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Changes in Lengths of Axially Loaded Members

Problem 2.2-1 The T-shaped arm ABC shown in the figure 
lies in a vertical plane and pivots about a horizontal pin at A. 
The arm has constant cross-sectional area and total weight W. 
A vertical spring of stiffness k supports the arm at point B.

Obtain a formula for the elongation � of the spring due 
to the weight of the arm.

Solution 2.2-1 T-shaped arm

2
Axially Loaded Members
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Problem 2.2-2 A steel cable with nominal diameter 25 mm (see Table 
2-1) is used in a construction yard to lift a bridge section weighing 38 kN,
as shown in the figure. The cable has an effective modulus of elasticity 
E � 140 GPa. 

(a) If the cable is 14 m long, how much will it stretch when the load is
picked up? 

(b) If the cable is rated for a maximum load of 70 kN, what is the factor
of safety with respect to failure of the cable?



Solution 2.2-2 Bridge section lifted by a cable
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A � 304 mm2

(from Table 2-1)

W � 38 kN

E � 140 GPa

L � 14 m

(a) STRETCH OF CABLE

 � 12.5  mm

 � �
WL

EA
�

(38  kN)(14  m)

(140  GPa)(304  mm2)

(b) FACTOR OF SAFETY

PULT � 406 kN (from Table 2-1)

Pmax � 70 kN

n �
PULT

Pmax
�

406  kN

70  kN
� 5.8

Problem 2.2-3 A steel wire and a copper wire have equal lengths and
support equal loads P (see figure). The moduli of elasticity for the steel
and copper are Es � 30,000 ksi and Ec � 18,000 ksi, respectively. 

(a) If the wires have the same diameters, what is the ratio of the
elongation of the copper wire to the elongation of the steel wire? 

(b) If the wires stretch the same amount, what is the ratio of the
diameter of the copper wire to the diameter of the steel wire?

P

Steel
wire

P

Copper 
wire

Solution 2.2-3 Steel wire and copper wire

P

Steel
wire

P

Copper 
wire

Equal lengths and equal 
loads

Steel: Es � 30,000 ksi

Copper: Ec � 18,000 ksi

(a) RATIO OF ELONGATIONS

(EQUAL DIAMETERS)

 
�c

�s

�
Es

Ec

�
30

18
� 1.67  

 �c �
PL

Ec  A
��s �

PL

EsA

(b) RATIO OF DIAMETERS (EQUAL ELONGATIONS)

dc
2

ds
2 �

Es

Ec

  �
dc

ds

�BEs

Ec

�B30

18
� 1.29  

Ec  ¢�
4
≤  dc

2 � Es  ¢�
4
≤  ds

2

�c � �s�
PL

Ec  Ac

�
PL

Es  As

 or�EcAc� EsAs



Problem 2.2-4 By what distance h does the cage shown in the
figure move downward when the weight W is placed inside it? 

Consider only the effects of the stretching of the cable, which
has axial rigidity EA � 10,700 kN. The pulley at A has diameter 
dA � 300 mm and the pulley at B has diameter dB � 150 mm.
Also, the distance L1 � 4.6 m, the distance L2 � 10.5 m, and 
the weight W � 22 kN. (Note: When calculating the length of the
cable, include the parts of the cable that go around the pulleys at 
A and B.)
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L1

L2

A

B

W

Cage

Solution 2.2-4 Cage supported by a cable

L1

L2

A

B

W

dA � 300 mm

dB � 150 mm

L1 � 4.6 m

L2 � 10.5 m

EA � 10,700 kN

W � 22 kN

LENGTH OF CABLE

� 4,600 mm � 21,000 mm � 236 mm � 236 mm

� 26,072 mm

ELONGATION OF CABLE

LOWERING OF THE CAGE

h � distance the cage moves downward

h �
1

2
 � � 13.4  mm  

� �
TL

EA
�

(11  kN)(26,072  mm)

(10,700  kN)
� 26.8  mm

L � L1 � 2L2 �
1

4
(�dA) �

1

2
(�dB)

TENSILE FORCE IN CABLE

T �
W

2
� 11  kN

Problem 2.2-5 A safety valve on the top of a tank containing
steam under pressure p has a discharge hole of diameter d (see
figure). The valve is designed to release the steam when the
pressure reaches the value pmax. 

If the natural length of the spring is L and its stiffness is k, 
what should be the dimension h of the valve? (Express your 
result as a formula for h.)

h

p

d



Solution 2.2-5 Safety valve
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h

d

h � height of valve (compressed length of the
spring)

d � diameter of discharge hole

p � pressure in tank

pmax � pressure when valve opens

L � natural length of spring (L > h)

k � stiffness of spring

FORCE IN COMPRESSED SPRING

F � k(L � h) (From Eq. 2-1a)

PRESSURE FORCE ON SPRING

EQUATE FORCES AND SOLVE FOR h:

 h � L �
�pmax  d2

4k
�

 F � P�k(L � h) �
�pmax  d2

4

P � pmax  ¢�d2

4
≤

Problem 2.2-6 The device shown in the figure consists of a
pointer ABC supported by a spring of stiffness k � 800 N/m. 
The spring is positioned at distance b � 150 mm from the pinned
end A of the pointer. The device is adjusted so that when there 
is no load P, the pointer reads zero on the angular scale. 

If the load P � 8 N, at what distance x should the load be
placed so that the pointer will read 3° on the scale?

k

0
A B

P

C
x

b

Solution 2.2-6 Pointer supported by a spring

FREE-BODY DIAGRAM OF POINTER

Let � � angle of rotation of pointer

SUBSTITUTE NUMERICAL VALUES:

� � 3�

� 118  mm  

x �
(800  N�m)(150  mm)2

8  N
 tan  3�

tan  � �
�

b
�

Px

kb2�   x �
kb2

P
 tan  �  

�Px � (k�)b � 0�or�� �
Px

kb

©MA � 0���

F = k�

A B

P

C

x

b

P � 8 N

k � 800 N/m

b � 150 mm

� � displacement of spring

F � force in spring

� k�



Problem 2.2-7 Two rigid bars, AB and CD, rest on a smooth
horizontal surface (see figure). Bar AB is pivoted end A and
bar CD is pivoted at end D. The bars are connected to each
other by two linearly elastic springs of stiffness k. Before the
load P is applied, the lengths of the springs are such that the
bars are parallel and the springs are without stress.

