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P R E F A C E

In each chapter, there are five problem types:

Exercises

Problems

Advanced Problems

Design Problems/Continuous Design Problem

Computer Problems

In total, there are over 1000 problems. The abundance of problems of in-
creasing complexity gives students confidence in their problem-solving
ability as they work their way from the exercises to the design and
computer-based problems.

It is assumed that instructors (and students) have access to MATLAB

and the Control System Toolbox or to LabVIEW and the MathScript RT
Module. All of the computer solutions in this Solution Manual were devel-
oped and tested on an Apple MacBook Pro platform using MATLAB 7.6
Release 2008a and the Control System Toolbox Version 8.1 and LabVIEW
2009. It is not possible to verify each solution on all the available computer
platforms that are compatible with MATLAB and LabVIEW MathScript
RT Module. Please forward any incompatibilities you encounter with the
scripts to Prof. Bishop at the email address given below.

The authors and the staff at Prentice Hall would like to establish an
open line of communication with the instructors using Modern Control

Systems. We encourage you to contact Prentice Hall with comments and
suggestions for this and future editions.

Robert H. Bishop rhbishop@marquette.edu
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C H A P T E R 1

Introduction to Control Systems

There are, in general, no unique solutions to the following exercises and
problems. Other equally valid block diagrams may be submitted by the
student.

Exercises

E1.1 A microprocessor controlled laser system:

Controller

Error Current i(t)
Power

out

Desired

power

output

Measured

power

- Laser

Process

   processor
Micro-

Power

Sensor

Measurement

E1.2 A driver controlled cruise control system:

Desired

speed

Foot pedal
Actual

auto

speed

Visual indication of speed

Controller

-

Process

Measurement

Driver
Car and

Engine

Speedometer

E1.3 Although the principle of conservation of momentum explains much of
the process of fly-casting, there does not exist a comprehensive scientific
explanation of how a fly-fisher uses the small backward and forward mo-
tion of the fly rod to cast an almost weightless fly lure long distances (the

1
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2 CHAPTER 1 Introduction to Control Systems

current world-record is 236 ft). The fly lure is attached to a short invisible
leader about 15-ft long, which is in turn attached to a longer and thicker
Dacron line. The objective is cast the fly lure to a distant spot with dead-
eye accuracy so that the thicker part of the line touches the water first
and then the fly gently settles on the water just as an insect might.

Desired

position of
the !y

Actual
position
of the !y

Visual indication
of the position of 
the !y

Fly-"sher
Wind 

disturbance
Controller

-

Process

Measurement

Mind and 
body of the
!y-"sher  

Rod, line,
and cast

Vision of 
the !y-"sher

E1.4 An autofocus camera control system:

One-way trip time for the beam

Distance to subject

Lens focusing

motor

K 1

Lens

Conversion factor

(speed of light or
     sound)

Emitter/

Receiver

Beam

Beam return Subject
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Exercises 3

E1.5 Tacking a sailboat as the wind shifts:

Desired

sailboat

direction

Actual

sailboat

direction

Measured sailboat direction

Wind

Error

-

Process

Measurement

ActuatorsController

Sailboat

Gyro compass

Rudder and
sail adjustment

Sailor

E1.6 An automated highway control system merging two lanes of traffic:

Desired
gap

Actual
gap

Measured gap

Error

-

Process

Measurement

ActuatorsController

Active
vehicleBrakes, gas or

steering

Embedded
computer

Radar

E1.7 Using the speedometer, the driver calculates the difference between the
measured speed and the desired speed. The driver throotle knob or the
brakes as necessary to adjust the speed. If the current speed is not too
much over the desired speed, the driver may let friction and gravity slow
the motorcycle down.

Desired
speed

Visual indication of speed

Actual
motorcycle
speed

Error

-

Process

Measurement

ActuatorsController

Throttle or
brakes

Driver Motorcycle

Speedometer
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4 CHAPTER 1 Introduction to Control Systems

E1.8 Human biofeedback control system:

Measurement

Desired

body

temp

Actual

body

temp

Visual indication of 

body temperature

Message to

blood vessels

-

ProcessController

Body sensor

Hypothalumus Human body

 TV display

E1.9 E-enabled aircraft with ground-based flight path control:

Corrections to the

!ight path

Controller

Gc(s)

Aircraft

G(s)-
Desired

Flight

Path

Flight

Path

Corrections to the

!ight path

Controller

Gc(s)

Aircraft

G(s)

-
Desired

Flight

Path

Flight

Path

Ground-Based Computer Network

Health

Parameters

Health

Parameters

Meteorological

data

Meteorological

data

Optimal

!ight path

Optimal

!ight path

Location

and speed

Location

and speed

E1.10 Unmanned aerial vehicle used for crop monitoring in an autonomous
mode:

Gc(s) G(s)-

Camera

Ground

photo

Controller UAV

Specified

Flight

Trajectory

Location with

respect to the ground

Flight

Trajectory

Map

Correlation

Algorithm

Trajectory

error

Sensor
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Exercises 5

E1.11 An inverted pendulum control system using an optical encoder to measure
the angle of the pendulum and a motor producing a control torque:

Error
AngleDesired

angle

Measured

angle

- Pendulum

Process

Optical
encoder

Measurement

Motor

Actuator

TorqueVoltage

Controller

E1.12 In the video game, the player can serve as both the controller and the sen-
sor. The objective of the game might be to drive a car along a prescribed
path. The player controls the car trajectory using the joystick using the
visual queues from the game displayed on the computer monitor.

Error
Game
objective

Desired
game
objective

- Video game

Process

Player
(eyesight, tactile, etc.)

Measurement

Joystick

Actuator

Player

Controller
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6 CHAPTER 1 Introduction to Control Systems

Problems

P1.1 An automobile interior cabin temperature control system block diagram:

Desired

temperature
set by the
driver

Automobile
cabin temperature

Measured temperature

Error

-

Process

Measurement

Controller

Automobile
cabin

Temperature 
 sensor

Thermostat and
air conditioning
unit

P1.2 A human operator controlled valve system:

Desired

 uid

output *

Error *
Fluid

output

* = operator functions

Visual indication

of  uid output *

-

Process

Measurement

Controller

Valve

Meter

Tank

P1.3 A chemical composition control block diagram:

Desired

chemical

composition

Error
Chemical

composition

Measured chemical

composition

-

Process

Measurement

Controller

Valve Mixer tube

Infrared analyzer
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Problems 7

P1.4 A nuclear reactor control block diagram:

Desired

power level
Output

power level

Error

Measured chemical

composition

-

Process

Measurement

Controller

Ionization chamber

Reactor
and rods

Motor and
ampli!er

P1.5 A light seeking control system to track the sun:

Ligh
intensity

Desired
carriage
position

Light 
source

Photocell
carriage
position

Motor
inputsError

-

ProcessController

Motor, 
carriage,
and gears

K

Controller

Trajectory
Planner

Dual
Photocells

Measurement

P1.6 If you assume that increasing worker’s wages results in increased prices,
then by delaying or falsifying cost-of-living data you could reduce or elim-
inate the pressure to increase worker’s wages, thus stabilizing prices. This
would work only if there were no other factors forcing the cost-of-living
up. Government price and wage economic guidelines would take the place
of additional “controllers” in the block diagram, as shown in the block
diagram.

Initial
wages

Prices

Wage increases

Market-based prices

Cost-of-living

-

Controller

Industry
Government
price
guidelines

K1Government
wage
guidelines

Controller

Process

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained 
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, 
recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



8 CHAPTER 1 Introduction to Control Systems

P1.7 Assume that the cannon fires initially at exactly 5:00 p.m.. We have a
positive feedback system. Denote by ∆t the time lost per day, and the
net time error by ET . Then the follwoing relationships hold:

∆t = 4/3 min.+ 3 min. = 13/3 min.

and

ET = 12 days× 13/3 min./day .

Therefore, the net time error after 15 days is

ET = 52 min.

P1.8 The student-teacher learning process:

Desired
knowledge

Error Lectures

Knowledge

Measured knowledge

-

Controller Process

Teacher Student

Measurement

Exams

P1.9 A human arm control system:

Visual indication of
arm location

z
y

u e

d

s

-

Controller Process

Measurement

Desired

arm

location

Arm

location
Nerve signals

Eyes and

pressure

receptors

Brain Arm &

muscles

Pressure
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Problems 9

P1.10 An aircraft flight path control system using GPS:

Desired
 ight path
from air tra"c
controllers

Flight

path

Measured  ight path

Error

-

Process

Measurement

ActuatorsController

Aircraft

Global Positioning
System

Computer

Auto-pilot
Ailerons, elevators,
rudder, and 
engine power

P1.11 The accuracy of the clock is dependent upon a constant flow from the
orifice; the flow is dependent upon the height of the water in the float
tank. The height of the water is controlled by the float. The control system
controls only the height of the water. Any errors due to enlargement of
the orifice or evaporation of the water in the lower tank is not accounted
for. The control system can be seen as:

Desired
height of 
the water
in !oat tank

Actual

height-

ProcessController

Flow from
upper tank 
to !oat tank

Float  level  

P1.12 Assume that the turret and fantail are at 90◦, if θw 6= θF -90
◦. The fantail

operates on the error signal θw - θT , and as the fantail turns, it drives the
turret to turn.

x

y

Wind

*
*

qW

qT

qF

Fantail

Turret

  = Wind angle
  =  Fantail angle
  =  Turret angle

qW

qT

qF

Torque

qTqW

Error

-

ProcessController

Gears & turret
Fantail
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10 CHAPTER 1 Introduction to Control Systems

P1.13 This scheme assumes the person adjusts the hot water for temperature
control, and then adjusts the cold water for flow rate control.

Desired water
temperature

Actual
water temperature
and !ow rate

Cold
water

Desired water
!ow rate

Measured water !ow

Measured water temperature

Error

-

ProcessController

-

Measurement

Human: visual
and touch

Valve adjust

Valve adjust Hot water
system

Cold water
system

Hot
water

P1.14 If the rewards in a specific trade is greater than the average reward, there
is a positive influx of workers, since

q(t) = f1(c(t)− r(t)).

If an influx of workers occurs, then reward in specific trade decreases,
since

c(t) = −f2(q(t)).

-
Error

-

ProcessController

f1(c(t)-r(t)) f2(q(t))
q(t)

Total of

rewards

c(t)

Average

rewards

r(t)

P1.15 A computer controlled fuel injection system:

Desired
Fuel
Pressure

Fuel 
Pressure

Measured fuel pressure

-

Process

Measurement

Controller

Fuel Pressure 
Sensor

Electronic
Control Unit

High Pressure Fuel
Supply Pump and
Electronic Fuel 
Injectors
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Problems 11

P1.16 With the onset of a fever, the body thermostat is turned up. The body
adjusts by shivering and less blood flows to the skin surface. Aspirin acts
to lowers the thermal set-point in the brain.

Body
temperature

Desired temperature
or set-point from body
thermostat in the brain

Measured body temperature

-

Process

Measurement

Controller

Internal sensor

Body
Adjustments 
within the
body

P1.17 Hitting a baseball is arguably one of the most difficult feats in all of sports.
Given that pitchers may throw the ball at speeds of 90 mph (or higher!),
batters have only about 0.1 second to make the decision to swing—with
bat speeds aproaching 90 mph. The key to hitting a baseball a long dis-
tance is to make contact with the ball with a high bat velocity. This is
more important than the bat’s weight, which is usually around 33 ounces
(compared to Ty Cobb’s bat which was 41 ounces!). Since the pitcher can
throw a variety of pitches (fast ball, curve ball, slider, etc.), a batter must
decide if the ball is going to enter the strike zone and if possible, decide
the type of pitch. The batter uses his/her vision as the sensor in the feed-
back loop. A high degree of eye-hand coordination is key to success—that
is, an accurate feedback control system.

