With H(s) as in part (a) we have

Y(s) = [gdg } Ty(s) .

(¢) No. Since

T Guls)G(s)
V() = [1 T Gu(5)G ) H(5)

} Tu(s) = T(s)Tu(s) ,

the only way to have Y (s) = 0 for any Ty(s) is for the transfer function
T(s) = 0 which is not possible in general (since G(s) # 0).

AP2.4 (a) With ¢(s) = 1/s we obtain

T(s) = SERVIC I
Define
a:zw and (:=1/Cy .

Ct
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Then, it follows that
1 -
B 1_=Ble_ B/e

s+a s S+« S

7(s) =

Taking the inverse Laplace transform yields

T(t) = %ﬁe_at + g = g[l —e ™).

(b)Ast—)oo,T(t)—>§:QS+1/R.

(c) To increase the speed of response, you want to choose Cy, @, S and
R such that

oo Qs+ 1/R
=

is "large.”
AP2.5 Considering the motion of each mass, we have
M3Zs + b3s + ksxs = us + b3y + kzxo

Moo + (b2 + bg)iQ + (]{72 + kg)xg = ug + b3xg + k3xz + body + koxq
Mia1 + (b1 + bg)il + (]{71 + kz)xl = w1 + boZg + koxo

In matrix form the three equations can be written as

My 0 O 21 i by +ba  —bo 0 1
0 My O o |+ —by  ba+b3 —bs T
0 0 M I3 0 —bs b3 I3

i ki +ke  —ko 0 xy uy

+ —ko ko + ks —k3 o | = | wuo

0 —k3 ks x3 us3

AP2.6 Considering the cart mass and using Newton’s Law we obtain
Mi=u—bx— Fsinyp

where I is the reaction force between the cart and the pendulum. Con-
sidering the pendulum we obtain

d?(x + Lsin )
m—

oTE = F'siny
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d*(L
m%:Fcosw—l—mg

Eliminating the reaction force F yields the two equations

(m 4 M)i + bi + mLg cos p — mL*sing = u
mL2p + mgLsin o +mLi cosp = 0

If we assume that the angle ¢ ~ 0, then we have the linear model

(m+ M)i+ bt +mLp =u
mL?p +mgLy = —mLi

AP2.7 The transfer function from the disturbance input to the output is

1

Y(s) = ——=T, .
)= Ty r

When Tjy(s) = 1, we obtain

y(t) _ e—(20+K)t ]

Solving for ¢ when y(t) < 0.1 yields

2.3
20+ K

When ¢ = 0.05 and y(0.05) = 0.1, we find K = 26.05.

t>

AP2.8 The closed-loop transfer function is

200K (0.25s + 1)
(0.255 + 1)(s + 1)(s + 8) + 200K

T(s) =

The final value due to a step input of R(s) = A/s is

200K

) A
v(t) = Aok 78

We need to select K so that v(t) — 50. However, to keep the percent
overshoot to less than 10%, we need to limit the magnitude of K. Fig-
ure AP2.8a shows the percent overshoot as a function of K. Let K = 0.06
and select the magnitude of the input to be A = 83.3. The inverse Laplace
transform of the closed-loop response with R(s) = 83.3/s is

v(t) = 50 + 9.85e~ 915 — 7193t (59 85 cos(2.24t) + 11.27 sin(2.24t))
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The result is P.O. = 9.74% and the steady-state value of the output is
approximately 50 m/s, as shown in Figure AP2.8b.

25

20

15

10

Percent Overshoot (%)

i i i i i i i i
0 001 0.02 003 004 0.05 006 0.07 008 0.09 0.1
K

Step Response

60
| System: untitled1
50 | “Peak amplitude: 54.9
Overshoot (%): 9.74
I At time (sec): 1.15
|
401 |
g I
k=]
2 I
= L
g 0 |
<
|
|
20 |
|
|
10 i
|
|
0 . . . .
0 0.5 1 15 2 25
Time (sec)
FIGURE AP2.8

(a) Percent overshoot versus the gain K. (b) Step response.