Derive a formula for the displacement �C at point C when
the load P is acting. (Assume that the bars rotate through very
small angles under the action of the load P.)
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Solution 2.2-7 Two bars connected by springs

A

b b B

C
b b D

P

A b b B

C

b b

D

P

F1 F2

F1 F2

A B

C D

�B
2

�B

�C
2�C

k � stiffness of springs

�C � displacement at point C due to load P

FREE-BODY DIAGRAMS

DISPLACEMENT DIAGRAMS

F1 � tensile force in first spring

F2 � compressive force in second spring

EQUILIBRIUM

©MA � 0 �bF1 � 2bF2  � 0 F1 � 2F2

©MD � 0 2bP � 2bF1 � bF2 � 0 F2 � 2F1 � 2P

Solving, F1 �
4P

3
�F2 �

2P

3

���

�B � displacement of point B

�C � displacement of point C

�1 � elongation of first spring

�2 � shortening of second spring

SOLVE THE EQUATIONS:

Eliminate �B and obtain �C :

�C �
20P

9k
 

¢2 � ¢2��B �
�C

2
�

2P

3k

¢1 � ¢1��C �
�B

2
�

4P

3k

Also,�¢1 �
F1

k
�

4P

3k
;�¢2 �

F2

k
�

2P

3k

� �B �
�C

2

� �C �
�B

2



Problem 2.2-8 The three-bar truss ABC shown in the figure has a span
L � 3 m and is constructed of steel pipes having cross-sectional area 
A � 3900 mm2 and modulus of elasticity E � 200 GPa. A load P acts
horizontally to the right at joint C.

(a) If P � 650 kN, what is the horizontal displacement of joint B?
(b) What is the maximum permissible load Pmax if the displacement of

joint B is limited to 1.5 mm?
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L

A B
45° 45°

PC

Solution 2.2-8 Truss with horizontal load

L

A
B

45° 45°

PC

L
2
—

RB

FBC

FAB

RB = 

B

L � 3 m

A � 3900 mm2

E � 200 GPa

FREE-BODY DIAGRAM OF JOINT B

Force triangle:

©MA � 0�gives�RB �
P

2

From force triangle,

(a) HORIZONTAL DISPLACEMENT �B

P � 650 kN

(b) MAXIMUM LOAD Pmax

�max � 1.5 mm

� 780  kN  

Pmax � (650  kN)  ¢ 1.5  mm

1.25  mm
≤

Pmax

�max
�

P

�
�Pmax � P  ¢�max

�
≤

� 1.25  mm  

�
(650  kN)(3  m)

2(200  GPa)(3900  mm2)

�B �
FAB  LAB

EA
�

PL

2EA

FAB �
P

2
 (tension)

P
2

FBC

FAB



Problem 2.2-9 An aluminum wire having a diameter 
d � 2 mm and length L � 3.8 m is subjected to a tensile
load P (see figure). The aluminum has modulus of
elasticity E � 75 GPa. 

If the maximum permissible elongation of the wire 
is 3.0 mm and the allowable stress in tension is 60 MPa,
what is the allowable load Pmax?
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P
dP

  L 

Solution 2.2-9 Aluminum wire in tension

P
dP

  L 

d � 2 mm

L � 3.8 m

E � 75 GPa

MAXIMUM LOAD BASED UPON ELONGATION

�max � 3.0  mm�� �
PL

EA

A �
�d2

4
� 3.142  mm2

� 186 N

MAXIMUM LOAD BASED UPON STRESS

� 189 N

ALLOWABLE LOAD

Elongation  governs.�Pmax � 186  N  

Pmax � Asallow � (3.142  mm2)(60  MPa)

sallow � 60  MPa�s�
P

A

�
(75  GPa)(3.142  mm2)

3.8  m
 (3.0  mm)

Pmax �
EA

L
 �max

Problem 2.2-10 A uniform bar AB of weight W � 25 N is supported
by two springs, as shown in the figure. The spring on the left has
stiffness k1 � 300 N/m and natural length L1 � 250 mm. The
corresponding quantities for the spring on the right are k2 � 400 N/m
and L2 � 200 mm. The distance between the springs is L � 350 mm,
and the spring on the right is suspended from a support that is distance
h � 80 mm below the point of support for the spring on the left.

At what distance x from the left-hand spring should a load 
P � 18 N be placed in order to bring the bar to a horizontal position?

P

W

x

h

L

A

k1
L1 k2

L2

B



Solution 2.2-10 Bar supported by two springs
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P

x

A

�1

k1
k2

L2

B

W

�2

L1

h

L
2
—L

2
—

Reference line

W � 25 N

k1 � 300 N/m

k2 � 400 N/m

L � 350 mm

h � 80 mm

P � 18 N

NATURAL LENGTHS OF SPRINGS

L1 � 250 mm L2 � 200 mm

OBJECTIVE

Find distance x for bar AB to be horizontal.

FREE-BODY DIAGRAM OF BAR AB

(Eq. 1)

c� T�

F1 � F2 � P � W � 0 (Eq. 2)

SOLVE EQS. (1) AND (2):

SUBSTITUTE NUMERICAL VALUES:

UNITS: Newtons and meters

ELONGATIONS OF THE SPRINGS

BAR AB REMAINS HORIZONTAL

Points A and B are the same distance below the
reference line (see figure above).

or 0.250 � 0.10167 � 0.17143 x
� 0.080 � 0.200 � 0.12857 x � 0.031250

SOLVE FOR x:

0.300 x � 0.040420 x � 0.1347 m

x � 135  mm  

∴ L1 � �1 � h � L2 � �2

�2 �
F2

k2
�

F2

400
� 0.12857x � 0.031250

�1 �
F1

k1
�

F1

300
� 0.10167 � 0.17143x

F2 � (18)¢ x

0.350
≤� 12.5 � 51.429x � 12.5

F1 � (18)¢1 �
x

0.350
≤� 12.5 � 30.5 � 51.429x

F1 � P¢1 �
x

L
≤�

W

2
�F2 �

Px

L
�

W

2

©Fvert � 0

F2L � PX �
WL

2
� 0

©MA � 0  �  �

P

x

A B

W

F1 F2

L
2
— L

2
—



Problem 2.2-11 A hollow, circular, steel column (E � 30,000 ksi) is
subjected to a compressive load P, as shown in the figure. The column
has length L � 8.0 ft and outside diameter d � 7.5 in. The load P � 85 k. 