P1.18 Define the following variables: p = output pressure, fs = spring force
= Kx, fd = diaphragm force = Ap, and fv = valve force = fs - fd.
The motion of the valve is described by ÿ = fv/m where m is the valve
mass. The output pressure is proportional to the valve displacement, thus
p = cy , where c is the constant of proportionality.

Screw
displacement
       x(t)

y

Valve position

Output 
pressure
   p(t)

fs

-

Diaphragm area

cValve

Constant of
proportionality

A

K

Spring

fv

fd
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12 CHAPTER 1 Introduction to Control Systems

P1.19 A control system to keep a car at a given relative position offset from a
lead car:

Throttle
Position of 
follower

u
Reference
photo

Relative 
position

Desired relative position

Position 
of lead

-

Controller
Video camera 
& processing
algorithms

Follower
car

Actuator

Fuel
throttle
(fuel)

Lead car

-

P1.20 A control system for a high-performance car with an adjustable wing:

Desired  
road 
adhesion

Road
adhesion

Measured road adhesion

Road 
conditions

-

Process

Measurement

Controller

Tire internal
strain gauges

Race Car

K

Actuator

Adjustable
wingComputer

P1.21 A control system for a twin-lift helicopter system:

Desired altitude Altitude

Measured altitude

Separation distanceDesired separation
distance

Measured separation

distance

-

-

Measurement

Measurement

Radar

Altimeter

Controller

Pilot

Process

Helicopter
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Problems 13

P1.22 The desired building deflection would not necessarily be zero. Rather it
would be prescribed so that the building is allowed moderate movement
up to a point, and then active control is applied if the movement is larger
than some predetermined amount.

Desired
de ection

De ection

Measured de ection

-

Process

Measurement

Controller

K

BuildingHydraulic
sti"eners

Strain gauges
on truss structure

P1.23 The human-like face of the robot might have micro-actuators placed at
strategic points on the interior of the malleable facial structure. Coopera-
tive control of the micro-actuators would then enable the robot to achieve
various facial expressions.

Desired
actuator
position

Voltage
Actuator
position

Measured position

Error

-

Process

Measurement

Controller

Ampli!er

Position
sensor

Electro-
mechanical
actuator

P1.24 We might envision a sensor embedded in a “gutter” at the base of the
windshield which measures water levels—higher water levels corresponds
to higher intensity rain. This information would be used to modulate the
wiper blade speed.

Desired
wiper speed

Wiper 
blade
speed

Measured water level

-

Process

Measurement

Controller

K Water depth
sensor

Wiper blade
and motor

Electronic
Control Unit
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14 CHAPTER 1 Introduction to Control Systems

P1.25 A feedback control system for the space traffic control:

Desired
orbit position

Actual
orbit position

Measured orbit position

Jet

commands

Applied

forces

Error

-

Process

Measurement

ActuatorController

SatelliteReaction
control jets

Control
law

Radar or GPS

P1.26 Earth-based control of a microrover to point the camera:

Microrover
Camera position

command

Controller

Gc(s)

Cam
era position com

m
and

Camera

Position

Receiver/

Transmitter Rover

position

Camera

M
easured cam

era position

G(s)

Measured camera

position

Sensor

P1.27 Control of a methanol fuel cell:

Methanol water

solution

Controller

Gc(s)

Recharging

System

GR(s)

Fuel Cell

G(s)-
Charge

Level
Desired

Charge

Level

Measured charge level

Sensor

H(s)
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Advanced Problems 15

Advanced Problems

AP1.1 Control of a robotic microsurgical device:

Controller

Gc(s)

Microsurgical

robotic manipulator

G(s)-
End-effector

Position
Desired

End-effector

Position

Sensor

H(s)

AP1.2 An advanced wind energy system viewed as a mechatronic system:

WIND ENERGY

SYSTEM

Physical System Modeling

Signals and Systems

Sensors and Actuators

Computers and 

Logic Systems
Software and 

Data Acquisition

COMPUTER EQUIPMENT FOR CONTROLLING THE SYSTEM

SAFETY MONITORING SYSTEMS
CONTROLLER ALGORITHMS

DATA ACQUISTION: WIND SPEED AND DIRECTION

        ROTOR ANGULAR SPEED

        PROPELLOR PITCH ANGLE  

   

CONTROL SYSTEM DESIGN AND ANALYSIS

ELECTRICAL SYSTEM DESIGN AND ANALYSIS

POWER GENERATION AND STORAGE

SENSORS

   Rotor rotational sensor

    Wind speed and direction sensor

ACTUATORS

   Motors for manipulatiing the propeller pitch

AERODYNAMIC DESIGN

STRUCTURAL DESIGN OF THE TOWER

ELECTRICAL AND POWER SYSTEMS

AP1.3 The automatic parallel parking system might use multiple ultrasound
sensors to measure distances to the parked automobiles and the curb.
The sensor measurements would be processed by an on-board computer
to determine the steering wheel, accelerator, and brake inputs to avoid
collision and to properly align the vehicle in the desired space.
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16 CHAPTER 1 Introduction to Control Systems

Even though the sensors may accurately measure the distance between
the two parked vehicles, there will be a problem if the available space is
not big enough to accommodate the parking car.

Error
Actual
automobile
position

Desired
automobile
position

- Automobile

Process

Ultrasound

Measurement

Steering wheel,
accelerator, and
brake

Actuators

On-board
computer

Controller

Position of automobile

relative to parked cars
and curb

AP1.4 There are various control methods that can be considered, including plac-
ing the controller in the feedforward loop (as in Figure 1.3). The adaptive
optics block diagram below shows the controller in the feedback loop, as
an alternative control system architecture.

Compensated
image

Uncompensated

image
Astronomical
telescope 
mirror

Process

Wavefront 
sensor

Measurement

Wavefront
corrector

Actuator & controller

Wavefront
reconstructor

Astronomical

object

AP1.5 The control system might have an inner loop for controlling the acceler-
ation and an outer loop to reach the desired floor level precisely.

Elevator Floor
Desired

acceleration
Desired

floor

Elevator

motor, 

cables, etc.

Controller #2 Controller #1
Error

-
Error

-

Acceleration

MeasurementMeasured acceleration

Outer 

Loop

Inner 

Loop
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Advanced Problems 17

AP1.6 An obstacle avoidance control system would keep the robotic vacuum
cleaner from colliding with furniture but it would not necessarily put the
vacuum cleaner on an optimal path to reach the entire floor. This would
require another sensor to measure position in the room, a digital map of
the room layout, and a control system in the outer loop.

Desired

distance

from 

obstacles

Distance

from 

obstacles

Error

-

Infrared

sensorsMeasured distance from obstacle

Controller

Process

Robotic

vacuum

cleaner

Motors, 

wheels, etc.
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18 CHAPTER 1 Introduction to Control Systems

Design Problems
The machine tool with the movable table in a feedback control configu-CDP1.1

ration:

Desired
position
    x

Measured position

Actual
position
    x

Error

-

Process

Measurement

ActuatorController

Position sensor

Machine 
tool with 
table

Ampli!er Positioning 
motor

DP1.1 Use the stereo system and amplifiers to cancel out the noise by emitting
signals 180◦ out of phase with the noise.

Desired
noise = 0

Noise
signal

Noise in
cabin-

Process

Measurement

Controller

Machine 
tool with 
table

Positioning 
motor

Microphone

Shift phase
by 180 deg

DP1.2 An automobile cruise control system:

Desired 
speed
of auto 
set by
driver

Desired
shaft 
speed

Actual
speed
of auto

Drive shaf t speedMeasured shaft speed

-

Process

Measurement

Controller

Automobile
and engine

Valve
Electric
motor

Shaft speed
sensor

K1/K
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DP1.3 An automoted cow milking system:

Location 
of cup

Milk

Desired cup
location

Measured cup location

Cow location

-

Measurement

Vision system

Measurement

Vision system

Controller Process

Motor and
gears

Robot arm and
cup gripper

Actuator

Cow and
milker

DP1.4 A feedback control system for a robot welder:

Desired
position

Voltage
Weld 
top 
position

Measured position

Error

-

Process

Measurement

Controller

Motor and
arm

Computer and
ampli!er

Vision camera

DP1.5 A control system for one wheel of a traction control system:

Brake torque

Wheel 
speed

Actual slip
Measured 
slip

Vehicle speed

Rw = Radius of wheel

-

-

Sensor
Vehicle
dynamics

Sensor

-

Antiskid 
controller

-
Wheel
dynamics

Engine torque Antislip 
controller

1/Rw

+ +

++
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20 CHAPTER 1 Introduction to Control Systems

DP1.6 A vibration damping system for the Hubble Space Telescope:

Signal to
cancel the jitter

Jitter of
vibration

Measurement of 0.05 Hz jitter

Desired
jitter = 0

Error

-

Process

Measurement

ActuatorsController

Rate gyro
sensor

Computer Gyro and
reaction wheels

Spacecraft
dynamics

DP1.7 A control system for a nanorobot:

Error
Actual
nanorobot
position

Desired
nanorobot
position

- Nanorobot

Process

External beacons 

Measurement

Plane surfaces
and propellers

Actuators

Bio-
computer

Controller

Many concepts from underwater robotics can be applied to nanorobotics
within the bloodstream. For example, plane surfaces and propellers can
provide the required actuation with screw drives providing the propul-
sion. The nanorobots can use signals from beacons located outside the
skin as sensors to determine their position. The nanorobots use energy
from the chemical reaction of oxygen and glucose available in the human
body. The control system requires a bio-computer–an innovation that is
not yet available.

For further reading, see A. Cavalcanti, L. Rosen, L. C. Kretly, M. Rosen-
feld, and S. Einav, “Nanorobotic Challenges n Biomedical Application,
Design, and Control,” IEEE ICECS Intl Conf. on Electronics, Circuits

and Systems, Tel-Aviv, Israel, December 2004.

DP1.8 The feedback control system might use gyros and/or accelerometers to
measure angle change and assuming the HTV was originally in the vertical
position, the feedback would retain the vertical position using commands
to motors and other actuators that produced torques and could move the
HTV forward and backward.

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained 
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, 
recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



Design Problems 21

Desired angle 

from vertical (0o)

Angle from

vertical

Error

-

Gyros &

accelerometersMeasured angle from vertical

Controller

Process

HTV
Motors, 

wheels, etc.
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C H A P T E R 2

Mathematical Models of Systems

Exercises

E2.1 We have for the open-loop

y = r2

and for the closed-loop

e = r − y and y = e2 .

So, e = r − e2 and e2 + e− r = 0 .

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

r

y

open-loop

closed-loop

FIGURE E2.1
Plot of open-loop versus closed-loop.

For example, if r = 1, then e2 + e − 1 = 0 implies that e = 0.618. Thus,
y = 0.382. A plot y versus r is shown in Figure E2.1.

22
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Exercises 23

E2.2 Define

f(T ) = R = R0e
−0.1T

and

∆R = f(T )− f(T0) , ∆T = T − T0 .

Then,

∆R = f(T )− f(T0) =
∂f

∂T

∣

∣

∣

∣

T=T0=20◦
∆T + · · ·

where

∂f

∂T

∣

∣

∣

∣

T=T0=20◦
= −0.1R0e

−0.1T0 = −135,

when R0 = 10, 000Ω. Thus, the linear approximation is computed by
considering only the first-order terms in the Taylor series expansion, and
is given by

∆R = −135∆T .

E2.3 The spring constant for the equilibrium point is found graphically by
estimating the slope of a line tangent to the force versus displacement
curve at the point y = 0.5cm, see Figure E2.3. The slope of the line is
K ≈ 1.

