SOLUTIONS MANUAL

Chapter # and	Question	Answer
Question type		
Chapter 1 Short answer #1.	How did Louis Pasteur help disprove spontaneous generation?	Pasteur demonstrated that swan necked flasks containing sterile growth medium would remain sterile indefinitely if the bend in the flask did not come in contact with the medium.
Chapter 1 Short answer #2.	Give three reasons why life could not exist without the activities of microorganisms.	 Nitrogen would not be available in a form that humans and plants could use. The supply of oxygen would be depleted after about 20 years if microorganisms were not available to replenish it. A wide variety of materials would pile up if microorganisms were not present to degrade them.
Chapter 1 Short answer #3.	List five beneficial applications of bacteria.	 Their role in food and beverage production Role in pollutant degradation Synthesis of commercially valuable products Their importance in synthesizing medically important products, following genetic modification Their importance as model organisms for the study of universal biological processes
Chapter 1 Short answer #4.	State three reasons why there is a resurgence of infectious diseases today.	 Aging population is more susceptible to disease Organisms controlled by antimicrobial medications have become resistant to the medications Children are not being routinely vaccinated against many diseases
Chapter 1 Short answer #5.	Name the prokaryotic groups in the microbial world.	Bacteria and Archaea

Chapter 1	Name one location where you	The hot springs of Yellowstone
Short answer #6	could isolate members of the	National Park
Short answer no.	Archaea.	
Chapter 1	How might you distinguish a	The protornatio call door not have a
Chapter 1	prokaryotic cell from a	The prokaryouc cell does not have a
Short answer #7.	aukaryotic cell?	nucleus whereas the eukaryotic cell
		does.
Chapter 1	In the designation Escherichia	Escherichia is the genus; coli is the
Short answer #8.	coli B, what is the genus? What	species and B is the strain.
	is the species? What is the	
	strain?	
Chapter I	Why are viruses not	. Viruses do not have all of the
Short answer #9.	microorganisms?	machinery necessary to live and so
		they must use that of a host cell in
		order to replicate.
Chapter 1	Name three non-living groups	• Viruses contain a protein coat
Short answer #10.	in the microbial world and	and either DNA or RNA. They
	describe	are obligate intracellular
	their major properties.	parasites of all forms of life
		 Viroids contain only a short
		PNA molecule. They cause
		sorious plant discassos
		serious plant diseases
		Prions consist only of protein that
		is a misfolded version of normal
		cellular protein found in the brain
		of animals. They are resistant to the
		commonly used sterilizing
		procedures that kill viruses and
		bacteria. They are responsible for
		fatal neurological diseases
Chapter 1	The property of endospores that	. (C)
Multiple Choice #1	led to confusion in the	
	experiments	
	on spontaneous generation is	
	their	
	a) small size.	
	b) ability to pass through cork	
	stoppers.	
	c) heat resistance.	
	d) presence in all infusions.	
	e) presence on cotton plugs.	
Chapter 1	The "Golden Age of	. (C)
Multiple Choice #2	Microbiology" was the time	
	when	
	a) microorganisms were first	
	used to make bread.	
	b) microorganisms were first	
	used to make cheese.	

	c) most pathogenic bacteria were identified.	
	a) a vaccine against initienza was developed.	
Chapter 1 Multiple Choice #3	Microorganisms play a role in a) disease. b) biodegradation. c) cheese production. d) nitrogen recycling e) all of	(E)
	the above.	
Chapter 1 Multiple Choice #4	Which disease was once thought to be due to stress but is now known to be caused by a	. (B)
	bacterium? a) smallpox b) peptic ulcers c) AIDS d) plague c) influenze	
Chapter 1	The prokaryotic members of the	(D)
Multiple Choice #5	microbial world include 1. algae. 2. fungi. 3. prions. 4. bacteria. 5. archaea. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1. 5	
Chapter 1	The Archaea	(A)
Multiple Choice #6	 are microscopic. are commonly found in extreme environments. contain peptidoglycan. contain mitochondria. are most commonly found in the soil. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 5 	
Chapter 1 Multiple Choice #7	Prokaryotes typically do not have a) cell walls. b) flagella. c) a nuclear membrane. d) specific shapes. e) genetic	. (C)
Chapter 1	nitormation. Nucleoids are associated with	(A)
Multiple Choice #8	1. genetic information. 2. prokaryotes. 3. eukaryotes. 4. viruses. 5. prions. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5	. (A)
Chapter 1 Multiple Choice	Viruses 1. contain both protein and	(A)
#9	nucleic acid.	