If the allowable compressive stress is 7000 psi and the allowable
shortening of the column is 0.02 in., what is the minimum required wall
thickness tmin?
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P

d

t

L

Solution 2.2-11 Column in compression

P

d

t

L

P � 85 k

E � 30,000 ksi

L � 8.0 ft

d � 7.5 in.

�allow � 7,000 psi

�allow � 0.02 in.

REQUIRED AREA BASED UPON ALLOWABLE STRESS

s�
P

A
�A �

P
sallow

�
85  k 

7,000  psi
� 12.14  in.2 

REQUIRED AREA BASED UPON ALLOWABLE SHORTENING

SHORTENING GOVERNS

Amin � 13.60 in.2

MINIMUM THICKNESS tmin

SUBSTITUTE NUMERICAL VALUES

tmin � 0.63  in.  

tmin �
7.5  in. 

2
�B¢7.5  in.

2
≤

2

�
13.60  in.2

�

tmin �
d

2
�B¢d2≤2 �

Amin

�

t �
d

2
�B¢d2≤2 �

A
�
�or

�Bd 2�
4A
�

(d � 2t)2 � d 2�
4A
�
�or�d � 2t

� � (d � 2t)24A
�

� d 2

A �
�

4
[d 2� (d � 2t)2 ]�or

� 13.60  in.2

� �
PL

EA
�A �

PL

E�allow
�

(85  k)(96  in.)

(30,000  ksi)(0.02  in.)



Problem 2.2-12 The horizontal rigid beam ABCD is
supported by vertical bars BE and CF and is loaded by
vertical forces P1 � 400 kN and P2 � 360 kN acting at 
points A and D, respectively (see figure). Bars BE and CF are
made of steel (E � 200 GPa) and have cross-sectional areas
ABE � 11,100 mm2 and ACF � 9,280 mm2. The distances
between various points on the bars are shown in the figure. 

Determine the vertical displacements �A and �D of points
A and D, respectively.
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A

P1 = 400 kN P2 = 360 kN

B C

1.5 m 1.5 m

2.4 m

0.6 m

2.1 m

D

F

E

Solution 2.2-12 Rigid beam supported by vertical bars

A

P1 = 400 kN P2 = 360 kN

B C

1.5 m 1.5 m

2.4 m

0.6 m

2.1 m

D

F

E

ABE � 11,100 mm2

ACF � 9,280 mm2

E � 200 GPa

LBE � 3.0 m

LCF � 2.4 m

P1 � 400 kN; P2 � 360 kN

FREE-BODY DIAGRAM OF BAR ABCD

SHORTENING OF BAR BE

SHORTENING OF BAR CF

DISPLACEMENT DIAGRAM

� 0.600  mm

�CF �
FCF  LCF

EACF

�
(464  kN)(2.4  m)

(200  GPa)(9,280  mm2)

� 0.400  mm

�BE �
FBE  LBE

EABE

�
(296  kN)(3.0  m)

(200  GPa)(11,100  mm2)

A

P1 = 400 kN FBE FCF P2 = 360 kN

B C

1.5 m 1.5 m 2.1 m
D

(400 kN)(1.5 m) � FCF(1.5 m) � (360 kN)(3.6 m) � 0

FCF � 464 kN

(400 kN)(3.0 m) � FBE(1.5 m) � (360 kN)(2.1 m) � 0

FBE � 296 kN

©MC � 0  �  �

©MB � 0  ��

A B C1.5 m 1.5 m 2.1 m D

�A
�BE

�CF

�D

�BE � �A � �CF � �BE or �A � 2�BE � �CF

(Downward)

(Downward)

� 0.880  mm  

 �
12

5
(0.600  mm) �

7

5
(0.400  mm)

 or��D �
12

5
 �CF �

7

5
 �BE

�D � �CF �
2.1

1.5
(�CF � �BE)

� 0.200  mm  

�A � 2(0.400  mm) � 0.600  m



Problem 2.2-13 A framework ABC consists of two rigid
bars AB and BC, each having length b (see the first part of
the figure). The bars have pin connections at A, B, and C
and are joined by a spring of stiffness k. The spring is
attached at the midpoints of the bars. The framework has a
pin support at A and a roller support at C, and the bars are
at an angle � to the hoizontal.

When a vertical load P is applied at joint B (see the
second part of the figure) the roller support C moves to 
the right, the spring is stretched, and the angle of the bars
decreases from � to the angle �.

Determine the angle � and the increase � in the
distance between points A and C. (Use the following data;
b � 8.0 in., k � 16 lb/in., � � 45°, and P � 10 lb.)
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� �

k

A C

B

b
2
—

b
2
—

b
2
—

b
2
—

A C

B

��

P

Solution 2.2-13 Framework with rigid bars and a spring

� �

k

A C

B

b
2
—

b
2
—

b
2
—

b
2
—

L1

A C

B

��

P

L2

C

B

�

P

P
2
—

F

L2
 2
—

F

h
2
— P

2
—

h
2
—

h

WITH NO LOAD

L1 � span from A to C

� 2b cos �

S1 � length of spring

�
L1

2
� b  cos  �

WITH LOAD P

L2 � span from A to C

� 2b cos �

S2 � length of spring

FREE-BODY DIAGRAM OF BC

�
L2

2
� b  cos  u

h � height from C to B � b sin �

F � force in spring due to load P

or P cos � � F sin � (Eq. 1)
P

2
 ¢L2

2
≤� F ¢h

2
≤� 0

©MB � 0  �  �

L2

2
� b  cos  u

(Continued)
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DETERMINE THE ANGLE �

�S � elongation of spring

� S2 � S1 � b(cos � � cos �)

For the spring: F � k(�S )

F � bk(cos � � cos �)

Substitute F into Eq. (1):

P cos � � bk(cos � � cos �)(sin �)

(Eq. 2)

This equation must be solved numerically for the
angle �.