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

y=Displacement (cm)

Fo
rc

e
 (

n
)

Spring compresses

Spring breaks

FIGURE E2.3
Spring force as a function of displacement.
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24 CHAPTER 2 Mathematical Models of Systems

E2.4 Since

R(s) =
1

s

we have

Y (s) =
4(s+ 50)

s(s+ 20)(s + 10)
.

The partial fraction expansion of Y (s) is given by

Y (s) =
A1

s
+

A2

s+ 20
+

A3

s+ 10

where

A1 = 1 , A2 = 0.6 and A3 = −1.6 .

Using the Laplace transform table, we find that

y(t) = 1 + 0.6e−20t − 1.6e−10t .

The final value is computed using the final value theorem:

lim
t→∞

y(t) = lim
s→0

s

[

4(s + 50)

s(s2 + 30s + 200)

]

= 1 .

E2.5 The circuit diagram is shown in Figure E2.5.

vin
v0

+

--

+
+

-

R2

R1

v-

A

FIGURE E2.5
Noninverting op-amp circuit.

With an ideal op-amp, we have

vo = A(vin − v−),
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where A is very large. We have the relationship

v− =
R1

R1 +R2
vo.

Therefore,

vo = A(vin − R1

R1 +R2
vo),

and solving for vo yields

vo =
A

1 + AR1
R1+R2

vin.

Since A ≫ 1, it follows that 1 + AR1
R1+R2

≈ AR1
R1+R2

. Then the expression for
vo simplifies to

vo =
R1 +R2

R1
vin.

E2.6 Given

y = f(x) = ex

and the operating point xo = 1, we have the linear approximation

y = f(x) = f(xo) +
∂f

∂x

∣

∣

∣

∣

x=xo

(x− xo) + · · ·

where

f(xo) = e,
df

dx

∣

∣

∣

∣

x=xo=1

= e, and x− xo = x− 1.

Therefore, we obtain the linear approximation y = ex.

E2.7 The block diagram is shown in Figure E2.7.

+
I(s)R(s)

-

H(s)

G2(s)G1(s)
Ea(s)

FIGURE E2.7
Block diagram model.
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26 CHAPTER 2 Mathematical Models of Systems

Starting at the output we obtain

I(s) = G1(s)G2(s)E(s).

But E(s) = R(s)−H(s)I(s), so

I(s) = G1(s)G2(s) [R(s)−H(s)I(s)] .

Solving for I(s) yields the closed-loop transfer function

I(s)

R(s)
=

G1(s)G2(s)

1 +G1(s)G2(s)H(s)
.

E2.8 The block diagram is shown in Figure E2.8.

Y(s)G2(s)G1(s)R(s)
-

H3(s)

- -

H1(s)

K 1
s

-

H2(s)

A(s)

W(s)

Z(s)

E(s)

FIGURE E2.8
Block diagram model.

Starting at the output we obtain

Y (s) =
1

s
Z(s) =

1

s
G2(s)A(s).

But A(s) = G1(s) [−H2(s)Z(s)−H3(s)A(s) +W (s)] and Z(s) = sY (s),
so

Y (s) = −G1(s)G2(s)H2(s)Y (s)−G1(s)H3(s)Y (s) +
1

s
G1(s)G2(s)W (s).

Substituting W (s) = KE(s)−H1(s)Z(s) into the above equation yields

Y (s) = −G1(s)G2(s)H2(s)Y (s)−G1(s)H3(s)Y (s)

+
1

s
G1(s)G2(s) [KE(s)−H1(s)Z(s)]
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Exercises 27

and with E(s) = R(s)− Y (s) and Z(s) = sY (s) this reduces to

Y (s) = [−G1(s)G2(s) (H2(s) +H1(s))−G1(s)H3(s)

− 1

s
G1(s)G2(s)K]Y (s) +

1

s
G1(s)G2(s)KR(s).

Solving for Y (s) yields the transfer function

Y (s) = T (s)R(s),

where

T (s) =
KG1(s)G2(s)/s

1 +G1(s)G2(s) [(H2(s) +H1(s)] +G1(s)H3(s) +KG1(s)G2(s)/s
.

E2.9 From Figure E2.9, we observe that

Ff (s) = G2(s)U(s)

and

FR(s) = G3(s)U(s) .

Then, solving for U(s) yields

U(s) =
1

G2(s)
Ff (s)

and it follows that

FR(s) =
G3(s)

G2(s)
U(s) .

Again, considering the block diagram in Figure E2.9 we determine

Ff (s) = G1(s)G2(s)[R(s)−H2(s)Ff (s)−H2(s)FR(s)] .

But, from the previous result, we substitute for FR(s) resulting in

Ff (s) = G1(s)G2(s)R(s)−G1(s)G2(s)H2(s)Ff (s)−G1(s)H2(s)G3(s)Ff (s) .

Solving for Ff (s) yields

Ff (s) =

[

G1(s)G2(s)

1 +G1(s)G2(s)H2(s) +G1(s)G3(s)H2(s)

]

R(s) .
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28 CHAPTER 2 Mathematical Models of Systems

R(s) G1(s)

H2(s)

-

+

G2(s)

G3(s)

H2(s)

-

Ff (s)

FR(s)

U(s)

U(s)

FIGURE E2.9
Block diagram model.

E2.10 The shock absorber block diagram is shown in Figure E2.10. The closed-
loop transfer function model is

T (s) =
Gc(s)Gp(s)G(s)

1 +H(s)Gc(s)Gp(s)G(s)
.

+

-

R(s)

Desired piston

travel

Y(s)

Piston 

travel

Controller

Gc(s)

Plunger and

Piston System

G(s)

Sensor

H(s)

Gear Motor

Gp(s)

Piston travel

measurement

FIGURE E2.10
Shock absorber block diagram.

E2.11 Let f denote the spring force (n) and x denote the deflection (m). Then

K =
∆f

∆x
.

Computing the slope from the graph yields:

(a) xo = −0.14m → K = ∆f/∆x = 10 n / 0.04 m = 250 n/m

(b) xo = 0m → K = ∆f/∆x = 10 n / 0.05 m = 200 n/m

(c) xo = 0.35m → K = ∆f/∆x = 3n / 0.05 m = 60 n/m
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E2.12 The signal flow graph is shown in Fig. E2.12. Find Y (s) when R(s) = 0.

Y (s)

-1

K
2

G(s)

-K
1

1

Td(s)

FIGURE E2.12
Signal flow graph.

The transfer function from Td(s) to Y (s) is

Y (s) =
G(s)Td(s)−K1K2G(s)Td(s)

1− (−K2G(s))
=

G(s)(1 −K1K2)Td(s)

1 +K2G(s)
.

If we set

K1K2 = 1 ,

then Y (s) = 0 for any Td(s).

E2.13 The transfer function from R(s), Td(s), and N(s) to Y (s) is

Y (s) =

[

K

s2 + 10s +K

]

R(s)+

[

1

s2 + 10s+K

]

Td(s)−
[

K

s2 + 10s+K

]

N(s)

Therefore, we find that

Y (s)/Td(s) =
1

s2 + 10s +K
and Y (s)/N(s) = − K

s2 + 10s+K

E2.14 Since we want to compute the transfer function from R2(s) to Y1(s), we
can assume that R1 = 0 (application of the principle of superposition).
Then, starting at the output Y1(s) we obtain

Y1(s) = G3(s) [−H1(s)Y1(s) +G2(s)G8(s)W (s) +G9(s)W (s)] ,

or

[1 +G3(s)H1(s)] Y1(s) = [G3(s)G2(s)G8(s)W (s) +G3(s)G9(s)]W (s).

Considering the signal W (s) (see Figure E2.14), we determine that

W (s) = G5(s) [G4(s)R2(s)−H2(s)W (s)] ,
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30 CHAPTER 2 Mathematical Models of Systems

G2(s)G1(s)

-

H1(s)

G3(s)

G5(s)G4(s)

-

H2(s)

G6(s)

R1(s)

R2(s)

Y1(s)

Y2(s)

+
+

G7(s) G8(s) G9(s)

+

+

+

+

W(s)

FIGURE E2.14
Block diagram model.

or

[1 +G5(s)H2(s)]W (s) = G5(s)G4(s)R2(s).

Substituting the expression for W (s) into the above equation for Y1(s)
yields

Y1(s)

R2(s)
=

G2(s)G3(s)G4(s)G5(s)G8(s) +G3(s)G4(s)G5(s)G9(s)

1 +G3(s)H1(s) +G5(s)H2(s) +G3(s)G5(s)H1(s)H2(s)
.

E2.15 For loop 1, we have

R1i1 + L1
di1
dt

+
1

C1

∫

(i1 − i2)dt+R2(i1 − i2) = v(t) .

And for loop 2, we have

1

C2

∫

i2dt+ L2
di2
dt

+R2(i2 − i1) +
1

C1

∫

(i2 − i1)dt = 0 .

E2.16 The transfer function from R(s) to P (s) is

P (s)

R(s)
=

4.2

s3 + 2s2 + 4s + 4.2
.

The block diagram is shown in Figure E2.16a. The corresponding signal
flow graph is shown in Figure E2.16b for

P (s)/R(s) =
4.2

s3 + 2s2 + 4s+ 4.2
.
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v1(s)

-
R(s) P(s)7

v2(s) 0.6
s

q(s) 1

s2+2s+4

(a)

V 2
0.6
s

R(s ) P (s)

-1

1 7
V 1

1

s2 + 2 s + 4

(b)

FIGURE E2.16
(a) Block diagram, (b) Signal flow graph.

E2.17 A linear approximation for f is given by

∆f =
∂f

∂x

∣

∣

∣

∣

x=xo

∆x = 2kxo∆x = k∆x

where xo = 1/2, ∆f = f(x)− f(xo), and ∆x = x− xo.

E2.18 The linear approximation is given by

∆y = m∆x

where

m =
∂y

∂x

∣

∣

∣

∣

x=xo

.

(a) When xo = 1, we find that yo = 2.4, and yo = 13.2 when xo = 2.

(b) The slope m is computed as follows:

m =
∂y

∂x

∣

∣

∣

∣

x=xo

= 1 + 4.2x2o .

Therefore, m = 5.2 at xo = 1, and m = 18.8 at xo = 2.
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32 CHAPTER 2 Mathematical Models of Systems

E2.19 The output (with a step input) is

Y (s) =
15(s + 1)

s(s+ 7)(s + 2)
.

The partial fraction expansion is

Y (s) =
15

14s
− 18

7

1

s+ 7
+

3

2

1

s+ 2
.

Taking the inverse Laplace transform yields

y(t) =
15

14
− 18

7
e−7t +

3

2
e−2t .

E2.20 The input-output relationship is

Vo

V
=

A(K − 1)

1 +AK

where

K =
Z1

Z1 + Z2
.

Assume A ≫ 1. Then,

Vo

V
=

K − 1

K
= −Z2

Z1

where

Z1 =
R1

R1C1s+ 1
and Z2 =

R2

R2C2s+ 1
.

Therefore,

Vo(s)

V (s)
= −R2(R1C1s+ 1)

R1(R2C2s+ 1)
= −2(s+ 1)

s+ 2
.

E2.21 The equation of motion of the mass mc is

mcẍp + (bd + bs)ẋp + kdxp = bdẋin + kdxin .

Taking the Laplace transform with zero initial conditions yields

[mcs
2 + (bd + bs)s+ kd]Xp(s) = [bds+ kd]Xin(s) .

So, the transfer function is

Xp(s)

Xin(s)
=

bds+ kd
mcs2 + (bd + bs)s+ kd

=
0.7s + 2

s2 + 2.8s + 2
.
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E2.22 The rotational velocity is

ω(s) =
2(s+ 4)

(s+ 5)(s + 1)2
1

s
.

