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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Assuming a perfect model and no disturbances, y(k + 1) = 2.2864. Hence using
ŷ(k+ 2|k+ 1) = 0.7y(k+ 1) + 2u(k+ 1), the free response is given by assuming
that u(k + 1) = u(k + 2) = 0.4432:

ŷf (k + 2|k + 1) = 0.7× 2.2864 + 2× 0.4432 = 2.4869 (1)
ŷf (k + 3|k + 1) = 0.7× 2.4869 + 2× 0.4432 = 2.6272 (2)

We have ε(k + 1) = s(k + 1)− y(k + 1) = 3− 2.2864 = 0.7136, hence

r(k + 3|k + 1) = s(k + 3)− λ2ε(k + 1) = 3− 0.71652 × 0.7136 = 2.6337 (3)

Hence

∆û(k + 1|k + 1) =
2.6337 − 2.6272

3.4
= 0.0019 (4)

u(k + 1) = û(k + 1|k + 1) = u(k) + ∆û(k + 1|k + 1) (5)
= 0.4432 + 0.0019 = 0.4451 (6)

That is one step done.

Now the second step:

y(k + 2) = 0.7× 2.2864 + 2× 0.4451 = 2.4907 (7)
ŷf (k + 3|k + 2) = 0.7× 2.4907 + 2× 0.4451 = 2.6337 (8)
ŷf (k + 4|k + 2) = 0.7× 2.6337 + 2× 0.4451 = 2.7338 (9)
ε(k + 2) = s(k + 2)− y(k + 2) = 3− 2.4907 = 0.5093 (10)

r(k + 4|k + 2) = 3− 0.71652 × 0.5093 = 2.7385 (11)

∆û(k + 2|k + 2) =
2.7385 − 2.7338

3.4
= 0.0014 (12)

u(k + 2) = 0.4451 + 0.0014 = 0.4469 (13)

Verification: y(k+ 2) = 2.4907 6= 2.2864 = 0.7× 2.0 + 2× 0.4432 = ŷ(k+ 2|k).
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CHAPTER 1. INTRODUCTION

1.2 Here is the solution as a MATLAB file:

% Solution to Exercise 1.2:
setpoint = 3;
Tref = 9; % Reference trajectory time constant
Ts = 3; % sample time
lambda = exp(-Ts/Tref);
P = [1;2]; % coincidence points

% Initial conditions:
yk = 2; % output y(k), from Example 1.3 (note y(k)=y(k-1)).
uk = 0.4429; % last applied input signal u(k) (from Example 1.4)
ykplus1 = 0.7*yk + 2*uk; % output y(k+1)

% Step response vector [S(P(1));S(P(2))] as in (1.21):
S = [2.0 ; 3.4]; % from Example 1.4

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Next step:
% Reference trajectory:
error = setpoint-ykplus1;
% Form reference (or target) vector [r(k+2|k+1) ; r(k+3|k+1)]:
T = [setpoint;setpoint]-[lambda^P(1);lambda^P(2)]*error;

% Free response vector:
yf1 = 0.7*ykplus1 + 2*uk; % yf(k+2|k+1)
yf2 = 0.7*yf1 + 2*uk; % yf(k+3|k+1)
Yf = [yf1 ; yf2]; % vector of free responses - as in (1.21)

% New optimal control signal:
Deltau = S\(T-Yf); % as in (1.22)
ukplus1 = uk + Deltau(1) % use first element only of Deltau

% Resulting output:
ykplus2 = 0.7*ykplus1 + 2*ukplus1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% One more step:
% Reference trajectory:
error = setpoint-ykplus2;
% Form reference (or target) vector [r(k+3|k+2) ; r(k+4|k+2)]:
T = [setpoint;setpoint]-[lambda^P(1);lambda^P(2)]*error;

% Free response vector:
yf1 = 0.7*ykplus2 + 2*ukplus1; % yf(k+3|k+2)
yf2 = 0.7*yf1 + 2*ukplus1; % yf(k+4|k+2)
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Yf = [yf1 ; yf2]; % vector of free responses - as in (1.21)

% New optimal control signal:
Deltau = S\(T-Yf); % as in (1.22)
ukplus2 = ukplus1 + Deltau(1) % use first element only of Deltau

% Resulting output:
ykplus3 = 0.7*ykplus2 + 2*ukplus2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

This gives the following results:

u(k + 1) = 0.4448 y(k + 2) = 2.4897
u(k + 2) = 0.4463 y(k + 3) = 2.6354

In this MATLAB program the computations for each step have been set out
separately. In practice one would set them out once inside a repeating loop —
see program basicmpc.