DETERMINE THE DISTANCE �

� � L2 � L1 � 2b cos � � 2b cos �

� 2b(cos � � cos �)

or�P

bk
 cot  u� cos  u� cos  � � 0  

From Eq. (2): 

Therefore,

(Eq. 3)

NUMERICAL RESULTS

b � 8.0 in. k � 16 lb/in. � � 45� P � 10 lb

Substitute into Eq. (2):

0.078125 cot � � cos � � 0.707107 � 0 (Eq. 4)

Solve Eq. (4) numerically:

Substitute into Eq. (3):

� � 1.78  in.  

u� 35.1�  

 �
2P

b
 cot  u�

 � � 2b ¢cos  u� cos  u�
P  cot  u

bk
≤

cos  � � cos  u�
P  cot  u

bk

Problem 2.2-14 Solve the preceding problem for the following data:
b � 200 mm, k � 3.2 kN/m, � � 45°, and P � 50 N.

Solution 2.2-14 Framework with rigid bars and a spring

See the solution to the preceding problem.

Eq. (2):

Eq. (3): � �
2P

k
 cot  u

P

bk
 cot  u� cos  u� cos  � � 0

NUMERICAL RESULTS

b � 200 mm k � 3.2 kN/m � � 45� P � 50 N

Substitute into Eq. (2):

0.078125 cot � � cos � � 0.707107 � 0 (Eq. 4)

Solve Eq. (4) numerically:

Substitute into Eq. (3):

� � 44.5  mm  

u� 35.1�  



Changes in Lengths under Nonuniform Conditions

Problem 2.3-1 Calculate the elongation of a copper bar 
of solid circular cross section with tapered ends when it is
stretched by axial loads of magnitude 3.0 k (see figure). 

The length of the end segments is 20 in. and the length 
of the prismatic middle segment is 50 in. Also, the diameters 
at cross sections A, B, C, and D are 0.5, 1.0, 1.0, and 0.5 in.,
respectively, and the modulus of elasticity is 18,000 ksi.
(Hint: Use the result of Example 2-4.)
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A B
C

D

3.0 k20 in.

20 in.
3.0 k

50 in.

Solution 2.3-1 Bar with tapered ends

A B
C

D

3.0 k20 in.

20 in.
3.0 k

50 in.

dA � dD � 0.5 in. P � 3.0 k

dB � dC � 1.0 in. E � 18,000 ksi

END SEGMENT (L � 20 in.)

From Example 2-4: 

� 0.008488  in.�1 �
4(3.0  k)(20  in.)

�(18,000  ksi)(0.5  in.) (1.0  in.)

� �
4PL

�E  dA  dB

MIDDLE SEGMENT (L � 50 in.)

ELONGATION OF BAR

� 2(0.008488 in.) � (0.01061 in.)

� 0.0276  in.  

� � a NL

EA
� 2�1 � �2

� 0.01061in.

�2 �
PL

EA
�

(3.0  k)(50  in.)

(18,000  ksi)(�
4 ) (1.0  in.)2

Problem 2.3-2 A long, rectangular copper bar under a tensile load P
hangs from a pin that is supported by two steel posts (see figure). The
copper bar has a length of 2.0 m, a cross-sectional area of 4800 mm2, 
and a modulus of elasticity Ec � 120 GPa. Each steel post has a height 
of 0.5 m, a cross-sectional area of 4500 mm2, and a modulus of elasticity
Es � 200 GPa.

(a) Determine the downward displacement � of the lower end of the
copper bar due to a load P � 180 kN. 

(b) What is the maximum permissible load Pmax if the displacement 
� is limited to 1.0 mm?

P

Steel
post

Copper
bar



Solution 2.3-2 Copper bar with a tensile load
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P

Steel
post

Copper
bar

Ls

Lc

Lc � 2.0 m

Ac � 4800 mm2

Ec � 120 GPa

Ls � 0.5 m

As � 4500 mm2

Es � 200 GPa

(a) DOWNWARD DISPLACEMENT � (P � 180 kN)

(b) MAXIMUM LOAD Pmax (�max � 1.0 mm)

Pmax � (180  kN) ¢ 1.0  mm

0.675  mm
≤ �  267  kN

Pmax

P
�

�max

�
�Pmax � P ¢�max

�
≤

�  0.675  mm 

� � �c � �s � 0.625  mm �  0.050  mm 

� 0.050  mm

�s �
(P�2)Ls

Es  As

�
(90  kN)(0.5  m)

(200  GPa)(4500  mm2)

� 0.625  mm

�c �
PLc

Ec  Ac

�
(180  kN)(2.0  m)

(120  GPa)(4800  mm2)

Problem 2.3-3 A steel bar AD (see figure) has a cross-sectional area 
of 0.40 in.2 and is loaded by forces P1 � 2700 lb, P2 � 1800 lb, and 
P3 � 1300 lb. The lengths of the segments of the bar are a � 60 in., 
b � 24 in., and c � 36 in. 

(a) Assuming that the modulus of elasticity E � 30 � 106 psi, 
calculate the change in length � of the bar. Does the bar elongate
or shorten? 

(b) By what amount P should the load P3 be increased so that the 
bar does not change in length when the three loads are applied?

a b c

B

P1 P2
P3

A C D

Solution 2.3-3 Steel bar loaded by three forces

B

P1 P2 P3

A C D

60 in. 24 in. 36 in.

A � 0.40 in.2 P1 � 2700 lb P2 � 1800 lb

P3 � 1300 lb E � 30 � 106 psi

AXIAL FORCES

NAB � P1 � P2 � P3 � 3200 lb

NBC � P2 � P3 � 500 lb

NCD � �P3 � �1300 lb

(a) CHANGE IN LENGTH

�  0.0131  in. (elongation)

� (1300  lb)(36  in.)]� (500  lb)(24  in.)