Expanding in a partial fraction expansion yields

ω(s) =
8

5

1

s
+

1

40

1

s+ 5
− 3

2

1

(s+ 1)2
− 13

8

1

s+ 1
.

Taking the inverse Laplace transform yields

ω(t) =
8

5
+

1

40
e−5t − 3

2
te−t − 13

8
e−t .

E2.23 The closed-loop transfer function is

Y (s)

R(s)
= T (s) =

K1K2

s2 + (K1 +K2K3 +K1K2)s +K1K2K3
.

E2.24 The closed-loop tranfser function is

Y (s)

R(s)
= T (s) =

10

s2 + 21s + 10
.

E2.25 Let x = 0.6 and y = 0.8. Then, with y = ax3, we have

0.8 = a(0.6)3 .

Solving for a yields a = 3.704. A linear approximation is

y − yo = 3ax2o(x− xo)

or y = 4x− 1.6, where yo = 0.8 and xo = 0.6.

E2.26 The equations of motion are

m1ẍ1 + k(x1 − x2) = F

m2ẍ2 + k(x2 − x1) = 0 .

Taking the Laplace transform (with zero initial conditions) and solving
for X2(s) yields

X2(s) =
k

(m2s2 + k)(m1s2 + k)− k2
F (s) .

Then, with m1 = m2 = k = 1, we have

X2(s)/F (s) =
1

s2(s2 + 2)
.
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34 CHAPTER 2 Mathematical Models of Systems

E2.27 The transfer function from Td(s) to Y (s) is

Y (s)/Td(s) =
G2(s)

1 +G1G2H(s)
.

E2.28 The transfer function is

Vo(s)

V (s)
=

R2R4C

R3
s+

R2R4

R1R3
= 24s+ 144 .

E2.29 (a) If

G(s) =
1

s2 + 15s + 50
and H(s) = 2s + 15 ,

then the closed-loop transfer function of Figure E2.28(a) and (b) (in
Dorf & Bishop) are equivalent.

(b) The closed-loop transfer function is

T (s) =
1

s2 + 17s + 65
.

E2.30 (a) The closed-loop transfer function is

T (s) =
G(s)

1 +G(s)

1

s
=

10

s(s2 + 2s + 20)
where G(s) =

10

s2 + 2s + 10
.
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FIGURE E2.30
Step response.
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(b) The output Y (s) (when R(s) = 1/s) is

Y (s) =
0.5

s
− −0.25 + 0.0573j

s+ 1− 4.3589j
+

−0.25− 0.0573j

s+ 1 + 4.3589j
.

(c) The plot of y(t) is shown in Figure E2.30. The output is given by

y(t) =
1

2

[

1− e−t
(

cos
√
19t− 1√

19
sin

√
19t

)]

E2.31 The partial fraction expansion is

V (s) =
a

s+ p1
+

b

s+ p2

where p1 = 4− 19.6j and p2 = 4 + 19.6j. Then, the residues are

a = −10.2j b = 10.2j .

The inverse Laplace transform is

v(t) = −10.2je(−4+19.6j)t + 10.2je(−4−19.6j)t = 20.4e−4t sin 19.6t .
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Problems

P2.1 The integrodifferential equations, obtained by Kirchoff’s voltage law to
each loop, are as follows:

R1i1 +
1

C1

∫

i1dt+ L1
d(i1 − i2)

dt
+R2(i1 − i2) = v(t) (loop 1)

and

R3i2 +
1

C2

∫

i2dt+R2(i2 − i1) + L1
d(i2 − i1)

dt
= 0 (loop 2) .

P2.2 The differential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have

M1ÿ1 + k12(y1 − y2) + bẏ1 + k1y1 = F (t)

M2ÿ2 + k12(y2 − y1) = 0 .

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.2, where Ci → Mi , L1 → 1/k1 , L12 → 1/k12 , and R → 1/b .

FIGURE P2.2
Analagous electric circuit.

P2.3 The differential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have

Mẍ1 + kx1 + k(x1 − x2) = F (t)

Mẍ2 + k(x2 − x1) + bẋ2 = 0 .

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.3, where

C → M L → 1/k R → 1/b .
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FIGURE P2.3
Analagous electric circuit.

P2.4 (a) The linear approximation around vin = 0 is vo = 0vin, see Fig-
ure P2.4(a).

(b) The linear approximation around vin = 1 is vo = 2vin − 1, see Fig-
ure P2.4(b).
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FIGURE P2.4
Nonlinear functions and approximations.
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38 CHAPTER 2 Mathematical Models of Systems

P2.5 Given

Q = K(P1 − P2)
1/2 .

Let δP = P1 − P2 and δPo = operating point. Using a Taylor series
expansion of Q, we have

Q = Qo +
∂Q

∂δP

∣

∣

∣

∣

δP=δPo

(δP − δPo) + · · ·

where

Qo = KδP 1/2
o and

∂Q

∂δP

∣

∣

∣

∣

δP=δPo

=
K

2
δP−1/2

o .

Define ∆Q = Q−Qo and ∆P = δP − δPo. Then, dropping higher-order
terms in the Taylor series expansion yields

∆Q = m∆P

where

m =
K

2δP
1/2
o

.

P2.6 From P2.1 we have

R1i1 +
1

C1

∫

i1dt+ L1
d(i1 − i2)

dt
+R2(i1 − i2) = v(t)

and

R3i2 +
1

C2

∫

i2dt+R2(i2 − i1) + L1
d(i2 − i1)

dt
= 0 .

Taking the Laplace transform and using the fact that the initial voltage
across C2 is 10v yields

[R1 +
1

C1s
+ L1s+R2]I1(s) + [−R2 − L1s]I2(s) = 0

and

[−R2 − L1s]I1(s) + [L1s+R3 +
1

C2s
+R2]I2(s) = −10

s
.

Rewriting in matrix form we have





R1 +
1

C1s
+ L1s+R2 −R2 − L1s

−R2 − L1s L1s+R3 +
1

C2s
+R2









I1(s)

I2(s)



 =





0

−10/s



 .
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Solving for I2 yields





I1(s)

I2(s)



 =
1

∆





L1s+R3 +
1

C2s
+R2 R2 + L1s

R2 + L1s R1 +
1

C1s
+ L1s+R2









0

−10/s



 .

or

I2(s) =
−10(R1 + 1/C1s+ L1s+R2)

s∆

where

∆ = (R1 +
1

C1s
+ L1s+R2)(L1s+R3 +

1

C2s
+R2)− (R2 + L1s)

2 .

P2.7 Consider the differentiating op-amp circuit in Figure P2.7. For an ideal
op-amp, the voltage gain (as a function of frequency) is

V2(s) = −Z2(s)

Z1(s)
V1(s),

where

Z1 =
R1

1 +R1Cs

and Z2 = R2 are the respective circuit impedances. Therefore, we obtain

V2(s) = −
[

R2(1 +R1Cs)

R1

]

V1(s).

V1(s) V2(s)

+

--

+

+

-

C

R1

R2

Z
1 Z

2

FIGURE P2.7
Differentiating op-amp circuit.
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P2.8 Let

∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

G2 + Cs −Cs −G2

−Cs G1 + 2Cs −Cs

−G2 −Cs Cs+G2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Then,

Vj =
∆ij

∆
I1 or or

V3

V1
=

∆13I1/∆

∆11I1/∆
.

Therefore, the transfer function is

T (s) =
V3

V1
=

∆13

∆11
=

∣

∣

∣

∣

∣

∣

−Cs 2Cs+G1

−G2 −Cs

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2Cs+G1 −Cs

−Cs Cs+G2

∣

∣

∣

∣

∣

∣

-3
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0
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Pole-zero map (x:poles and o:zeros)

FIGURE P2.8
Pole-zero map.
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=
C2R1R2s

2 + 2CR1s+ 1

C2R1R2s2 + (2R1 +R2)Cs+ 1
.

Using R1 = 0.5, R2 = 1, and C = 0.5, we have

T (s) =
s2 + 4s+ 8

s2 + 8s+ 8
=

(s+ 2 + 2j)(s + 2− 2j)

(s+ 4 +
√
8)(s + 4−

√
8)

.

The pole-zero map is shown in Figure P2.8.

P2.9 From P2.3 we have

Mẍ1 + kx1 + k(x1 − x2) = F (t)

Mẍ2 + k(x2 − x1) + bẋ2 = 0 .

Taking the Laplace transform of both equations and writing the result in
matrix form, it follows that





Ms2 + 2k −k

−k Ms2 + bs+ k









X1(s)

X2(s)



 =





F (s)

0



 ,
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- 0.1

0
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0.3

0.4
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g
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Pole zero map

FIGURE P2.9
Pole-zero map.
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or




X1(s)

X2(s)



 =
1

∆





Ms2 + bs+ k k

k Ms2 + 2k









F (s)

0





where ∆ = (Ms2 + bs+ k)(Ms2 + 2k)− k2 . So,

G(s) =
X1(s)

F (s)
=

Ms2 + bs+ k

∆
.

When b/k = 1, M = 1 , b2/Mk = 0.04, we have

G(s) =
s2 + 0.04s + 0.04

s4 + 0.04s3 + 0.12s2 + 0.0032s + 0.0016
.

The pole-zero map is shown in Figure P2.9.

P2.10 From P2.2 we have

M1ÿ1 + k12(y1 − y2) + bẏ1 + k1y1 = F (t)

M2ÿ2 + k12(y2 − y1) = 0 .

Taking the Laplace transform of both equations and writing the result in
matrix form, it follows that





M1s
2 + bs+ k1 + k12 −k12

−k12 M2s
2 + k12









Y1(s)

Y2(s)



 =





F (s)

0





or




Y1(s)

Y2(s)



 =
1

∆





M2s
2 + k12 k12

k12 M1s
2 + bs+ k1 + k12









F (s)

0





where

∆ = (M2s
2 + k12)(M1s

2 + bs+ k1 + k12)− k212 .

So, when f(t) = a sinωot, we have that Y1(s) is given by

Y1(s) =
aM2ωo(s

2 + k12/M2)

(s2 + ω2
o)∆(s)

.

For motionless response (in the steady-state), set the zero of the transfer
function so that

(s2 +
k12
M2

) = s2 + ω2
o or ω2

o =
k12
M2

.
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P2.11 The transfer functions from Vc(s) to Vd(s) and from Vd(s) to θ(s) are:

Vd(s)/Vc(s) =
K1K2

(Lqs+Rq)(Lcs+Rc)
, and

θ(s)/Vd(s) =
Km

(Js2 + fs)((Ld + La)s+Rd +Ra) +K3Kms
.

The block diagram for θ(s)/Vc(s) is shown in Figure P2.11, where

θ(s)/Vc(s) =
θ(s)

Vd(s)

Vd(s)

Vc(s)
=

K1K2Km

∆(s)
,

where

∆(s) = s(Lcs+Rc)(Lqs+Rq)((Js+ b)((Ld +La)s+Rd+Ra)+KmK3) .

-

+ 1
(L d+L a)s+R d+R a

1
Js+f

1
sK m

K 3

1
L cs+R c

1
L qs+R q

K 1 K 2V c

I c Vq V d I d T m

V b

I q w

q

FIGURE P2.11
Block diagram.

P2.12 The open-loop transfer function is

Y (s)

R(s)
=

K

s+ 20
.

With R(s) = 1/s, we have

Y (s) =
K

s(s+ 20)
.

The partial fraction expansion is

Y (s) =
K

20

(

1

s
− 1

s+ 20

)

,

and the inverse Laplace transform is

y(t) =
K

20

(

1− e−20t
)

,

As t → ∞, it follows that y(t) → K/20. So we choose K = 20 so that y(t)
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approaches 1. Alternatively we can use the final value theorem to obtain

y(t)t→∞ = lim
s→0

sY (s) =
K

20
= 1 .