Chapter 1	 2. infect all domains of life. 3. can grow in the absence of living cells. 4. are generally the same size as prokaryotes. 5. always kill the cells they infect. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5 	
Multiple Choice #10	a) roundworms. b) Escherichia coli.	
Chapter 1 Applications #1	The American Society for Microbiology is preparing a "Microbe-Free" banquet to emphasize the importance of microorganisms in the diet. What foods could not be on the menu?	. Nothing would be available to eat. Microorganisms are needed for crop production, so vegetables or fruits would not be available to eat. Cattle, chickens, pigs and other animals need microorganisms to assist with the digestion of food. They would be undernourished and not provide quality meat or products adequate for human consumption. Do not look for fish or any other lake or ocean products because these ecosystems are needed for their survival. Milk and alcoholic beverages would be off the menu. Any beverage prepared with water would be unsafe to consume. Water is cleaned and treated to be disease-free with microorganisms.
Chapter 1 Applications #2	If you were asked to nominate one of the individuals mentioned in this chapter for the Nobel Prize, who would it be? Make a statement supporting your choice.	Any answer that is supported.
Chapter 1 Critical Thinking #1	A microbiologist obtained two pure biological samples: one of a virus, and the other of a viroid. Unfortunately, the labels had been lost. The microbiologist felt she could distinguish the two by analyzing for the presence or absence of a single molecule.	Test for proteins.

	What molecule would she	
	search for and why?	
Chapter 1	Why is the bacterium that	Spores, in general, are an effective
Critical Thinking	causes anthrax such an effective	agent of bioterrorism because they
#2	agent of bioterrorism?	are environmentally tough,
		"invisible" and can be readily
		delivered through the air, all of
		which enables them to potentially
		infect large numbers of people
		easily.
Chapter 2		
Chapter 2		An atom is the basic unit of all
Short Answer #1	Differentiate between an atom,	matter. A molecule is composed of
	a molecule, and a compound.	two or more atoms joined through
		chemical bonds. A compound
		consists of molecules of two or
		more different elements.
Chapter 2		Because of its polar nature, water
Short Answer #2	Why is water a good solvent?	can form hydrogen bonds with all
		all polar molecules thereby
		preventing the association of the
		atoms comprising the molecules.
Chapter 2		A pH of 4 is more acidic. A
Short Answer #3	Which solution is more acidic,	solution of 4 has a H+
	one with a pH of 4 or a pH of	concentration of 10-4 and a 10-10
	5? What is the concentration of	0H- concentration.A solution with a
	H+ 10ns in each? The	pH of 5 has a H+ concentration of
	concentration of OH- ions?	10-5 and an 0H concentration of
		10-9.
Chapter 2		Subunits of proteins are amino
Short Answer #4	Name the subunits of proteins,	acids; subunits of polysaccharides
	polysaccharides, and nucleic	are monosaccharides; subunits of
	acids.	nucleic acids are nucleotides
Chapter 2		Dehydration synthesis is involved
Short Answer #5	Give an example of dehydration	in the joining together of two amino
	synthesis. Give an example of a	acids with the loss of water in the
	hydrolysis reaction. How are	chemical reaction. Hydrolysis is
	these reactions related?	involved in the splitting part of the
		two amino acids with the addition of
		H+ to one amino acid and OH- to
		the other.
		Dehydration synthesis is the reverse
		of hydrolysis.
Chapter 2		Catalyse enzymatic reactions
Short Answer #6	List four functions of proteins.	Move the cell
		Serve as components of certain cell

		structures
		Turn genes off and on
Chapter 2		
Short Answer #7	What are the four levels of protein structure, and what is the distinguishing feature of	Primary structure—The sequence of amino acids comprising the protein
	each?	Secondary structure—The three dimensional shape of localized regions
		Tertiary structureThe three— dimensional shape of the entire molecule
		Quarternary structure—The three- dimensional shape of a protein molecule consisting of more than one polypeptide chain.