�
1

(30 � 106
 psi) (0.40  in.2)

[(3200  lb)(60  in.)

�
1

EA
 (NABLAB � NBCLBC � NCDLCD)

� �  a  
NiLi

EiAi



Problem 2.3-4 A rectangular bar of length L has a slot in
the middle half of its length (see figure). The bar has width
b, thickness t, and modulus of elasticity E. The slot has
width b/4. 

(a) Obtain a formula for the elongation � of the bar due
to the axial loads P. 

(b) Calculate the elongation of the bar if the material is
high-strength steel, the axial stress in the middle
region is 160 MPa, the length is 750 mm, and the
modulus of elasticity is 210 GPa.
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(b) INCREASE IN P3 FOR NO CHANGE IN LENGTH

P � increase in force P3

The force P must produce a shortening equal to 0.0131 in.
in order to have no change in length.

P � 1310  lb 

�
P(120  in.)

(30 � 106
 psi) (0.40  in.2)

∴  0.0131  in. � � �
PL

EA

b
4
—

L
4
—

L
4
—

L
2
—

b t

P

P

Solution 2.3-4 Bar with a slot

b
4
—

b PP

L
2
—L

4
— L

4
—

t � thickness L � length of bar

(a) ELONGATION OF BAR

�
PL

Ebt
 ¢1

4
�

4

6
�

1

4
≤�

7PL

6Ebt

� � a  
NiLi

EAi

�
P(L�4)

E(bt)
�

P(L�2)

E(3
4bt)

�
P(L�4)

E(bt)

STRESS IN MIDDLE REGION

Substitute into the equation for �:

(b) SUBSTITUTE NUMERICAL VALUES:

� �
7(160  MPa)(750  mm)

8 (210  GPa)
� 0.500  mm 

s� 160  MPa�L � 750  mm�E � 210  GPa

�
7sL

8E

� �
7PL

6Ebt
�

7L

6E
 ¢ P

bt
≤�

7L

6E
 ¢3s

4
≤

s�
P

A
�

P

(3
4bt)

�
4P

3 bt
�or     

P

bt
�

3s

4

P

120 in.
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b
4
—

b PP

L
2
—L

4
— L

4
—

t � thickness L � length of bar

(a) ELONGATION OF BAR

�  
PL

Ebt
¢1
4

�
4

6
�

1

4
≤�

7PL

6Ebt
 

� � a  
NiLi

EAi

�
P(L�4)

E(bt)
�

P(L�2)

E (3
4  bt)

�
P(L�4)

E(bt)

STRESS IN MIDDLE REGION

SUBSTITUTE INTO THE EQUATION FOR �:

(b) SUBSTITUTE NUMERICAL VALUES:

� �
7(24,000  psi)(30  in.)

8(30 � 106
 psi)

� 0.0210  in. 

E � 30 � 106
 psi

s� 24,000  psi�L � 30  in.

�
7sL

8E

� �
7PL

6Ebt
�

7L

6E
 ¢ P

bt
≤�

7L

6E
 ¢3s

4
≤

s�
P

A
�

P

(3
4  bt)

�
4P

3bt
�or� 

P

bt
�

3s

4

Problem 2.3-6 A two-story building has steel columns AB in the first
floor and BC in the second floor, as shown in the figure. The roof load P1
equals 400 kN and the second-floor load P2 equals 720 kN. Each column
has length L � 3.75 m. The cross-sectional areas of the first- and second-
floor columns are 11,000 mm2 and 3,900 mm2, respectively. 

(a) Assuming that E � 206 GPa, determine the total shortening �AC
of the two columns due to the combined action of the loads P1
and P2. 

(b) How much additional load P0 can be placed at the top of the
column (point C) if the total shortening �AC is not to exceed 
4.0 mm?

P1 = 400 kN

P2 = 720 kN
B

A

C

L = 3.75 m

L = 3.75 m

Solution 2.3-6 Steel columns in a building

P1 = 400 kN

P2 = 720 kNB

A

C

L

L

L � length of each 
column

� 3.75 m

E � 206 GPa

AAB � 11,000 mm2

ABC � 3,900 mm2

(a) SHORTENING �AC OF THE TWO COLUMNS

�AC � 3.72  mm

� 1.8535  mm � 1.8671  mm � 3.7206  mm

�
(400  kN)(3.75  m)

(206  GPa)(3,900  mm2)

�  
(1120  kN)(3.75  m)

(206  GPa)(11,000  mm2)
�

�AC � a  
Ni  Li

Ei  Ai

�
NAB  L

EAAB

�
NBC  L

EABC

Problem 2.3-5 Solve the preceding problem if the axial stress in the
middle region is 24,000 psi, the length is 30 in., and the modulus of
elasticity is 30 � 106 psi. 

Solution 2.3-5 Bar with a slot



Problem 2.3-7 A steel bar 8.0 ft long has a circular cross 
section of diameter d1 � 0.75 in. over one-half of its length 
and diameter d2 � 0.5 in. over the other half (see figure). The 
modulus of elasticity E � 30 � 106 psi. 

(a) How much will the bar elongate under a tensile load 
P � 5000 lb? 

(b) If the same volume of material is made into a bar of 
constant diameter d and length 8.0 ft, what will be the 
elongation under the same load P?
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(b) ADDITIONAL LOAD P0 AT POINT C

(�AC)max � 4.0 mm

�0 � additional shortening of the two columns
due to the load P0

�0 � (�AC)max � �AC � 4.0 mm � 3.7206 mm

� 0.2794 mm

Also, �0 �
P0  L

EAAB

�
P0  L

EABC

�
P0  L

E
¢ 1

AAB

�
1

ABC

≤

Solve for P0:

SUBSTITUTE NUMERICAL VALUES:

P0 � 44,200  N � 44.2  kN

ABC � 3,900 � 10�6
 m2

L � 3.75  m� AAB � 11,000 � 10�6
 m2

�0 � 0.2794 � 10�3
 mE � 206 � 109

 N�m2

P0 �
E�0

L
 ¢ AAB  ABC

AAB � ABC

≤

d1 = 0.75 in.

P

d2 = 0.50 in.