It follows that choosing K = 20 leads to y(t) → 1 as t → ∞.

P2.13 The motor torque is given by

Tm(s) = (Jms2 + bms)θm(s) + (JLs
2 + bLs)nθL(s)

= n((Jms2 + bms)/n2 + JLs
2 + bLs)θL(s)

where

n = θL(s)/θm(s) = gear ratio .

But

Tm(s) = KmIg(s)

and

Ig(s) =
1

(Lg + Lf )s +Rg +Rf
Vg(s) ,

and

Vg(s) = KgIf (s) =
Kg

Rf + Lfs
Vf (s) .

Combining the above expressions yields

θL(s)

Vf (s)
=

KgKm

n∆1(s)∆2(s)
.

where

∆1(s) = JLs
2 + bLs+

Jms2 + bms

n2

and

∆2(s) = (Lgs+ Lfs+Rg +Rf )(Rf + Lfs) .

P2.14 For a field-controlled dc electric motor we have

ω(s)/Vf (s) =
Km/Rf

Js+ b
.
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With a step input of Vf (s) = 80/s, the final value of ω(t) is

ω(t)t→∞ = lim
s→0

sω(s) =
80Km

Rf b
= 2.4 or

Km

Rf b
= 0.03 .

Solving for ω(t) yields

ω(t) =
80Km

RfJ
L−1

{

1

s(s+ b/J)

}

=
80Km

Rfb
(1−e−(b/J)t) = 2.4(1−e−(b/J)t) .

At t = 1/2, ω(t) = 1, so

ω(1/2) = 2.4(1 − e−(b/J)t) = 1 implies b/J = 1.08 sec .

Therefore,

ω(s)/Vf (s) =
0.0324

s+ 1.08
.

P2.15 Summing the forces in the vertical direction and using Newton’s Second
Law we obtain

ẍ+
k

m
x = 0 .

The system has no damping and no external inputs. Taking the Laplace
transform yields

X(s) =
x0s

s2 + k/m
,

where we used the fact that x(0) = x0 and ẋ(0) = 0. Then taking the
inverse Laplace transform yields

x(t) = x0 cos

√

k

m
t .

P2.16 Using Cramer’s rule, we have





1 1.5

2 4









x1

x2



 =





6

11





or





x1

x2



 =
1

∆





4 −1.5

−2 1









6

11





© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained 
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, 
recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



46 CHAPTER 2 Mathematical Models of Systems

where ∆ = 4(1) − 2(1.5) = 1 . Therefore,

x1 =
4(6) − 1.5(11)

1
= 7.5 and x2 =

−2(6) + 1(11)

1
= −1 .

The signal flow graph is shown in Figure P2.16.

1/4

1

-1.5

X 1

11

6
-1/2

X 2

FIGURE P2.16
Signal flow graph.

So,

x1 =
6(1) − 1.5(114 )

1− 3
4

= 7.5 and x2 =
11(14 ) +

−1
2 (6)

1− 3
4

= −1 .

P2.17 (a) For mass 1 and 2, we have

M1ẍ1 +K1(x1 − x2) + b1(ẋ3 − ẋ1) = 0

M2ẍ2 +K2(x2 − x3) + b2(ẋ3 − ẋ2) +K1(x2 − x1) = 0 .

(b) Taking the Laplace transform yields

(M1s
2 + b1s+K1)X1(s)−K1X2(s) = b1sX3(s)

−K1X1(s) + (M2s
2 + b2s+K1 +K2)X2(s) = (b2s+K2)X3(s) .

(c) Let

G1(s) = K2 + b2s

G2(s) = 1/p(s)

G3(s) = 1/q(s)

G4(s) = sb1 ,

where

p(s) = s2M2 + sf2 +K1 +K2

and

q(s) = s2M1 + sf1 +K1 .
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The signal flow graph is shown in Figure P2.17.

X 3 X 1

K 1

G
3

K 1G 2G
1

G 4

FIGURE P2.17
Signal flow graph.

(d) The transfer function from X3(s) to X1(s) is

X1(s)

X3(s)
=

K1G1(s)G2(s)G3(s) +G4(s)G3(s)

1−K2
1G2(s)G3(s)

.

P2.18 The signal flow graph is shown in Figure P2.18.

V1 V 2

Z 4Y 3
Z

2

Y 1

-Y 3-Y
1

I a
V aI 1

-Z 2

FIGURE P2.18
Signal flow graph.

The transfer function is

V2(s)

V1(s)
=

Y1Z2Y3Z4

1 + Y1Z2 + Y3Z2 + Y3Z4 + Y1Z2Z4Y3
.

P2.19 For a noninerting op-amp circuit, depicted in Figure P2.19a, the voltage
gain (as a function of frequency) is

Vo(s) =
Z1(s) + Z2(s)

Z1(s)
Vin(s),

where Z1(s) and Z2(s) are the impedances of the respective circuits. In
the case of the voltage follower circuit, shown in Figure P2.19b, we have
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vin

v0+

-

vin

v0+

-

Z2

Z1

(a)(a) (b)

FIGURE P2.19
(a) Noninverting op-amp circuit. (b) Voltage follower circuit.

Z1 = ∞ (open circuit) and Z2 = 0. Therefore, the transfer function is

Vo(s)

Vin(s)
=

Z1

Z1
= 1.

P2.20 (a) Assume Rg ≫ Rs and Rs ≫ R1. Then Rs = R1 +R2 ≈ R2, and

vgs = vin − vo ,

where we neglect iin, since Rg ≫ Rs. At node S, we have

vo
Rs

= gmvgs = gm(vin − vo) or
vo
vin

=
gmRs

1 + gmRs
.

(b) With gmRs = 20, we have

vo
vin

=
20

21
= 0.95 .

(c) The block diagram is shown in Figure P2.20.

gmRs-
vin(s) vo(s)

FIGURE P2.20
Block diagram model.

P2.21 From the geometry we find that

∆z = k
l1 − l2
l1

(x− y)− l2
l1
y .
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The flow rate balance yields

A
dy

dt
= p∆z which implies Y (s) =

p∆Z(s)

As
.

By combining the above results it follows that

Y (s) =
p

As

[

k

(

l1 − l2
l1

)

(X(s)− Y (s))− l2
l1
Y (s)

]

.

Therefore, the signal flow graph is shown in Figure P2.21. Using Mason’s

X Y

p/Ask

1

DZ

-l / l
2 1

(l - l
1 2

)/l 1

-1

FIGURE P2.21
Signal flow graph.

gain formula we find that the transfer function is given by

Y (s)

X(s)
=

k(l1−l2)p
l1As

1 + l2p
l1As +

k(l1−l2)p
l1As

=
K1

s+K2 +K1
,

where

K1 =
k(l1 − l2)p

l1A
p and K2 =

l2p

l1A
.

P2.22 (a) The equations of motion for the two masses are

ML2θ̈1 +MgLθ1 + k

(

L

2

)2

(θ1 − θ2) =
L

2
f(t)

ML2θ̈2 +MgLθ2 + k

(

L

2

)2

(θ2 − θ1) = 0 .

With θ̇1 = ω1 and θ̇2 = ω2, we have

ω̇1 = −
(

g

L
+

k

4M

)

θ1 +
k

4M
θ2 +

f(t)

2ML

ω̇2 =
k

4M
θ1 −

(

g

L
+

k

4M

)

θ2 .
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1/2ML

 1/s  1/s

   a

   b 

  1/s   1/s

  a

F (t) w
1 q

1

q 2
w

2

(a)

-

+ j
g
L

+ k
2M

+ j
g

L

+ j
g
L

+ k
4M

X

X

Re(s)

Imag(s)

O

(b)

FIGURE P2.22
(a) Block diagram. (b) Pole-zero map.

(b) Define a = g/L+ k/4M and b = k/4M . Then

θ1(s)

F (s)
=

1

2ML

s2 + a

(s2 + a)2 − b2
.

(c) The block diagram and pole-zero map are shown in Figure P2.22.

P2.23 The input-output ratio, Vce/Vin, is found to be

Vce

Vin
=

β(R− 1) + hieRf

−βhre + hie(−hoe +Rf )
.

P2.24 (a) The voltage gain is given by

vo
vin

=
RLβ1β2(R1 +R2)

(R1 +R2)(Rg + hie1) +R1(R1 +R2)(1 + β1) +R1RLβ1β2
.
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(b) The current gain is found to be

ic2
ib1

= β1β2 .

(c) The input impedance is

vin
ib1

=
(R1 +R2)(Rg + hie1) +R1(R1 +R2)(1 + β1) +R1RLβ1β2

R1 +R2
,

and when β1β2 is very large, we have the approximation

vin
ib1

≈ RLR1β1β2
R1 +R2

.

P2.25 The transfer function from R(s) and Td(s) to Y (s) is given by

Y (s) = G(s)

(

R(s)− 1

G(s)
(G(s)R(s) + Td(s))

)

+ Td(s) +G(s)R(s)

= G(s)R(s) .

Thus,

Y (s)/R(s) = G(s) .

Also, we have that

Y (s) = 0 .

when R(s) = 0. Therefore, the effect of the disturbance, Td(s), is elimi-
nated.

P2.26 The equations of motion for the two mass model of the robot are

Mẍ+ b(ẋ− ẏ) + k(x− y) = F (t)

mÿ + b(ẏ − ẋ) + k(y − x) = 0 .

Taking the Laplace transform and writing the result in matrix form yields





Ms2 + bs+ k −(bs+ k)

−(bs+ k) ms2 + bs+ k









X(s)

Y (s)



 =





F (s)

0



 .

Solving for Y (s) we find that

Y (s)

F (s)
=

1
mM (bs+ k)

s2[s2 +
(

1 + m
M

)

(

b
ms+ k

m

)

]
.
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P2.27 The describing equation of motion is

mz̈ = mg − k
i2

z2
.

Defining

f(z, i) = g − ki2

mz2

leads to

z̈ = f(z, i) .

The equilibrium condition for io and zo, found by solving the equation of
motion when

ż = z̈ = 0 ,

is

ki2o
mg

= z2o .

We linearize the equation of motion using a Taylor series approximation.
With the definitions

∆z = z − zo and ∆i = i− io ,

we have ∆̇z = ż and ∆̈z = z̈. Therefore,

∆̈z = f(z, i) = f(zo, io) +
∂f

∂z

∣

∣

∣

∣
z=zo
i=io

∆z +
∂f

∂i

∣

∣

∣

∣
z=zo
i=io

∆i+ · · ·

But f(zo, io) = 0, and neglecting higher-order terms in the expansion
yields

∆̈z =
2ki2o
mz3o

∆z − 2kio
mz2o

∆i .

Using the equilibrium condition which relates zo to io, we determine that

∆̈z =
2g

zo
∆z − g

io
∆i .

Taking the Laplace transform yields the transfer function (valid around
the equilibrium point)

∆Z(s)

∆I(s)
=

−g/io
s2 − 2g/zo

.
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P2.28 The signal flow graph is shown in Figure P2.28.

P D

M

C

+f

+g

+e

+a

G B
+b +c

S

-m
-k

-d

+h

FIGURE P2.28
Signal flow graph.

(a) The PGBDP loop gain is equal to -abcd. This is a negative transmis-
sion since the population produces garbage which increases bacteria
and leads to diseases, thus reducing the population.

(b) The PMCP loop gain is equal to +efg. This is a positive transmis-
sion since the population leads to modernization which encourages
immigration, thus increasing the population.

(c) The PMSDP loop gain is equal to +ehkd. This is a positive trans-
mission since the population leads to modernization and an increase
in sanitation facilities which reduces diseases, thus reducing the rate
of decreasing population.

(d) The PMSBDP loop gain is equal to +ehmcd. This is a positive

transmission by similar argument as in (3).