Chapter 2 Short Answer #8	How do the two types of nucleic acids differ from one another in (a) composition, (b) size, and (c) function?	 (a) DNA contains deoxyribose; RNA contains ribose. (b)DNA is much longer than RNA (c) DNA codes for all of the genetic information of the cell. RNA is involved in decoding the information in DNA.
Chapter 2 Short Answer #9	What are the two major groups of lipids? Give an example of each group. What feature is common to all lipids?	Simple and compound Fats are simple lipids; phospholipids are compound. All lipids are insoluble in water.
Chapter 2 Short Answer #10	What features do all lipids share?	All lipids are heterogeneous in their chemical composition and insoluble in water but soluble in organic solvents.
Chapter 2 Multiple Choice #1	 Choose the list that goes from the lightest to the heaviest: a) proton, atom, molecule, compound, electron. b) atom, proton, compound, molecule, electron. c) electron, proton, atom, molecule, compound. d) atom, electron, proton. 	C

	molecule, compound.	
	e) proton, atom, electron,	
	molecule, compound.	
Chapter 2		. A
Multiple Choice #2	The strongest chemical bonds	
	between two atoms in	
	solution are	
	a) covalent. b) ionic.	
	c) hydrogen bonds. d)	
	hydrophobic interactions.	
Chapter 2		. E
Multiple Choice #3	Dehydration synthesis is	
	involved in the synthesis of	
	all of the following except	
	a) DNA. b) proteins. c)	
	polysaccharides.	
	d) lipids. e) monosaccharides.	
Chapter 2		A
Multiple Choice #4	The primary structure of a	
	protein relates to its	
	a) sequence of amino acids. b)	
	length. c) shape.	
	d) solubility. e) bonds between	
Chapter 2		В
Multiple Choice #5	Dure water has all of the	. D
	Fulle water has an of the	
	following properties except	
	a) polarity. b) ability to dissolve lipids. c) pH of 7.	
	d) covalent joining of its atoms.	
	e) ability to form hydrogen	
	bonds.	0
Chapter 2 Multiple Chains #6		. C
Multiple Choice #6	The macromolecules that are	
	composed of carbon,	
	hydrogen, and oxygen in an	
	approximate ratio of 1:2:1 are	
	a) proteins. b) lipids. c)	
	polysaccharides.	
	d) DNA. e) RNA.	2
Chapter 2		. В
Multiple Choice #7	In proteins, α helices and β	
	pleatedstructures	
	are associated with the	
	a) primary structure. b)	

Chapter 2 Multiple Choice #8Complementarity plays a major role in the structure of a) proteins. b) lipids. c) polysaccharides. d) DNA. e) RNA.DChapter 2 Multiple Choice #9A bilayer is associated with a) proteins. b) DNA. c) RNA. d) complex polysaccharides. e) phospholipids.D.Chapter 2 Multiple Choice #9A bilayer is associated with a) proteins. b) DNA. c) RNA. d) complex polysaccharides. e) phospholipids.D.Chapter 2 Multiple Choice #10Isomers are associated with a cids. 3. nucleotides. 4. RNA. 5. fatty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5. AChapter 2 Mapplications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures.The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #1Microorganisms use hydrogen bods to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Applications #2What properties of the carbon attach to it, which it is the keyChapter building block of all matter because it can form		secondary structure	
Chapter 2 Multiple Choice #8Complementarity plays a major role in the structure of a) proteins. b) lipids. c) polysaccharides. d) DNA. e) RNA.DChapter 2 Multiple Choice #9A bilayer is associated with a) proteins. b) DNA. c) RNA. d) complex polysaccharides. e) phospholipids.D.Chapter 2 Multiple Choice #9A bilayer is associated with a) croteins. b) DNA. c) RNA. d) complex polysaccharides. e) phospholipids.D.Chapter 2 Multiple Choice #10Isomers are associated with 1. carbohydrates. 2. amino acids. 3. nucleotides. 4. RNA. 5. fatty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5. AChapter 2 Applications #1A group of prokaryotes known as thermophiles cannot survive well at the lower temperatures hormally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures hormally found on the earth. Propose an explanation for this observation.The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to deatch and reattach very quickly and so the organisms to duatach and disadvantages of using covalent bonds as a means of attaching to surfaces.Chapter 2 Applications #2What properties of the carbon attach to surfaces.The weak hydrogen bonds allow the organisms to deatch and reattach very quickly and so the organi		a) tentions atmatune d)	