1.3 Repeat of Example 1.3:
As in Example 1.3 we have ε(k) = 1. Hence

ε(k + 2) =
(

1− 2Ts
Tref

)
ε(k) =

1
3

(14)

Hence r(k + 2|k) = 3− 1
3 = 2.6667. So proceeding as in Example 1.3,

∆û(k|k) =
2.6667 − 2.0

3.4
= 0.1961 (15)

û(k|k) = u(k − 1) + ∆û(k|k) = 0.4961 (16)

This should result in the next plant output value being y(k + 1) = 0.7 × 2 +
2× 0.4961 = 2.3922.

Repeat of Example 1.4:
The vector of reference trajectory values (or ‘target’ vector) at the coincidence
points is now

T =
[

3− 2
3

3− 1
3

]
=
[

2.3333
2.6667

]
(17)

while the vectors Yf and S remain unchanged. Hence

∆û(k|k) = S\(T − Yf ) = 0.1885 (18)
û(k|k) = u(k − 1) + ∆û(k|k) = 0.4885 (19)

This should result in the next plant output value being y(k + 1) = 0.7 × 2 +
2× 0.4885 = 2.3770.
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1.4 There is an error in equation (1.23) in the book. Since the free response ŷf (k +
Pi|k) is defined to be the response when the input remains at its last value,
namely u(k−1), each term in (1.23) involving an input value û(k+j|k) should
in fact involve the difference û(k+ j|k)−u(k−1). Thus the correct expression
for (1.23) is:

ŷ(k + Pi|k) = ŷf (k + Pi|k) +H(Pi)[û(k|k)− u(k − 1)] +
H(Pi − 1)[û(k + 1|k)− u(k − 1)] + · · ·

H(Pi −Hu + 2)[û(k +Hu − 2|k) − u(k − 1)] +
S(Pi −Hu + 1)[û(k +Hu − 1|k) − u(k − 1)] (20)

This can be written as

ŷ(k + Pi|k) = ŷf (k + Pi|k) + [S(Pi)− S(Pi − 1)][û(k|k)− u(k − 1)]+
[S(Pi − 1)− S(Pi − 2)]û(k + 1|k) + · · ·

[S(Pi−Hu+2)−S(Pi−Hu+1)]û(k+Hu−2|k)+S(Pi−Hu+1)û(k+Hu−1|k)
(21)

The terms can be regrouped as:

ŷ(k + Pi|k) = ŷf (k + Pi|k) + S(Pi)[û(k|k) − u(k − 1)] +
S(Pi − 1)[û(k + 1|k)− û(k|k)] + · · ·
S(Pi −Hu + 1)[û(k +Hu − 1|k)− û(k +Hu − 2|k)]

= ŷf (k + Pi|k) + S(Pi)∆û(k|k) +
S(Pi − 1)∆û(k + 1|k) + · · · +
S(Pi −Hu + 1)∆û(k +Hu − 1|k) (22)

which verifies (1.24).

1.5 The reference trajectory values at the two coincidence points are the same whichever
model is used, so we calculate these first. Let t denote the current time. The
initial error is ε(t) = 3 − 1 = 2, so the reference trajectory 6 sec ahead is
r(t + 6|t) = 3 − exp(−6/5) × 2 = 2.3976, and 10 sec ahead is r(t + 10|t) =
3− exp(−10/5) × 2 = 2.7293. Thus the target vector needed in (1.22) is

T =
[

2.3976
2.7293

]
(23)

Since the output is constant at 1, the input must be constant. The steady-
state gain of the model is 2, so this constant value of the input must be 0.5.
The free response, with u(t + τ) = 0.5 for τ > 0, is yf (t + τ) = 1, since the
output would remain at its equilibrium value if the input value did not change.
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(a). The only information needed from the continuous-time model is the step
response values at the coincidence points. The transfer function corre-
sponds to the differential equation

y(t) + 7ẏ(t) = 2u(t− 1.5) (24)

so the step response is the solution to

yf (t) + 7ẏf (t) =
{

0 (t < 1.5)
2 (t ≥ 1.5)

(25)

with initial condition y(0) = 0, which is y(t) = 2(1 − e−(t−1.5)/7) for
t ≥ 1.5 (from the elementary theory of differential equations). Hence the
vector of step responses at the coincidence points is

S =
[

0.9484
1.4062

]
(26)

(This can also be obtained by using the function step in MATLAB’s
Control System Toolbox.) So now we can apply (1.22) to get

∆ ˆu(k|k) = S\(T − Yf ) = 1.3060 (27)

so the optimal input is

u(k) = 0.5 + 1.3060 = 1.8060 (28)

(b). An equivalent discrete-time model is obtained most easily using MAT-
LAB’s Control System Toolbox function c2d on the original transfer func-
tion without the delay:

sysc=tf(2,[7,1])
sysd=c2d(sysc,0.5)

which gives the z-transform transfer function 0.1379/(z − 0.9311). Now
the delay of 1.5 sec, namely three sample periods, can be incorporated by
multiplying by z−3: 0.1379/z3(z − 0.9311). Now using the function step
gives the step response at the coincidence points as 0.9487 and 1.4068,
respectively. Proceeding as in (a), we get ∆ ˆu(k|k) = 1.3055 and hence
u(k) = 1.8055.