P2.29 Assume the motor torque is proportional to the input current

Tm = ki .

Then, the equation of motion of the beam is

Jφ̈ = ki ,

where J is the moment of inertia of the beam and shaft (neglecting the
inertia of the ball). We assume that forces acting on the ball are due to
gravity and friction. Hence, the motion of the ball is described by

mẍ = mgφ− bẋ
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where m is the mass of the ball, b is the coefficient of friction, and we
have assumed small angles, so that sinφ ≈ φ. Taking the Laplace transfor
of both equations of motion and solving for X(s) yields

X(s)/I(s) =
gk/J

s2(s2 + b/m)
.

P2.30 Given

H(s) =
k

τs+ 1

where τ = 4µs = 4 × 10−6 seconds and 0.999 ≤ k < 1.001. The step
response is

Y (s) =
k

τs+ 1
· 1
s
=

k

s
− k

s+ 1/τ
.

Taking the inverse Laplace transform yields

y(t) = k − ke−t/τ = k(1− e−t/τ ) .

The final value is k. The time it takes to reach 98% of the final value is
t = 15.6µs independent of k.

P2.31 From the block diagram we have

Y1(s) = G2(s)[G1(s)E1(s) +G3(s)E2(s)]

= G2(s)G1(s)[R1(s)−H1(s)Y1(s)] +G2(s)G3(s)E2(s) .

Therefore,

Y1(s) =
G1(s)G2(s)

1 +G1(s)G2(s)H1(s)
R1(s) +

G2(s)G3(s)

1 +G1(s)G2(s)H1(s)
E2(s) .

And, computing E2(s) (with R2(s) = 0) we find

E2(s) = H2(s)Y2(s) = H2(s)G6(s)

[

G4(s)

G2(s)
Y1(s) +G5(s)E2(s)

]

or

E2(s) =
G4(s)G6(s)H2(s)

G2(s)(1−G5(s)G6(s)H2(s))
Y1(s) .

Substituting E2(s) into equation for Y1(s) yields

Y1(s) =
G1(s)G2(s)

1 +G1(s)G2(s)H1(s)
R1(s)
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+
G3(s)G4(s)G6(s)H2(s)

(1 +G1(s)G2(s)H1(s))(1 −G5(s)G6(s)H2(s))
Y1(s) .

Finally, solving for Y1(s) yields

Y1(s) = T1(s)R1(s)

where

T1(s) =
[

G1(s)G2(s)(1−G5(s)G6(s)H2(s))

(1 +G1(s)G2(s)H1(s))(1−G5(s)G6(s)H2(s))−G3(s)G4(s)G6(s)H2(s)

]

.

Similarly, for Y2(s) we obtain

Y2(s) = T2(s)R1(s) .

where

T2(s) =
[

G1(s)G4(s)G6(s)

(1 +G1(s)G2(s)H1(s))(1−G5(s)G6(s)H2(s))−G3(s)G4(s)G6(s)H2(s)

]

.

P2.32 The signal flow graph shows three loops:

L1 = −G1G3G4H2

L2 = −G2G5G6H1

L3 = −H1G8G6G2G7G4H2G1 .

The transfer function Y2/R1 is found to be

Y2(s)

R1(s)
=

G1G8G6∆1 −G2G5G6∆2

1− (L1 + L2 + L3) + (L1L2)
,

where for path 1

∆1 = 1

and for path 2

∆2 = 1− L1 .

Since we want Y2 to be independent of R1, we need Y2/R1 = 0. Therefore,
we require

G1G8G6 −G2G5G6(1 +G1G3G4H2) = 0 .
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P2.33 The closed-loop transfer function is

Y (s)

R(s)
=

G3(s)G1(s)(G2(s) +K5K6)

1−G3(s)(H1(s) +K6) +G3(s)G1(s)(G2(s) +K5K6)(H2(s) +K4)
.

P2.34 The equations of motion are

m1ÿ1 + b(ẏ1 − ẏ2) + k1(y1 − y2) = 0

m2ÿ2 + b(ẏ2 − ẏ1) + k1(y2 − y1) + k2y2 = k2x

Taking the Laplace transform yields

(m1s
2 + bs+ k1)Y1(s)− (bs+ k1)Y2(s) = 0

(m2s
2 + bs+ k1 + k2)Y2(s)− (bs+ k1)Y1(s) = k2X(s)

Therefore, after solving for Y1(s)/X(s), we have

Y2(s)

X(s)
=

k2(bs+ k1)

(m1s2 + bs+ k1)(m2s2 + bs+ k1 + k2)− (bs+ k1)2
.

P2.35 (a) We can redraw the block diagram as shown in Figure P2.35. Then,

T (s) =
K1/s(s+ 1)

1 +K1(1 +K2s)/s(s+ 1)
=

K1

s2 + (1 +K2K1)s+K2
.

(b) The signal flow graph reveals two loops (both touching):

L1 =
−K1

s(s+ 1)
and L2 =

−K1K2

s+ 1
.

Therefore,

T (s) =
K1/s(s+ 1)

1 +K1/s(s+ 1) +K1K2/(s + 1)
=

K1

s2 + (1 +K2K1)s+K1
.

(c) We want to choose K1 and K2 such that

s2 + (1 +K2K1)s+K1 = s2 + 20s + 100 = (s+ 10)2 .

Therefore, K1 = 100 and 1 +K2K1 = 20 or K2 = 0.19.

(d) The step response is shown in Figure P2.35.
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-
+

K 1

s (s+1)

1 + K 2 s

R(s ) Y (s)

0
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<---- time to 90% = 0.39 sec

FIGURE P2.35
The equivalent block diagram and the system step response.

P2.36 (a) Given R(s) = 1/s2, the partial fraction expansion is

Y (s) =
24

s2(s + 2)(s + 3)(s + 4)
=

3

s+ 2
− 8/3

s+ 3
+

3/4

s+ 4
+

1

s2
− 13/12

s
.

Therefore, using the Laplace transform table, we determine that the
ramp response is

y(t) = 3e−2t − 8

3
e−3t +

3

4
e−4t + t− 13

12
, t ≥ 0 .

(b) For the ramp input, y(t) ≈ 0.21 at t = 1. second (see Figure P2.36a).

(c) Given R(s) = 1, the partial fraction expansion is

Y (s) =
24

(s + 2)(s + 3)(s + 4)
=

12

s+ 2
− 24

s+ 3
+

12

s+ 4
.

Therefore, using the Laplace transform table, we determine that the
impulse response is

y(t) = 12e−2t − 24e−3t + 412e−4t , t ≥ 0 .
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(d) For the impulse input, y(t) ≈ 0.65 at t = 1 seconds (see Figure P2.36b).
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0.4

0.6

0.8

1

1.2
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Time (sec)

y(
t)

(a) Ramp input

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (sec)

y(
t)

(b) Impulse input

FIGURE P2.36
(a) Ramp input response. (b) Impulse input response.

P2.37 The equations of motion are

m1
d2x

dt2
= −(k1 + k2)x+ k2y and m2

d2y

dt2
= k2(x− y) + u .

When m1 = m2 = 1 and k1 = k2 = 1, we have

d2x

dt2
= −2x+ y and

d2y

dt2
= x− y + u .

P2.38 The equation of motion for the system is

J
d2θ

dt2
+ b

dθ

dt
+ kθ = 0 ,

where k is the rotational spring constant and b is the viscous friction
coefficient. The initial conditions are θ(0) = θo and θ̇(0) = 0. Taking the
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Laplace transform yields

J(s2θ(s)− sθo) + b(sθ(s)− θo) + kθ(s) = 0 .

Therefore,

θ(s) =
(s + b

J θo)

(s2 + b
J s+

K
J )

=
(s + 2ζωn)θo

s2 + 2ζωns+ ω2
n

.

Neglecting the mass of the rod, the moment of inertia is detemined to be

J = 2Mr2 = 0.5 kg ·m2 .

Also,

ωn =

√

k

J
= 0.02 rad/s and ζ =

b

2Jωn
= 0.01 .

Solving for θ(t), we find that

θ(t) =
θo

√

1− ζ2
e−ζωnt sin(ωn

√

1− ζ2 t+ φ) ,

where tan φ =
√

1− ζ2/ζ). Therefore, the envelope decay is

θe =
θo

√

1− ζ2
e−ζωnt .

So, with ζωn = 2 × 10−4, θo = 4000o and θf = 10o, the elapsed time is
computed as

t =
1

ζωn
ln

θo
√

1− ζ2θf
= 8.32 hours .

P2.39 When t < 0, we have the steady-state conditions

i1(0) = 1A , va(0) = 2V and vc(0) = 5V ,

where vc(0) is associated with the 1F capacitor. After t ≥ 0, we have

2
di1
dt

+ 2i1 + 4(i1 − i2) = 10e−2t

and
∫

i2dt+ 10i2 + 4(i2 − i1)− i1 = 0 .
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Taking the Laplace transform (using the initial conditions) yields

2(sI1− i1(0))+2I1+4I1−4I2 =
10

s+ 2
or (s+3)I1(s)−2I2(s) =

s+ 7

s+ 2

and

[
1

s
I2−vc(0)]+10I2+4(I2−I1) = I1(s) or −5sI1(s)+(14s+1)I2(s) = 5s .

Solving for I2(s) yields

I2 =
5s(s2 + 6s+ 13)

14(s + 2)∆(s)
,

where

∆(s) =

∣

∣

∣

∣

∣

∣

s+ 3 −2

−5s 14s + 1

∣

∣

∣

∣

∣

∣

= 14s2 + 33s + 3 .

Then,

Vo(s) = 10I2(s) .

P2.40 The equations of motion are

J1θ̈1 = K(θ2 − θ1)− b(θ̇1 − θ̇2) + T and J2θ̈2 = b(θ̇1 − θ̇2) .

Taking the Laplace transform yields

(J1s
2 + bs+K)θ1(s)− bsθ2(s) = Kθ2(s) + T (s)

and

(J2s
2 + bs)θ2(s)− bsθ1(s) = 0 .

Solving for θ1(s) and θ2(s), we find that

θ1(s) =
(Kθ2(s) + T (s))(J2s+ b)

∆(s)
and θ2(s) =

b(Kθ2(s) + T (s))

∆(s)
,

where

∆(s) = J1J2s
3 + b(J1 + J2)s

2 + J2Ks+ bK .

P2.41 Assume that the only external torques acting on the rocket are control
torques, Tc and disturbance torques, Td, and assume small angles, θ(t).
Using the small angle approximation, we have

ḣ = V θ
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Jθ̈ = Tc + Td ,

where J is the moment of inertia of the rocket and V is the rocket velocity
(assumed constant). Now, suppose that the control torque is proportional
to the lateral displacement, as

Tc(s) = −KH(s) ,

where the negative sign denotes a negative feedback system. The corre-
sponding block diagram is shown in Figure P2.41.

-
+

1
Js2

V
s

K
+

+Tc

Td

H desired=0 H( s)

FIGURE P2.41
Block diagram.

P2.42 (a) The equation of motion of the motor is

J
dω

dt
= Tm − bω ,

where J = 0.1, b = 0.06, and Tm is the motor input torque.

(b) Given Tm(s) = 1/s, and ω(0) = 0.7, we take the Laplace transform
of the equation of motion yielding

sω(s)− ω(0) + 0.6ω(s) = 10Tm

or

ω(s) =
0.7s + 10

s(s+ 0.6)
.

Then, computing the partial fraction expansion, we find that

ω(s) =
A

s
+

B

s+ 0.6
=

16.67

s
− 15.97

s+ 0.6
.

The step response, determined by taking the inverse Laplace trans-
form, is

ω(t) = 16.67 − 15.97e−0.6t , t ≥ 0 .
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P2.43 The work done by each gear is equal to that of the other, therefore

Tmθm = TLθL .