quaternary structure. e) multiprotein complexes.DChapter 2 Multiple Choice #8Complementarity plays a major role in the structure of a) proteins. b) lipids. c) polysaccharides. d) DNA. e) RNA.DChapter 2 Multiple Choice #9A bilayer is associated with a) proteins. b) DNA. c) RNA. d) complex polysaccharides. e) phospholipids.D.Chapter 2 Multiple Choice #10Isomers are associated with 1. carbohydrates. 2. amino acids. 3. nucleotides. 4. RNA. 5. fatty acids. a) 1, 2 b) 2, 3 c) 3. 4 d) 4, 5 e) 1, 5. AChapter 2 Mapplications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The weak hydrogen bonds allow the organisms use hydrogen bods to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Applications #2What properties of the carbon attach to surfaces.The weak hydrogen bonds allow the organisms to detach and environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Applications #2 Chapter 2 Chapter 2 Net befits and disadvantages of using cov		c) tertiary structure. d)	
Chapter 2 Multiple Choice #8Complementarity plays a major role in the structure of a) proteins. b) lipids. c) polysaccharides. d) DNA. e) RNA. e) RNA. e) RNA. c) RNA. d) complex polysaccharides. e) phospholipids.D.Chapter 2 Multiple Choice #9A bilayer is associated with a) proteins. b) DNA. c) RNA. d) complex polysaccharides. e) phospholipids.D.Chapter 2 Multiple Choice #10Isomers are associated with 1. carbohydrates. 2. amino acids. 3. nucleotides. 4. RNA. 5. fatty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5. AChapter 2 Applications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Applications #2What properties of the carbon attach to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Applications #2What properties of the carbon attach is of strach to surfaces.Carbon is the major building block of all matter because it can form		quaternary structure.	
Chapter 2 Multiple Choice #8Complementarity plays a major role in the structure of a) proteins. b) lipids. c) polysaccharides. d) DNA. e) RNA.DChapter 2 Multiple Choice #9A bilayer is associated with a) proteins. b) DNA. c) RNA. d) complex polysaccharides. e) phospholipids.D.Chapter 2 Multiple Choice #9Isomers are associated with 1. carbohydrates. 2. amino acids. 3. nucleotides. 4. RNA. 5. fatty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5. AChapter 2 Mplications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Applications #2What properties of the carbon attach is ut who surfaces.Carbon is the major building block of all matter because it can form		e) multiprotein complexes.	D
a) proteins. b) lipids. c) polysaccharides. d) DNA. e) RNA.D.Chapter 2 Multiple Choice #9A bilayer is associated with a) proteins. b) DNA. c) RNA. d) complex polysaccharides. e) phospholipids.D.Chapter 2 Multiple Choice #10Isomers are associated with 1. carbohydrates. 2. amino acids. 3. nucleotides. 4. RNA. 5. farty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5. AChapter 2 Applications #1 Applications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach on detach from surfaces.Chapter 2 Applications #2What properties of the carbon aritaching to surfaces.Chapter 2 Applications #2What properties of the carbon ritical ThinkingChapter 2 conserved conserved the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.Chapter 2 conserved conserved the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.Chapter 2 conserved conserved the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.Chapter 2 con using covalent bonds as a <b< td=""><td>Chapter 2 Multiple Choice #8</td><td>Complementarity plays a major role in the structure of</td><td>D</td></b<>	Chapter 2 Multiple Choice #8	Complementarity plays a major role in the structure of	D
c) RNA.Chapter 2 Multiple Choice #9A bilayer is associated with a) proteins. b) DNA. c) RNA. d) complex polysaccharides. e) 		a) proteins. b) lipids. c) polysaccharides. d) DNA.	