4.0 ft 4.0 ft

P = 5000 lb

Solution 2.3-7 Bar in tension

d1 = 0.75 in.

P

d2 = 0.50 in.

4.0 ft 4.0 ft

P = 5000 lb

P � 5000 lb

E � 30 � 106 psi

L � 4 ft � 48 in.

(a) ELONGATION OF NONPRISMATIC BAR

� 0.0589  in. 

� B 1
�
4 (0.75  in)2 �

1
�
4 (0.50  in.)2 R

� �
(5000  lb)(48  in.)

30 �  106
 psi

� � a  
Ni  Li

Ei  Ai

�
PL

E a
1

Ai

(b) ELONGATION OF PRISMATIC BAR OF SAME VOLUME

Original bar: Vo � A1L � A2L � L(A1 � A2)

Prismatic bar: Vp � Ap(2L)

Equate volumes and solve for Ap:

Vo � Vp L(A1 � A2) � Ap(2L)

NOTE: A prismatic bar of the same volume will
always have a smaller change in length than will a
nonprismatic bar, provided the constant axial load
P, modulus E, and total length L are the same.

� 0.0501  in.

� �
P(2L)

EAp

�
(5000  lb)(2)(48  in.)

(30 � 106
 psi) (0.3191  in.2)

�  
�

8
[ (0.75  in.)2 � (0.50  in.)2 ] � 0.3191  in.2

Ap �
A1 � A2

2
�

1

2
 ¢�

4
≤ (d1

2 � d2
2)



Solution 2.3-8 Bar with a hole
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d2d1

L
4

P P

— L
4

— L
2

—

d

d � diameter of hole

SHORTENING � OF THE BAR

(Eq. 1)

NUMERICAL VALUES (DATA):

� � maximum allowable shortening of the bar
� 8.0 mm

�
PL

�E
 ¢ 1

d1
2 � d2 �

1

d1
2 �

2

d2
2≤

�
P

EC
L �4

�

4
(d1

2 � d2)
�

L �4
�

4
d1

2

�
L�2
�

4
d2

2
S

� � a  
Ni  Li

Ei  Ai

�
P

E
 a  

Li

Ai

P � 110 kN L � 1.2 m E � 4.0 GPa

d1 � 100 mm

dmax � maximum allowable diameter of the hole

d2 � 60 mm

SUBSTITUTE NUMERICAL VALUES INTO EQ. (1) FOR �
AND SOLVE FOR d � dmax:

UNITS: Newtons and meters

�

dmax � 23.9  mm 

d � 0.02387  m

d2 � 569.81 � 10�6
 m2

� 761.598 � 100 � 555.556 � 106.042
1

0.01 � d2

761.598 �
1

0.01 � d2 �
1

0.01
�

2

0.0036

B 1

(0.1)2 � d2 �
1

(0.1)2 �
2

(0.06)2 R
0.008 �

(110,000)(1.2)

�(4.0 � 109)

Problem 2.3-9 A wood pile, driven into the earth, supports a load P entirely
by friction along its sides (see figure). The friction force f per unit length of pile
is assumed to be uniformly distributed over the surface of the pile. The pile has
length L, cross-sectional area A, and modulus of elasticity E.

(a) Derive a formula for the shortening � of the pile in terms of P, L, E, 
and A. 

(b) Draw a diagram showing how the compressive stress �c varies throughout
the length of the pile.

L

P

f

Problem 2.3-8 A bar ABC of length L consists of two parts
of equal lengths but different diameters (see figure). Segment
AB has diameter d1 � 100 mm and segment BC has diameter
d2 � 60 mm. Both segments have length L/2 � 0.6 m. A
longitudinal hole of diameter d is drilled through segment AB
for one-half of its length (distance L/4 � 0.3 m). The bar is
made of plastic having modulus of elasticity E � 4.0 GPa.
Compressive loads P � 110 kN act at the ends of the bar. 

If the shortening of the bar is limited to 8.0 mm, what 
is the maximum allowable diameter dmax of the hole?

d2

d1

L
4

P P

A B
C

— L
4

— L
2

—



Solution 2.3-9 Wood pile with friction
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FROM FREE-BODY DIAGRAM OF PILE:

(Eq. 1)

(a) SHORTENING � OF PILE:

At distance y from the base:

©Fvert � 0�c�   T��fL � P � 0�f �
P

L

N(y) � axial force N(y) � fy (Eq. 2)

(b) COMPRESSIVE STRESS �c IN PILE

At the base (y � 0): �c � 0

See the diagram above.

At  the  top(y � L):  sc �
P

A

sc �
N(y)

A
�

fy

A
�

Py

AL

� �
PL

2EA

� � �
L

0

d� �
f

EA �
L

0

ydy �
fL2

2EA
�

PL

2EA

d� �
N(y) dy

EA
�

fy dy

EA

L

y

P

f

dy f = 
P
L

�c = 
Py

AL

P
A

0

Compressive stress
in pile

Friction force
per unit
length of pile

Problem 2.3-10 A prismatic bar AB of length L, cross-sectional area A, modulus
of elasticity E, and weight W hangs vertically under its own weight (see figure). 

(a) Derive a formula for the downward displacement �C of point C, located 
at distance h from the lower end of the bar. 

(b) What is the elongation �B of the entire bar? 
(c) What is the ratio � of the elongation of the upper half of the bar to the

elongation of the lower half of the bar?

L

h

B

A

C

Solution 2.3-10 Prismatic bar hanging vertically

W � Weight of bar

(a) DOWNWARD

DISPLACEMENT �C

Consider an element at
distance y from the
lower end.

(b) ELONGATION OF BAR (h � 0)

(c) RATIO OF ELONGATIONS

Elongation of lower half of bar:

b�
�upper

�lower
�

3�8
1�8

� 3

�lower � �B � �upper �
WL

2EA
�

3WL

8EA
�

WL

8EA

�upper �
3WL

8EA

Elongation  of  upper  half  of  bar  ¢h �
L

2
≤:

�B �
WL

2EA
L

h

y

B

A

C

dy

�C �
W

2EAL
(L2 � h2)

�
W

2EAL
(L2 � h2)�C � �

L

h

d� � �
L

h

Wydy

EAL

N(y) �
Wy

L
�d� �

N(y)dy

EA
�

Wydy

EAL



Problem 2.3-11 A flat bar of rectangular cross section, length
L, and constant thickness t is subjected to tension by forces 
P (see figure). The width of the bar varies linearly from b1 at 
the smaller end to b2 at the larger end. Assume that the angle 
of taper is small.