Also, the travel distance is the same for each gear, so

r1θm = r2θL .

The number of teeth on each gear is proportional to the radius, or

r1N2 = r2N1 .

So,

θm
θL

=
r2
r1

=
N2

N1
,

and

N1θm = N2θL

θL =
N1

N2
θm = nθm ,

where

n = N1/N2 .

Finally,

Tm

TL
=

θL
θm

=
N1

N2
= n .

P2.44 The inertia of the load is

JL =
πρLr4

2
.

Also, from the dynamics we have

T2 = JLω̇2 + bLω2

and

T1 = nT2 = n(JLω̇2 + bLω2) .

So,

T1 = n2(JLω̇1 + bLω1) ,
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since

ω2 = nω1 .

Therefore, the torque at the motor shaft is

T = T1 + Tm = n2(JLω̇1 + bLω1) + Jmω̇1 + bmω1 .

P2.45 Let U(s) denote the human input and F (s) the load input. The transfer
function is

P (s) =
G(s) +KG1(s)

∆(s)
U(s) +

Gc(s) +KG1(s)

∆(s)
F (s) ,

where

∆ = 1 +GH(s) +G1KBH(s) +GcE(s) +G1KE(s) .

P2.46 Consider the application of Newton’s law (
∑

F = mẍ). From the mass
mv we obtain

mvẍ1 = F − k1(x1 − x2)− b1(ẋ1 − ẋ2).

Taking the Laplace transform, and solving for X1(s) yields

X1(s) =
1

∆1(s)
F (s) +

b1s+ k1
∆1(s)

X2(s),

where

∆1 := mvs
2 + b1s+ k1.

From the mass mt we obtain

mtẍ2 = −k2x2 − b2ẋ2 + k1(x1 − x2) + b1(ẋ1 − ẋ2).

Taking the Laplace transform, and solving for X2(s) yields

X2(s) =
b1s+ k1
∆2(s)

X1(s),

where

∆2 := mts
2 + (b1 + b2)s+ k1 + k2.

Substituting X2(s) above into the relationship fpr X1(s) yields the trans-
fer function

X1(s)

F (s)
=

∆2(s)

∆1(s)∆2(s)− (b1s+ k1)2
.
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P2.47 Using the following relationships

h(t) =

∫

(1.6θ(t) − h(t))dt

ω(t) = θ̇(t)

Jω̇(t) = Kmia(t)

va(t) = 50vi(t) = 10ia(t) + vb(t)

θ̇ = Kvb

we find the differential equation is

d3h

dt3
+

(

1 +
Km

10JK

)

d2h

dt2
+

Km

10JK

dh

dt
=

8Km

J
vi .

P2.48 (a) The transfer function is

V2(s)

V1(s)
=

(1 + sR1C1)(1 + sR2C2)

R1C2s
.

(b) When R1 = 100 kΩ, R2 = 200 kΩ, C1 = 1 µF and C2 = 0.1 µF , we
have

V2(s)

V1(s)
=

0.2(s + 10)(s + 50)

s
.

P2.49 (a) The closed-loop transfer function is

T (s) =
G(s)

1 +G(s)
=

6205

s3 + 13s2 + 1281s + 6205
.

(b) The poles of T (s) are s1 = −5 and s2,3 = −4± j35.

(c) The partial fraction expansion (with a step input) is

Y (s) = 1− 1.0122

s+ 5
+

0.0061 + 0.0716j

s+ 4 + j35
+

0.0061 − 0.0716j

s+ 4− j35
.

(d) The step response is shown in Figure P2.49. The real and complex
roots are close together and by looking at the poles in the s-plane we
have difficulty deciding which is dominant. However, the residue at
the real pole is much larger and thus dominates the response.
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FIGURE P2.49
Step response.

P2.50 (a) The closed-loop transfer function is

T (s) =
14000

s3 + 45s2 + 3100s + 14500
.

(b) The poles of T (s) are

s1 = −5 and s2,3 = −20± j50.

(c) The partial fraction expansion (with a step input) is

Y (s) =
0.9655

s
− 1.0275

s+ 5
+

0.0310 − 0.0390j

s+ 20 + j50
+

0.0310 + 0.0390j

s+ 20− j50
.

(d) The step response is shown in Figure P2.50. The real root dominates
the response.

(e) The final value of y(t) is

yss = lim
s→0

sY (s) = 0.9655 .
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FIGURE P2.50
Step response.

P2.51 Consider the free body diagram in Figure P2.51. Using Newton’s Law
and summing the forces on the two masses yields

M1ẍ(t) + b1ẋ(t) + k1x(t) = b1ẏ(t)

M2ÿ(t) + b1ẏ(t) + k2y(t) = b1ẋ(t) + u(t)

M1

M2

k1

b1

k2

u(t)

x

y

M1

M2

k1x

k2

u(t)

x

y

b1(x - y)
. .

b1(y - x)
. . y

FIGURE P2.51
Free body diagram.
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Advanced Problems

AP2.1 The transfer function from V (s) to ω(s) has the form

ω(s)

V (s)
=

Km

τms+ 1
.

In the steady-state,

ωss = lim
s→0

s

[

Km

τms+ 1

]

5

s
= 5Km .

So,

Km = 70/5 = 14 .

Also,

ω(t) = VmKm(1− e−t/τm)

where V (s) = Vm/s. Solving for τm yields

τm =
−t

ln(1− ω(t)/ωss)
.

When t = 2, we have

τm =
−2

ln(1− 30/70)
= 3.57 .

Therefore, the transfer function is

ω(s)

V (s)
=

14

3.57s + 1
.

AP2.2 The closed-loop transfer function form R1(s) to Y2(s) is

Y2(s)

R1(s)
=

G1G4G5(s) +G1G2G3G4G6(s)

∆

where

∆ = [1 +G3G4H2(s)][1 +G1G2H3(s)] .

If we select

G5(s) = −G2G3G6(s)

then the numerator is zero, and Y2(s)/R1(s) = 0. The system is now
decoupled.
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AP2.3 (a) Computing the closed-loop transfer function:

Y (s) =

[

G(s)Gc(s)

1 +Gc(s)G(s)H(s)

]

R(s) .

Then, with E(s) = R(s)− Y (s) we obtain

E(s) =

[

1 +Gc(s)G(s)(H(s) − 1)

1 +Gc(s)G(s)H(s)

]

R(s) .

If we require that E(s) ≡ 0 for any input, we need 1+Gc(s)G(s)(H(s)−
1) = 0 or

H(s) =
Gc(s)G(s) − 1

Gc(s)G(s)
=

n(s)

d(s)
.

Since we require H(s) to be a causal system, the order of the numerator
polynomial, n(s), must be less than or equal to the order of the denom-
inator polynomial, d(s). This will be true, in general, only if both Gc(s)
and G(s) are proper rational functions (that is, the numerator and de-
nominator polynomials have the same order). Therefore, making E ≡ 0
for any input R(s) is possible only in certain circumstances.
(b) The transfer function from Td(s) to Y (s) is

Y (s) =

[

Gd(s)G(s)

1 +Gc(s)G(s)H(s)

]

Td(s) .

With H(s) as in part (a) we have

Y (s) =

[

Gd(s)

Gc(s)

]

Td(s) .

(c) No. Since

Y (s) =

[

Gd(s)G(s)

1 +Gc(s)G(s)H(s)

]

Td(s) = T (s)Td(s) ,

the only way to have Y (s) ≡ 0 for any Td(s) is for the transfer function
T (s) ≡ 0 which is not possible in general (since G(s) 6= 0).

AP2.4 (a) With q(s) = 1/s we obtain

τ(s) =
1/Ct

s+ QS+1/R
Ct

· 1
s
.

Define

α :=
QS + 1/R

Ct
and β := 1/Ct .
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Then, it follows that

τ(s) =
β

s+ α
· 1
s
=

−β/α

s+ α
+

β/α

s
.

Taking the inverse Laplace transform yields

τ(t) =
−β

α
e−αt +

β

α
=

β

α
[1− e−αt] .

(b) As t → ∞, τ(t) → β
α = 1

Qs+1/R .

(c) To increase the speed of response, you want to choose Ct, Q, S and
R such that

α :=
Qs+ 1/R

Ct

is ”large.”

AP2.5 Considering the motion of each mass, we have

M3ẍ3 + b3ẋ3 + k3x3 = u3 + b3ẋ2 + k3x2

M2ẍ2 + (b2 + b3)ẋ2 + (k2 + k3)x2 = u2 + b3ẋ3 + k3x3 + b2ẋ1 + k2x1

M1ẍ1 + (b1 + b2)ẋ1 + (k1 + k2)x1 = u1 + b2ẋ2 + k2x2

In matrix form the three equations can be written as












M1 0 0

0 M2 0

0 0 M3

























ẍ1

ẍ2

ẍ3













+













b1 + b2 −b2 0

−b2 b2 + b3 −b3

0 −b3 b3

























ẋ1

ẋ2

ẋ3













+













k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3

























x1

x2

x3













=













u1

u2

u3













.

AP2.6 Considering the cart mass and using Newton’s Law we obtain

Mẍ = u− bẋ− F sinϕ

where F is the reaction force between the cart and the pendulum. Con-
sidering the pendulum we obtain

m
d2(x+ L sinϕ)

dt2
= F sinϕ
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m
d2(L cosϕ)

dt2
= F cosϕ+mg

Eliminating the reaction force F yields the two equations

(m+M)ẍ+ bẋ+mLϕ̈ cosϕ−mLϕ̇2 sinϕ = u

mL2ϕ̈+mgL sinϕ+mLẍ cosϕ = 0

If we assume that the angle ϕ ≈ 0, then we have the linear model

(m+M)ẍ+ bẋ+mLϕ̈ = u

mL2ϕ̈+mgLϕ = −mLẍ

AP2.7 The transfer function from the disturbance input to the output is

Y (s) =
1

s+ 20 +K
Td(s) .

When Td(s) = 1, we obtain

y(t) = e−(20+K)t .

Solving for t when y(t) < 0.1 yields

t >
2.3

20 +K
.

When t = 0.05 and y(0.05) = 0.1, we find K = 26.05.

AP2.8 The closed-loop transfer function is

T (s) =
200K(0.25s + 1)

(0.25s + 1)(s + 1)(s + 8) + 200K

The final value due to a step input of R(s) = A/s is

v(t) → A
200K

200K + 8
.

We need to select K so that v(t) → 50. However, to keep the percent
overshoot to less than 10%, we need to limit the magnitude of K. Fig-
ure AP2.8a shows the percent overshoot as a function of K. Let K = 0.06
and select the magnitude of the input to be A = 83.3. The inverse Laplace
transform of the closed-loop response with R(s) = 83.3/s is

v(t) = 50 + 9.85e−9.15t − e−1.93t (59.85 cos(2.24t) + 11.27 sin(2.24t))
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The result is P.O. = 9.74% and the steady-state value of the output is
approximately 50 m/s, as shown in Figure AP2.8b.
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FIGURE AP2.8
(a) Percent overshoot versus the gain K. (b) Step response.

AP2.9 The transfer function is

Vo(s)

Vi(s)
= −Z2(s)

Z1(s)
,

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained 
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, 
recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



72 CHAPTER 2 Mathematical Models of Systems

where

Z1(s) =
R1

R1C1s+ 1
and Z2(s) =

R2C2s+ 1

C2s
.

Then we can write

Vo(s)

Vi(s)
= Kp +

KI

s
+KDs

where

KP = −
(

R1C1

R2C2
+ 1

)

, KI = − 1

R1C2
, KD = −R2C1 .
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Design Problems
The model of the traction drive, capstan roller, and linear slide followsCDP2.1

closely the armature-controlled dc motor model depicted in Figure 2.18
in Dorf and Bishop. The transfer function is

T (s) =
rKm

s [(Lms+Rm)(JT s+ bm) +KbKm]
,

where

JT = Jm + r2(Ms +Mb) .