Chapter 2 Multiple Choice #9A bilayer is associated with a) proteins. b) DNA. c) RNA. d) complex polysaccharides. e) 		$\mathbf{P} = \mathbf{P} \mathbf{N} \mathbf{A}$	
Chapter 2A bilayer is associated with a) proteins. b) DNA. c) RNA. d) complex polysaccharides. e) phospholipids.D.Chapter 2Isomers are associated with 1. carbohydrates. 2. amino acids. 3. nucleotides. 4. RNA. 5. fatty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5. AChapter 2 Applications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the senfits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Chapter 2 Chapter 2What properties of the carbon attaching to surfaces.Carbon is the major building block of all matter because it can form	Chapter 2		D
Multiple Choicea) proteins. b) DNA. c) RNA. d) complex polysaccharides. e) phospholipids.AChapter 2Isomers are associated with 1. carbohydrates. 2. amino acids. 3. nucleotides. 4. RNA. 5. fatty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5. AChapter 2 Applications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Chapter 2 Chapter 2What properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form	Multiple Chains #0	A bilayer is associated with	D.
d) complex polysaccharides. e) phospholipids AChapter 2 Multiple Choice #10Isomers are associated with 1. carbohydrates. 2. amino acids. 3. nucleotides. 4. RNA. 5. fatty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5. AChapter 2 Applications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Chapter 2 Chapter 2What properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form	Multiple Choice #9	a) proteins. b) DNA. c) RNA.	
Image: chapter 2 Multiple Choice #10Isomers are associated with 1. carbohydrates. 2. amino acids. 3. nucleotides. 4. RNA. 5. fatty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5. AChapter 2 Applications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Chapter 2 Chapter 2What properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		d) complex polysaccharides. e)	
Chapter 2 Multiple Choice #10Isomers are associated with 1. carbohydrates. 2. amino acids. 3. nucleotides. 4. RNA. 5. fatty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5. AChapter 2 Applications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		phospholipids.	
Multiple Choice #101. carbohydrates. 2. amino acids. 3. nucleotides. 4. RNA. 5. fatty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Chapter 2 Chapter 2 Chapter 2What properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form	Chapter 2	Isomers are associated with	. A
#10acids. 3. nucleotides. 4. RNA. 5. fatty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form	Multiple Choice	1. carbohydrates, 2. amino	
SolutionSolution5. fatty acids. a) 1, 2 b) 2, 3 c) 3, 4 d) 4, 5 e) 1, 5The enzymes can function well at the morphiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form	#10	acids, 3, nucleotides, 4, RNA.	
St. Ad y 4, 5 e) 1, 5Chapter 2 Applications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		5 fatty acids a) $(2 \text{ b}) (2 \text{ c})$	
Chapter 2 Applications #1A group of prokaryotes known as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The enzymes can function well at the high temperatures but function poorly at the lower temperatures.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		3 4 d) 4 5 e) 1 5	
Chapter 2If group of product years allowing as thermophiles thrive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The chrymes can function werh at the high temperatures but function poorly at the lower temperatures.Chapter 2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2What properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form	Chapter 2	A group of prokaryotes known	The enzymes can function well at
Applications #1as mennophiles unive at high temperatures that would normally destroy other organisms. Yet these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.interingritemperatures out function poorly at the lower temperatures.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form	Applications #1	as thermonhiles thrive at high	the high temperatures but function
Chapter 2Microorganisms use hydrogen bonds to attach to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2What properties of the carbon Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form	Applications #1	temperatures that would	the high temperatures but function
Infiniting desirely officitiesorganisms. Yet theseorganisms. Yet thesethermophiles cannot survivewell at the lower temperaturesnormally found on the earth.Propose an explanation for thisobservation.Chapter 2Microorganisms use hydrogenbonds to attach to surfaces.Many of the cells lose hold ofthe surface because of the weaknature of these bonds. Contrastthe benefits and disadvantagesof using covalent bonds as ameans of attaching to surfaces.Chapter 2Chapter 2Chapter 2Chapter 2What properties of the carbonCritical ThinkingImage: the file the defile the defi		normally destroy other	poorly at the lower temperatures.