AP2.9 The transfer function is
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where
Zi(s) = ﬁ and Zs(s) = %;H .
Then we can write
“28 — K, + % + Kps
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Design Problems

CDP2.1 The model of the traction drive, capstan roller, and linear slide follows
closely the armature-controlled dc motor model depicted in Figure 2.18
in Dorf and Bishop. The transfer function is

(s) rK,,
s) = ,
$[(Lms + Ry (Jrs + b)) + Kp K
where
Jr = Jm +172(M, + M) .
v, Lmls(il"Rm g JTslbm e I e I e C
K »
Back EMF b

DP2.1 The closed-loop transfer function is

Y(S) _ Gl(s)Gg(s)
R(s) 1+ Gi(s)Hi(s) — Ga(s)Ha(s)

When G1H; = GyHy and G1G2 = 1, then Y (s)/R(s) = 1. Therefore,
select
_ Ga(s)Ha(s)

and Hi(s) = T Gi) = G%(s)Ha(s) .

Gi(s) = Gals)

DP2.2 At the lower node we have

1 1 .
U(Z+§+G)+222—20—0.

Also, we have v = 24 and i, = Gv . So

1 1
U(Z+§+G)+2GU_20:O
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and

C20-v(3+5) 1

DP2.3 Taking the Laplace transform of
1 3 1
y(t) =€~ — e 113
yields
1 1 3 1

Y(s) = . 2y
() s+1 4(s+2) 4s i 252

Similarly, taking the Laplace transform of the ramp input yields

Therefore

R(s)  (s+1)(s+2)°
DP2.4 For an ideal op-amp, at node a we have

Vin — VUq Vo — Vg
+ —0,
Ry Ry

and at node b
Vin — Up

R2 Uy

from it follows that

1 1
— +Cs|Vy=—=—Vip .
|:R2 - S} "Ry "

Also, for an ideal op-amp, V;, — V,; = 0. Then solving for V}, in the above
equation and substituting the result into the node a equation for V,, yields

Vs 2

_ 2 [1 mtOs
‘/in RLQ—FCS

Ry 2

or

Vo(s) _ ReCs—1
Vm(s) N RoCs+1 '
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For v, (t) = At, we have Vj,(s) = A/s?, therefore
2 2
vo(t) = A [—e‘ﬁtﬂ— —]
(t) 3 3
where 5 =1/RsC.

DP2.5 The equation of motion describing the motion of the inverted pendulum
(assuming small angles) is

. g
Zo=0.
®+ LSO
Assuming a solution of the form ¢ = kcosyp, taking the appropriate

derivatives and substituting the result into the equation of motion yields
the relationship

¥ = i

If the period is T' = 2 seconds, we compute ¢ = 27 /7. Then solving for L
yields L = 0.99 meters when g = 9.81 m/s%. So, to fit the pendulum into
the grandfather clock, the dimensions are generally about 1.5 meters or
more.
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Computer Problems

CP2.1 The m-file script is shown in Figure CP2.1.

p=l1 710} q=[12; |~ 1 9 24
% Part (a) / P=
pg=conv(p,q) -5

% Part (b) / -2

P=roots(p), Z=roots(q)”] Z=
% Part (c) -2
value=polyval(p,-1) ——— value =
4
FIGURE CP2.1

Script for various polynomial evaluations.

20

CP2.2 The m-file script and step response is shown in Figure CP2.2.

numc = [1]; denc =[1 1]; sysc = tf(humc,denc)
numg = [1 2]; deng = [1 3]; sysg = tf(humg,deng)
% part (a)

sys_s = series(sysc,sysg);

sys_cl = feedback(sys_s,[1])

% part (b)

step(sys_cl); grid on o

Step Response
From: U(1)

Transfer function:
s+2

sA2+5s+5

Amplitude
To:Y(1)

Time (sec)

FIGURE CP2.2
Step response.
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Computer Problems 77

Given
y+4y+3y=u
with y(0) =9y =0 and U(s) = 1/s, we obtain (via Laplace transform)

1 1
YO = P T T T

Expanding in a partial fraction expansion yields

i_ 1 - 1
3s  6(s+3) 2(s+1)

Y(s) =

Taking the inverse Laplace transform we obtain the solution
y(t) = 0.3333 + 0.1667¢ 3" — 0.5¢ 7" .