-

V
a
(s) X(s)

K
b

Back EMF

K
m

L
m
s+R

m

1

J
T
s+b

m

1

s

qw
r

DP2.1 The closed-loop transfer function is

Y (s)

R(s)
=

G1(s)G2(s)

1 +G1(s)H1(s)−G2(s)H2(s)
.

When G1H1 = G2H2 and G1G2 = 1, then Y (s)/R(s) = 1. Therefore,
select

G1(s) =
1

G2(s)
and H1(s) =

G2(s)H2(s)

G1(s)
= G2

2(s)H2(s) .

DP2.2 At the lower node we have

v

(

1

4
+

1

3
+G

)

+ 2i2 − 20 = 0 .

Also, we have v = 24 and i2 = Gv . So

v

(

1

4
+

1

3
+G

)

+ 2Gv − 20 = 0
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and

G =
20 − v

(

1
4 + 1

3

)

3v
=

1

12
S .

DP2.3 Taking the Laplace transform of

y(t) = e−t − 1

4
e−2t − 3

4
+

1

2
t

yields

Y (s) =
1

s+ 1
− 1

4(s+ 2)
− 3

4s
+

1

2s2
.

Similarly, taking the Laplace transform of the ramp input yields

R(s) =
1

s2
.

Therefore

G(s) =
Y (s)

R(s)
=

1

(s+ 1)(s + 2)
.

DP2.4 For an ideal op-amp, at node a we have

vin − va
R1

+
vo − va
R1

= 0 ,

and at node b

vin − vb
R2

= Cv̇b ,

from it follows that
[

1

R2
+ Cs

]

Vb =
1

R2
Vin .

Also, for an ideal op-amp, Vb − Va = 0. Then solving for Vb in the above
equation and substituting the result into the node a equation for Va yields

Vo

Vin
=

2
1
R2

+ Cs

[

1

R2
−

1
R2

+ Cs

2

]

or

Vo(s)

Vin(s)
= −R2Cs− 1

R2Cs+ 1
.
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For vin(t) = At, we have Vin(s) = A/s2, therefore

vo(t) = A

[

2

β
e−βt + t− 2

β

]

where β = 1/R2C.

DP2.5 The equation of motion describing the motion of the inverted pendulum
(assuming small angles) is

ϕ̈+
g

L
ϕ = 0 .

Assuming a solution of the form ϕ = k cosϕ, taking the appropriate
derivatives and substituting the result into the equation of motion yields
the relationship

ϕ̇ =

√

g

L
.

If the period is T = 2 seconds, we compute ϕ̇ = 2π/T . Then solving for L
yields L = 0.99 meters when g = 9.81 m/s2. So, to fit the pendulum into
the grandfather clock, the dimensions are generally about 1.5 meters or
more.
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Computer Problems

CP2.1 The m-file script is shown in Figure CP2.1.

pq =

     1    9    24    20

P =

    -5

    -2

Z =

    -2

value =

     4

p=[1 7 10]; q=[1 2];

% Part (a)

pq=conv(p,q)

% Part (b)

P=roots(p), Z=roots(q)

% Part (c)

value=polyval(p,-1)

FIGURE CP2.1
Script for various polynomial evaluations.

CP2.2 The m-file script and step response is shown in Figure CP2.2.

numc = [1]; denc = [1 1]; sysc = tf(numc,denc)

numg = [1 2]; deng = [1 3]; sysg = tf(numg,deng)

% part (a)

sys_s = series(sysc,sysg);

sys_cl = feedback(sys_s,[1])

% part (b)

step(sys_cl); grid on

Transfer function:

    s + 2

-------------

s^2 + 5 s + 5

Time (sec.)

A
m

p
lit

u
d

e

Step Response

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
From: U(1)

To
: Y

(1
)

FIGURE CP2.2
Step response.
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CP2.3 Given

ÿ + 4ẏ + 3y = u

with y(0) = ẏ = 0 and U(s) = 1/s, we obtain (via Laplace transform)

Y (s) =
1

s(s2 + 4s+ 3)
=

1

s(s+ 3)(s+ 1)
.

Expanding in a partial fraction expansion yields

Y (s) =
1

3s
− 1

6(s+ 3)
− 1

2(s + 1)
.

Taking the inverse Laplace transform we obtain the solution

y(t) = 0.3333 + 0.1667e−3t − 0.5e−t .

The m-file script and step response is shown in Figure CP2.3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Step Response

Time (sec)

A
m

p
lit

u
d
e n=[1]; d=[1 4 3]; sys = tf(n,d);

t=[0:0.1:5];

y = step(sys,t);

ya=0.3333+0.1667*exp(-3*t)-0.5*exp(-t);

plot(t,y,t,ya); grid;

title('Step Response');

xlabel('Time (sec)');

ylabel('Amplitude');

FIGURE CP2.3
Step response.

© 2011 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained 
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, 
recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



78 CHAPTER 2 Mathematical Models of Systems

CP2.4 The mass-spring-damper system is represented by

mẍ+ bẋ+ kx = f .

Taking the Laplace transform (with zero initial conditions) yields the
transfer function

X(s)/F (s) =
1/m

s2 + bs/m+ k/m
.

The m-file script and step response is shown in Figure CP2.4.

m=10; k=1; b=0.5;

num=[1/m]; den=[1 b/m k/m];

sys = tf(num,den);

t=[0:0.1:150];

step(sys,t)

Time (sec.)

A
m

p
lit

u
d

e

Step Response

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
From: U(1)

To
: Y

(1
)

FIGURE CP2.4
Step response.

CP2.5 The spacecraft simulations are shown in Figure CP2.5. We see that as J
is decreased, the time to settle down decreases. Also, the overhoot from
10o decreases as J decreases. Thus, the performance seems to get better
(in some sense) as J decreases.
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Nominal (solid); O!-nominal 80% (dashed); O!-nominal 50% (dotted)

%Part (a)

a=1; b=8; k=10.8e+08; J=10.8e+08;

num=k*[1 a];

den=J*[1  b 0 0];  sys=tf(num,den);

sys_cl=feedback(sys,[1]);

%

% Part (b) and (c)

t=[0:0 .1 :100] ;

%

% Nominal case

f=10*pi/180; sysf=sys_cl*f ;

y=step(sysf,t);

%

% O�-nominal case 80%

J=10.8e+08*0.8; den=J*[1 b 0 0];

sys=tf(num,den); sys_cl=feedback(sys,[1]);

sysf=sys_cl*f ;

y1=step(sysf,t);

%

% O�-nominal case 50%

J=10.8e+08*0.5; den=J*[1 b 0 0];

sys=tf(num,den); sys_cl=feedback(sys,[1]);

sysf=sys_cl*f ;

y2=step(sysf,t);

%

plot(t ,y*180/pi ,t ,y1*180/pi ,' - - ', t ,y2*180/pi ,' : ' ) ,gr id

xlabel('Time (sec)')

ylabel('Spacecraft attitude (deg)')

title('Nominal (solid); O�-nominal 80% (dashed); O�-nominal 50% (dotted)')

FIGURE CP2.5
Step responses for the nominal and off-nominal spacecraft parameters.
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CP2.6 The closed-loop transfer function is

T (s) =
4s6 + 8s5 + 4s4 + 56s3 + 112s2 + 56s

∆(s)
,

num1=[4]; den1=[1]; sys1 = tf(num1,den1);

num2=[1]; den2=[1 1]; sys2 = tf(num2,den2);

num3=[1 0]; den3=[1 0 2]; sys3 = tf(num3,den3);

num4=[1]; den4=[1 0 0]; sys4 = tf(num4,den4);

num5=[4 2]; den5=[1 2 1]; sys5 = tf(num5,den5);

num6=[50]; den6=[1]; sys6 = tf(num6,den6);

num7=[1 0 2]; den7=[1 0 0 14]; sys7 = tf(num7,den7);

sysa = feedback(sys4,sys6,+1);

sysb = series(sys2,sys3);

sysc = feedback(sysb,sys5);

sysd = series(sysc,sysa);

syse = feedback(sysd,sys7);

sys = series(sys1,syse)

%

pzmap(sys)

%

p=pole(sys)

z=zero(sys)

p =

   7.0709

  -7.0713

   1.2051 + 2.0863i

   1.2051 - 2.0863i

   0.1219 + 1.8374i

   0.1219 - 1.8374i

  -2.3933

  -2.3333

  -0.4635 + 0.1997i

  -0.4635 - 0.1997i

z =

        0

   1.2051 + 2.0872i

   1.2051 - 2.0872i

  -2.4101

  -1.0000 + 0.0000i

  -1.0000 - 0.0000i

poles
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FIGURE CP2.6
Pole-zero map.
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where

∆(s) = s10 + 3s9 − 45s8 − 125s7 − 200s6 − 1177s5

− 2344s4 − 3485s3 − 7668s2 − 5598s − 1400 .

CP2.7 The m-file script and plot of the pendulum angle is shown in Figure CP2.7.
With the initial conditions, the Laplace transform of the linear system is

θ(s) =
θ0s

s2 + g/L
.

To use the step function with the m-file, we can multiply the transfer
function as follows:

θ(s) =
s2

s2 + g/L

θ0
s
,

which is equivalent to the original transfer function except that we can
use the step function input with magnitude θ0. The nonlinear response
is shown as the solid line and the linear response is shown as the dashed
line. The difference between the two responses is not great since the initial
condition of θ0 = 30◦ is not that large.

0 2 4 6 8 10
-30

-20

-10
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10

20

30

Time (s)

θ
 (

d
e

g
)

L=0.5; m=1; g=9.8;

theta0=30;

% Linear simulation

sys=tf([1 0 0],[1 0 g/L]);

[y,t]=step(theta0*sys,[0:0.01:10]);

% Nonlinear simulation

[t,ynl]=ode45(@pend,t,[theta0*pi/180 0]);   

plot(t,ynl(:,1)*180/pi,t,y,'--');

xlabel('Time (s)')

ylabel('\theta (deg)')

function [yd]=pend(t,y)

L=0.5; g=9.8;

yd(1)=y(2);

yd(2)=-(g/L)*sin(y(1));

yd=yd';

FIGURE CP2.7
Plot of θ versus xt when θ0 = 30◦.
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CP2.8 The system step responses for z = 5, 10, and 15 are shown in Fig-
ure CP2.8.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5
z=5 (solid), z=10 (dashed), z=15 dotted)

Time (sec)

x(
t)

FIGURE CP2.8
The system response.

CP2.9 (a,b) Computing the closed-loop transfer function yields

T (s) =
G(s)

1 +G(s)H(s)
=

s2 + 2s+ 1

s2 + 4s+ 3
.

The poles are s = −3,−1 and the zeros are s = −1,−1.
(c) Yes, there is one pole-zero cancellation. The transfer function (after
pole-zero cancellation) is

T (s) =
s+ 1

s+ 3
.
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ng=[1 1]; dg=[1 2]; sysg = tf(ng,dg);

nh=[1]; dh=[1 1]; sysh = tf(nh,dh);

sys=feedback(sysg,sysh)

%

pzmap(sys)

%

pole(sys)

zero(sys)

>>  

Transfer function:

s^2 + 2 s + 1

-------------

s^2 + 4 s + 3

 

p =

    -3

    -1

z =

    -1

    -1

zeros

FIGURE CP2.9
Pole-zero map.

CP2.10 Figure CP2.10 shows the steady-state response to a unit step input and a
unit step disturbance. We see that K = 1 leads to the same steady-state
response.
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