(a) Derive the following formula for the elongation of the
bar:

� � �
Et(b

P

2

L
� b1)
� ln �

b
b

2

1

�

(b) Calculate the elongation, assuming L � 5 ft, t � 1.0 in., 
P � 25 k, b1 � 4.0 in., b2 � 6.0 in., and E � 30 � 106 psi.
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P

P

t

b1

b2

L

Solution 2.3-11 Tapered bar (rectangular cross section)

P

dx
x

P

L0 L

0 b1 b b2

t � thickness (constant)

(Eq. 1)

(a) ELONGATION OF THE BAR

(Eq. 2) �
PL0

Eb1t
 ln x �

L0

L0�L

�
PL0

Eb1t
  ln 

L0 � L

L0

 � � �
L0�L

L0

d� �
PL0

Eb1t
�

L0�L

L0

dx
x

 d� �
Pdx

EA(x)
�

PL0  dx

Eb1tx

A(x) � bt � b1t ¢ x

L0
≤

b � b1¢ x

L0
≤�b2 � b1¢L0 � L

L0
≤

(Eq. 3)

(Eq. 4)

Substitute Eqs. (3) and (4) into Eq. (2):

(Eq. 5)

(b) SUBSTITUTE NUMERICAL VALUES:

L � 5 ft � 60 in. t � 10 in.

P � 25 k b1 � 4.0 in.

b2 � 6.0 in. E � 30 � 106 psi

From  Eq.  (5):  � � 0.010  in.

� �
PL

Et(b2 � b1)
 ln  

b2

b1

Solve  Eq.  (3) for  L0:    L0 � L ¢ b1

b2 � b1
≤

From  Eq.  (1):  

L0 � L

L0
�

b2

b1



Problem 2.3-12 A post AB supporting equipment in a laboratory is
tapered uniformly throughout its height H (see figure). The cross
sections of the post are square, with dimensions b � b at the top
and 1.5b � 1.5b at the base.

Derive a formula for the shortening � of the post due to the
compressive load P acting at the top. (Assume that the angle of
taper is small and disregard the weight of the post itself.)

Solution 2.3-12 Tapered post
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H

P

A

B

A b

b

B 1.5b

1.5b

Square cross sections

b � width at A

1.5b � width at B

by � width at distance y

Ay � cross-sectional area at distance y

� (by)
2 �

b2

H2 (H � 0.5y)2

�
b

H
(H � 0.5y)

� b � (1.5b � b)
y

H

SHORTENING OF ELEMENT dy

SHORTENING OF ENTIRE POST

�
2PH

3Eb2

�
PH2

Eb2 B� 1

(0.5)(1.5H)
�

1

0.5H
R

� �
PH2

Eb2 B� 1

(0.5)(H � 0.5y)
R

0

H

From  Appendix  C:  � dx

(a � bx)2 � �
1

b(a � bx)

� � �d� �
PH2

Eb2 �
H

0

dy

(H � 0.5y)2

d� �
Pdy

EAy

�
Pdy

E  ¢ b2

H 2≤  (H � 0.5y)2

P

A

B

y

dy

b

by

1.5 b

H



Problem 2.3-13 A long, slender bar in the shape of a right circular cone
with length L and base diameter d hangs vertically under the action of its
own weight (see figure). The weight of the cone is W and the modulus of
elasticity of the material is E.

Derive a formula for the increase � in the length of the bar due to 
its own weight. (Assume that the angle of taper of the cone is small.)

Solution 2.3-13 Conical bar hanging vertically
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d

L

ELEMENT OF BAR

W�weight of cone

ELONGATION OF ELEMENT dy

ELONGATION OF CONICAL BAR

� � �d� �
4W

�d 2 EL �
L

0

y  dy �
2WL

�  d2 E

d� �
Ny  dy

E  Ay

�
Wy  dy

E  ABL
�

4W

�  d 2
 EL

 y dy

d

y
L

dy
dy

Ny

Ny

TERMINOLOGY

Ny � axial force acting on element dy

Ay � cross-sectional area at element dy

AB � cross-sectional area at base of cone

V � volume of cone

Vy � volume of cone below element dy

Wy � weight of cone below element dy

Ny � Wy

�
Vy

V
(W) �

AyyW

ABL

�
1

3
 Ay  y

�
1

3
AB  L

�
�  d2

4



Problem 2.3-14 A bar ABC revolves in a horizontal plane about a
vertical axis at the midpoint C (see figure). The bar, which has length 
2L and cross-sectional area A, revolves at constant angular speed �. 
Each half of the bar (AC and BC) has weight W1 and supports a weight 
W2 at its end.

Derive the following formula for the elongation of one-half of the 
bar (that is, the elongation of either AC or BC):

� � �
3
L
g

2

E
�

A

2

� (W1 � 3W2)

in which E is the modulus of elasticity of the material of the bar and 
g is the acceleration of gravity.

Solution 2.3-14 Rotating bar
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A C B
�

L L

W2 W1 W1 W2

C
B

�

L

W1 W2

x

F(x)

dx
d��

� � angular speed     

A � cross-sectional area

E � modulus of elasticity

g � acceleration of gravity

F(x) � axial force in bar at distance x from point C

Consider an element of length dx at distance x from
point C.

To find the force F(x) acting on this element, we
must find the inertia force of the part of the bar from
distance x to distance L, plus the inertia force of the
weight W2.

Since the inertia force varies with distance from
point C, we now must consider an element of 
length d� at distance �, where � varies from x to L.