The m-file script and step response is shown in Figure CP2.3.

Step Response

035 T T T
0.3 i
0.25r R
8 02r n=[1];d=[1 4 3]; sys = tf(n,d); 1
£ t=[0:0.1:5;
3 y = step(sys,t);
< 0151 | ya=0.3333+0.1667*exp(-3*t)-0.5%exp(-t); | |
plot(ty,t,ya); grid;
01k title('Step Response); |
’ xlabel('Time (sec));
ylabel('Amplitude’);
0.05r i
0 Il Il Il Il Il Il Il Il Il
0 0.5 1 15 2 25 3 3.5 4 45 5
Time (sec)
FIGURE CP2.3

Step response.
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CP2.4 The mass-spring-damper system is represented by
mi +bx +kx=f.

Taking the Laplace transform (with zero initial conditions) yields the
transfer function

B 1/m

82 4bs/m+k/m

X(s)/F(s)

The m-file script and step response is shown in Figure CP2.4.

m=10; k=1; b=0.5;
num=[1/m]; den=[1 b/m k/m]J;
sys = tf(num,den);
t=[0:0.1:150];

step(sys,t)

Step Response
From: U(1)

Amplitude

08 [~

06 -

04

02

To:Y(1)

0 50 100 150

Time (sec.)

FIGURE CP2.4
Step response.

CP2.5 The spacecraft simulations are shown in Figure CP2.5. We see that as J
is decreased, the time to settle down decreases. Also, the overhoot from
10° decreases as J decreases. Thus, the performance seems to get better
(in some sense) as J decreases.
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Nominal (solid); Off-nominal 80% (dashed); Off-nominal 50% (dotted)

Spacecraft attitude (deg)

0 10 20 30 40 50 60 70 80 2 100

Time (sec)

%Part (a)

a=1; b=8; k=10.8e+08; J=10.8e+08;
num=k*[1 al;

den=J*[1 b 0 0]; sys=tf(num,den);
sys_cl=feedback(sys,[1]);

%

% Part (b) and (c)

t=[0:0.1:100];

%

% Nominal case

f=10%pi/180; sysf=sys_cl*f;
y=step(sysf,t);

%

% Off-nominal case 80%

J=10.8e+08%0.8; den=J*[1 b 0 0];
sys=tf(num,den); sys_cl=feedback(sys,[1]);
sysf=sys_cl*f;

yl1=step(sysf,t);

%

% Off-nominal case 50%

J=10.8e+08%0.5; den=J*[1 b 0 0];
sys=tf(num,den); sys_cl=feedback(sys,[1]);
sysf=sys_cl*f;

y2=step(sysf,t);

%
plot(t,y*180/pi,t,y1*180/pi,'--'t,y2*180/pi,":"),grid
xlabel('Time (sec))

ylabel('Spacecraft attitude (deg)")
title('Nominal (solid); Off-nominal 80% (dashed); Off-nominal 50% (dotted)")

FIGURE CP2.5
Step responses for the nominal and off-nominal spacecraft parameters.
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CP2.6 The closed-loop transfer function is