The two points made by this exercise are: (1) Continuous-time models can be
used directly. (2) Whether a continuous-time or a discrete-time model is used
makes little difference, if the sampling interval is sufficiently small.

1.6 Since the plant has a delay of 1.5 sec, the predicted output is not affected by the
input within that time. So choosing a coincidence point nearer than 1.5 sec
into the future would have no effect on the solution.
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1.7 With only one coincidence point (assumed to be P steps ahead) and Hu = 1 we
have T = r(k + P |k), Yf = yf (k + P |k), and Θ = S(P ), so (1.31) becomes

∆û(k|k) =
r(k + P |k)− d(k)− yf (k + P |k)

S(P )
(29)

In steady state (1.33) and (1.34) become

∆û(k|k) =
rP − d∞ − yfP

S(P )
(30)

=
rP − yp∞ + ym∞ − yfP

S(P )
(31)

(1.35) becomes ym∞ − yfP = 0, and (1.36) becomes

∆û(k|k) =
rP − yp∞
S(P )

(32)

But in the steady state ∆û(k|k) = 0 and hence rP = yp∞. But rP = s∞ −
λP (s∞ − yp∞) = s∞ − λP (s∞ − rP ). Hence yp∞ = rP = s∞.

1.8 To do this exercise, simply change files basicmpc.m and trackmpc.m as follows.
First define the plant by replacing the lines:

%%%%% CHANGE FROM HERE TO DEFINE NEW PLANT %%%%%
nump=1;
denp=[1,-1.4,0.45];
plant=tf(nump,denp,Ts);
%%%%% CHANGE UP TO HERE TO DEFINE NEW PLANT %%%%%

by the lines:

%%%%% CHANGE FROM HERE TO DEFINE NEW PLANT %%%%%
nump=1;
denp=[1,-1.5,0.5]; % (z-0.5)(z-1)
plant=tf(nump,denp,Ts);
%%%%% CHANGE UP TO HERE TO DEFINE NEW PLANT %%%%%

then define the model by replacing the lines:

%%%%% CHANGE FROM HERE TO DEFINE NEW MODEL %%%%%
model = plant;
%%%%% CHANGE UP TO HERE TO DEFINE NEW MODEL %%%%%

by the lines:
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%%%%% CHANGE FROM HERE TO DEFINE NEW MODEL %%%%%
numm=1.1;
denm=[1,-1.5,0.5];
model = tf(numm,denm,Ts);
%%%%% CHANGE UP TO HERE TO DEFINE NEW MODEL %%%%%

1.9 With the independent model implementation, the measured plant output does not
directly influence the model output. When Tref = 0 the reference trajectory
does not depend on the measured plant output, because it is equal to the
future set-point trajectory. (Whereas with Tref 6= 0 it does depend on the
measured output.) Thus for each coincidence point the controller is concerned
only to move the output from the present model output value ym(k) to the
required value s(k + Pi). Neither of these values, nor the free response of the
model, is affected by the measurement noise. Hence the control signal is not
affected by the noise, either.

When offset-free tracking is provided, the disturbance estimate d(k) = yp(k)−
ŷ(k|k − 1) is affected by the noise, through the measurement yp(k), and this
directly affects the control signal.

Comment: This shows how essential it is to tie the model output to the plant
output in some way. Otherwise the model and plant could drift arbitrarily far
apart. The way it is done in Section 1.5 is a very easy way of doing it, but not
the only possible one.

1.10 This exercise can be solved just by editing the files basicmpc.m and trackmpc.m,
to define the variables plant, model, Tref, Ts, P and M appropriately.