Organisms. Fer these thermophiles cannot survive well at the lower temperatures normally found on the earth. Propose an explanation for this observation.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		organisms. Vet these	
Interinophiles cannot surveewell at the lower temperaturesnormally found on the earth.Propose an explanation for thisobservation.Chapter 2Applications #2Microorganisms use hydrogenbonds to attach to surfaces.Many of the cells lose hold ofthe surface because of the weaknature of these bonds. Contrastthe benefits and disadvantagesof using covalent bonds as ameans of attaching to surfaces.Chapter 2Chapter 2Chapter 2Chapter 2What properties of the carbonCritical Thinking		thermophiles cannot survive	
Went at the lower temperatures normally found on the earth. Propose an explanation for this observation.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		well at the lower temperatures	
Informatry round on the earth.Propose an explanation for this observation.Chapter 2Applications #2Microorganisms use hydrogen bonds to attach to surfaces.Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.Chapter 2Chapter 2Chapter 2Chapter 2What properties of the carbon atom make it ideal as the keyCritical Thinking		normally found on the corth	
Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		Dropose on exploration for this	
Chapter 2 Applications #2Microorganisms use hydrogen bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.The weak hydrogen bonds allow the organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		charmation	
Chapter 2Microorganisms use nydrogenThe weak nydrogen bonds and/witheApplications #2bonds to attach to surfaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form	Charter 2	Mienoengenieme vee hydrogen	The mask budge can be add allow the
Applications #2bonds to attach to suffaces. Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.organisms to detach and reattach very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form	Chapter 2	honda to attach to surfaces	The weak hydrogen bonds allow the
Many of the cells lose hold of the surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.very quickly and so the organisms can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form	Applications #2	Many of the calls loss hold of	organisms to detach and reattach
The surface because of the weak nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.can respond very quickly to changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		Many of the certs lose hold of	very quickly and so the organisms
nature of these bonds. Contrast the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.changing conditions in the environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		the surface because of the weak	can respond very quickly to
the benefits and disadvantages of using covalent bonds as a means of attaching to surfaces.environment. Further, very little energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		nature of these bonds. Contrast	changing conditions in the
of using covalent bonds as a means of attaching to surfaces.energy is required to attach and detach from surfaces.Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		the benefits and disadvantages	environment. Further, very little
means of attaching to surfaces.detach from surfaces.Chapter 2What properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		of using covalent bonds as a	energy is required to attach and
Chapter 2 Critical ThinkingWhat properties of the carbon atom make it ideal as the keyCarbon is the major building block of all matter because it can form		means of attaching to surfaces.	detach from surfaces
Critical Thinking atom make it ideal as the key of all matter because it can form	Chapter 2	What properties of the carbon	Carbon is the major building block
Critical Hinking atom make it ideal as the key of an matter because it can form	Critical Thinking	atom make it ideal as the key	of all matter because it can form
11 atom for all molecules in 1 and 1 and 1 at 1		atom for all molecules in	
#1 Iour covalent bonds with other	#1	organisms?	iour covalent bonds with other
atoms including carbon atoms.		organionio.	atoms including carbon atoms.
Since these bonds can be single,			Since these bonds can be single,
double or triple bonds, with a			double or triple bonds, with a
variety of elements, a wide variety			variety of elements, a wide variety
of different molecules can be			of different molecules can be
formed. The bonds can be polar or			formed. The bonds can be polar or
non polar so a wide variety of			non polar so a wide variety of
molecules with different weak			molecules with different weak

		bonding properties can be formed.
Chapter 2	A biologist determined the	No. The amino acids might be
Critical Thinking	amounts of several amino	arranged differently so the two
#2	acids in two separate samples	proteins would be quite different
	of pure protein. The data are	and have different properties.
	shown here: Amino Acid	
	Leucine Alanine Histidine	
	Cysteine Glycine	
	Protein A 7% 12% 4% 2% 5%	
	Protein B 7% 12% 4% 2% 5%	
	The scientist concluded that	
	protein A and protein B were	
	the same protein. Do you agree	
	with this conclusion? Justify	
	your answer.	
Chapter 2	This table indicates the	Because of the hydrogen bonding
Critical Thinking	treezing and boiling points of	between water molecules, much
#3	several molecules: Molecule	energy is required in the form of
	Freezing Point (°C) Boiling	heat to break the bonds and convert
	Point (°C)	the liquid into a gas. If there is no
	Water 0 100	hydrogen bonding between
	Carbon tetrachloride (CCl4) –	molecules, less energy (a lower
	23 77	temperature) is required.
	Methane (CH4) – 182 – 164	Further, as the temperature drops,
		weak hydrogen bonds between
	Carbon tetrachloride and	water molecules are broken less
	methane are non-polar	frequently until a crystalline
	nonecules. How does the	structure (ice) is formed in which
	these molecules explain why	hydrogen bonding between
	the freezing and boiling points	molecules is most stable. Molecules
	for methane and carbon	that can not form hydrogen bonds
	tetrachloride are so much lower	between molecules must reach
	than those for water?	lower temperatures to achieve
		stability between molecules and
		form a crystalline structure.