455 + 855 + 45* + 565 + 1127 4 565

T(s
) AGs) |
p =
num1=[4]; den1=[1]; sys1 = tf(num1,den1); 7.0709
num2=[1]; den2=[1 1]; sys2 = tf(hum2,den2); -7.0713 )
num3=[1 0]; den3=[1 0 2]; sys3 = tf(num3,den3); 1.2051 + 2.0863i
num4=[1]; den4=[1 0 0]; sys4 = tf(num4,den4); 1.2051 - 2.0863i
num5=[4 2]; den5=[1 2 1]; sys5 = tf(num5,den5); 0.1219 + 1.8374i
numé6=[50]; den6=[1]; sys6 = tf(num6,den6); 0.1219 - 1.8374i

num7=[1 0 2]; den7=[1 0 0 14]; sys7 = tf(hum7,den7);
sysa = feedback(sys4,sys6,+1);

sysb = series(sys2,sys3);

sysc = feedback(sysb,sys5);

sysd = series(sysc,sysa);

syse = feedback(sysd,sys7);

sys = series(sys1,syse) z=

-2.3933
-2.3333
-0.4635 + 0.1997i
-0.4635 - 0.1997i

-

%

pzmap(sys)

%

p=pole(sys)

poles 0

1.2051 + 2.0872i
1.2051 - 2.0872i
-2.4101

z=zero(sys) » -1.0000 + 0.0000i
-1.0000 - 0.0000i

Polezero map

0.5 [~ *

Imag Axis
o
T
X
®
o
o
X
Il

-05 [ *

Real Axis

FIGURE CP2.6
Pole-zero map.



© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

Computer Problems 81

where

A(s) = 519 + 357 — 455% — 12557 — 20055 — 11775°
— 923445% — 348553 — 7668s% — 5598s — 1400 .

CP2.7 The m-file script and plot of the pendulum angle is shown in Figure CP2.7.
With the initial conditions, the Laplace transform of the linear system is

0(s)

B 908
824+ g/L

To use the step function with the m-file, we can multiply the transfer
function as follows:

82 90

)=y gs

which is equivalent to the original transfer function except that we can
use the step function input with magnitude 6y. The nonlinear response
is shown as the solid line and the linear response is shown as the dashed
line. The difference between the two responses is not great since the initial
condition of 6y = 30° is not that large.

30
L=0.5;m=1;9=9.8;

theta0=30;

% Linear simulation

sys=tf([100],[1 0 g/L]);

—TT [y,tl=step(theta0*sys,[0:0.01:10]);

% Nonlinear simulation
[tynl]=ode45(@pend,t,[theta0*pi/180 0]);
plot(t,ynl(:1)*180/pi,ty,'--);

xlabel('Time (s)')

ylabel('\theta (deg)")

0 (deg)
o

»

function [yd]=pend(ty)
L=0.5;9=9.8;
yd(1)=y(2);
yd(2)=-(g/L)*sin(y(1));
yd=yd";

-20

-30

FIGURE CP2.7
Plot of 0 versus xt when 0y = 30°.
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CP2.8 The system step responses for z = 5,10, and 15 are shown in Fig-
ure CP2.8.

z=5 (solid), z=10 (dashed), z=15 dotted)

15

X(t)

0 0.5 1 15 2 25 3 3.5 4 4.5 5
Time (sec)

FIGURE CP2.8
The system response.

CP2.9 (a,b) Computing the closed-loop transfer function yields

G(s) s2+2s+1

) = G HG) ~ 2+ as+3

The poles are s = —3, —1 and the zeros are s = —1, —1.
(c) Yes, there is one pole-zero cancellation. The transfer function (after
pole-zero cancellation) is

s+1
s+3°
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Pole?Zero Map

1 T T T T T

08 - 1

0.6 - 1

02 =1

Imaginary Axi s
o
K
®
L

02 A

204 B

08 A

21 1 1 1 1 1
?-3 7-25 72 7-1.5 71 ?-0.5 0
Real Axi s

>>
Transfer function:
ng=[11]; dg=[1 2]; sysg = tf(ng,dg); SA2 42541
nh=[1]; dh=[1 1]; sysh =tf(nh,ab), |
sys=feedback(sysg,sysh) SA2 +45+3

%
pzmap(sys)
% poles p=
pole(sys) >

zero(sys) -3

\

zZeros

-1
-1

FIGURE CP2.9
Pole-zero map.

CP2.10 Figure CP2.10 shows the steady-state response to a unit step input and a
unit step disturbance. We see that K = 1 leads to the same steady-state
response.