1.11 Just edit the file unstampc.m in the obvious way — change the definition of
variable model.

1.12 The text following equation (1.31) shows what has to be done: in file unstampc.m
replace the lines:

% Compute input signal uu(k):
if k>1,
dutraj = theta\(reftraj-ymfree(P)’);
uu(k) = dutraj(1) + uu(k-1);

else
dutraj = theta\(reftraj-ymfree(P)’);
uu(k) = dutraj(1) + umpast(1);

end
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by:

% Compute input signal uu(k):
d = yp(k) - ym(k);
if k>1,
dutraj = theta\(reftraj-d-ymfree(P)’);
uu(k) = dutraj(1) + uu(k-1);

else
dutraj = theta\(reftraj-d-ymfree(P)’);
uu(k) = dutraj(1) + umpast(1);

end

1.13 In the existing file unstampc.m the restriction that the plant and model should
have the same order arises in the lines

% Simulate model:
% Update past model inputs:
umpast = [uu(k);umpast(1:length(umpast)-1)];
% Simulation:
ym(k+1) = -denm(2:ndenm+1)*ympast+numm(2:nnumm+1)*umpast;
% Update past model outputs:
ympast = yppast; %%% RE-ALIGNED MODEL

In particular the product denm(2:ndenm+1)*ympast assumes that the length
of the vector denm(2:ndenm+1), which depends on the model order, is the
same as the length of the vector yppast (since ympast is set equal to yppast),
which depends on the order of the plant.

To handle different orders of plant and model it is necessary to store the
appropriate number of past values of the plant output in the vector ympast. If
the model order is smaller than the plant order this is very easy: just truncate
the vector yppast (since the most recent plant output values are stored in the
initial locations of yppast):

% Simulate model:
% Update past model inputs:
umpast = [uu(k);umpast(1:length(umpast)-1)];
% Simulation:
ym(k+1) = -denm(2:ndenm+1)*ympast+numm(2:nnumm+1)*umpast;
% Update past model outputs:
if ndenm <= ndenp, %%% MODEL ORDER <= PLANT ORDER
ympast = yppast(1:ndenm); %%% RE-ALIGNED MODEL

end

If the model order is larger than the plant order then there are not enough
past values in yppast, as currently defined. One solution is to leave yppast
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unchanged, but to hold the additional past values in ympast, by ‘shuffling’
them up to the tail of the vector:

if ndenm > ndenp, %%% MODEL ORDER > PLANT ORDER
ympast(ndenp+1:ndenm) = ympast(ndenp:ndenm-1);
ympast(1:ndenp) = yppast;

end

1.14 The vector ∆U should contain only the changes of the control signal:

∆U =


∆û(k +M1|k)
∆û(k +M2|k)

...
∆û(k +MHu |k)

 (33)

The matrix Θ should contain the columns corresponding to these elements of
∆U , so that (1.27) is replaced by:

Θ =


S(P1 −M1) S(P1 −M2) · · · S(P1 −MHu)
S(P2 −M1) S(P2 −M2) · · · S(P2 −MHu)

...
...

...
...

S(Pc −M1) S(Pc −M2) · · · S(Pc −MHu)

 (34)

(remember that S(i) = 0 if i < 0). Note that the vector Y remains the same
as in (1.26).

1.15 Exercise 1.15 is done by editing the files basicmpc, trackmpc and noisympc. The
main point to be made here is that the effects of changing various parameters
are difficult to predict precisely, and can occasionally be counter-intuitive.
This provides some motivation for Chapter 7, which discusses tuning MPC
controllers.

Obvious things to check are:

(a). Increasing Tref slows down the response.

(b). Increasing the prediction horizon (the location of the last coincidence
point) improves closed-loop stability (because the controller pays more
attention to long-term consequences of its actions).

(c). Increasing Hu increases the computation time. (Use MATLAB functions
tic and toc to check this.)
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Chapter 2

A basic formulation of
predictive control

2.1 The following MATLAB code does the job:

Q = [10 4 ; 4 3]
eig(Q)

This shows the eigenvalues are 11.815 and 1.185, which are both positive.

2.2 (a).

V (x) = 9x2
1 + 25x2

2 + 16x2
3 = [x1, x2, x3]

 9 0 0
0 25 0
0 0 16

 x1

x2

x3

 (1)

so Q = diag[9, 25, 16].

(b). With xT = [x1, x2, x3] and uT = [u1, u2] we get V (x, u) = xTQx+ uTRu
if

Q =

 5 0 0
0 2 0
0 0 1

 and R =
[

100 0
0 4

]
(2)

(c). Yes. If xi 6= 0 for any i then both V (x) in (a) and V (x, u) in (b) are
positive, by inspection. Similarly, if ui 6= 0 for any i then V (x, u) in (b)
is positive. If x = 0 then V (x) = 0. If x = 0 and u = 0 then V (x, u) = 0.
So both functions V are positive-definite.

2.3 Error in question: The formula for the gradient is not (2.19), but the formula for
∇V which appears at the end of Mini-Tutorial 1.
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