Acceleration of element � ��2

Centrifugal force produced by element

� (mass)(acceleration) �
W1�

2

gL
 jdj

Mass  of  element  dj�
dj

L
¢W1

g
≤

Centrifugal force produced by weight W2

AXIAL FORCE F(x)

ELONGATION OF BAR BC

�
L2�2

3gEA
(W1 � 3W2)

 �
W1L

2�2

3gEA
�

W2L
2�2

gEA

�
W2L�2

gEA
 �

L

0

 dx �
W1�

2

2gLEA
B �

L

0

L2
 dx � �

L

0

x2
 dxR

� �
L

0

W1�
2

2gLEA
(L2 � x2)dx � �

L

0

W2L�2dx

gEA

 � � �
L

0

F(x)  dx

EA

 �
W1�

2

2gL
(L2 � x2) �

W2L�2

g

 F(x) � �
j�L

j�x

W1�
2

gL
 jdj�

W2L�2

g

� ¢W2

g
≤(L�2)



Problem 2.3-15 The main cables of a suspension bridge 
[see part (a) of the figure] follow a curve that is nearly parabolic
because the primary load on the cables is the weight of the bridge
deck, which is uniform in intensity along the horizontal. Therefore,
let us represent the central region AOB of one of the main cables
[see part (b) of the figure] as a parabolic cable supported at points 
A and B and carrying a uniform load of intensity q along the
horizontal. The span of the cable is L, the sag is h, the axial rigidity
is EA, and the origin of coordinates is at midspan.

(a) Derive the following formula for the elongation of cable
AOB shown in part (b) of the figure:

� � �
8
q
h
L
E

3

A
� (1 � �

1
3
6
L
h
2

2

�)

(b) Calculate the elongation � of the central span of one of 
the main cables of the Golden Gate Bridge, for which the
dimensions and properties are L � 4200 ft, h � 470 ft, 
q � 12,700 lb/ft, and E � 28,800,000 psi. The cable
consists of 27,572 parallel wires of diameter 0.196 in.

Hint: Determine the tensile force T at any point in the cable
from a free-body diagram of part of the cable; then determine 
the elongation of an element of the cable of length ds; finally,
integrate along the curve of the cable to obtain an equation for 
the elongation �.

Solution 2.3-15 Cable of a suspension bridge
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BA

O

L
2

q

y

(b)

(a)

x

h 

— L
2
—

Equation of parabolic curve:

dy

dx
�

8hx

L2

y �
4hx2

L2

BA

O

L
2

q

y

x

h 

— L
2
—

D

B

O

L
2

q

y

x

h 

—

D
H

VB

HB

FREE-BODY DIAGRAM OF HALF OF CABLE

©Fhorizontal � 0

(Eq. 1)

©Fvertical � 0

(Eq. 2)VB �
qL

2

HB � H �
qL2

8h

H �
qL2

8h

� Hh �
qL

2
¢L

4
≤� 0

©MB � 0  ��
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FREE-BODY DIAGRAM OF SEGMENT DB OF CABLE

©Fhoriz � 0 TH � HB

(Eq. 3)

� qx (Eq. 4)

TENSILE FORCE T IN CABLE

(Eq. 5)

ELONGATION d� OF AN ELEMENT OF LENGTH ds

(Eq. 6) � dxB1 �
64h2x2

L4

 � dxB1 � ¢8hx

L2 ≤
2

 ds � �(dx)2 � (dy)2 � dx  B1 � ¢dy

dx
≤

2

d� �
Tds

EA

�
qL2

8hB1 �
64h2x2

L4

T � �TH
2 � TV

2 �B¢qL2

8h
≤

2

� (qx)2

TV � VB � q ¢L
2

� x≤�
qL

2
�

qL

2
� qx

©Fvert � 0�VB � TV � q ¢L
2

� x≤� 0

�
qL2

8h

(a) ELONGATION � OF CABLE AOB

Substitute for T from Eq. (5) and for ds
from Eq. (6):

For both halves of cable:

(Eq. 7)

(b) GOLDEN GATE BRIDGE CABLE

L � 4200 ft h � 470 ft
q � 12,700 lb/ft E � 28,800,000 psi

27,572 wires of diameter d � 0.196 in.

Substitute into Eq. (7):

� � 133.7  in � 11.14  ft  

A � (27,572)¢�
4
≤(0.196  in.)2 � 831.90  in.2

� �
qL3

8hEA
 ¢1 �

16h2

3L2 ≤

� �
2

EA �
L�2

0

qL2

8h
 ¢1 �

64h2x2

L4 ≤  dx

� �
1

EA �qL2

8h
 ¢1 �

64h2x2

L4 ≤  dx

� � �d� � �T  ds

EA

B

L

2

q

y

x

h − 

—

D

0

x
− x

TH �

4hx2

L2

4hx2

L2

HB

VB

T TV

D

T

TH

�

TV

dy

dxT

T

ds



Statically Indeterminate Structures

Problem 2.4-1 The assembly shown in the figure consists of a brass
core (diameter d1 � 0.25 in.) surrounded by a steel shell (inner diameter
d2 � 0.28 in., outer diameter d3 � 0.35 in.). A load P compresses the 
core and shell, which have length L � 4.0 in. The moduli of elasticity 
of the brass and steel are Eb � 15 � 106 psi and Es � 30 � 106 psi,
respectively. 

(a) What load P will compress the assembly by 0.003 in.?
(b) If the allowable stress in the steel is 22 ksi and the allowable 

stress in the brass is 16 ksi, what is the allowable compressive 
load Pallow? (Suggestion: Use the equations derived in 
Example 2-5.)

Solution 2.4-1 Cylindrical assembly in compression
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P

Steel shell
Brass core

d3

d1

d2

L

P

Steel shell

Brass core

d3

d1

d2

L

d1 � 0.25 in. Eb�15 � 106 psi

d2 � 0.28 in. Es�30 � 106 psi

(a) DECREASE IN LENGTH (� � 0.003 in.)

Use Eq. (2-13) of Example 2-5.

P � (Es  As � Eb  Ab)¢�

L
≤

� �
PL

Es  As � Eb  Ab

�or

L � 4.0  in.�Ab �
�

4
d1

2� 0.04909  in.2

d3 � 0.35  in.�As �
�

4
(d3

2 � d2
2) � 0.03464  in.2

Substitute numerical values:

(b) ALLOWABLE LOAD

�s�22 ksi �b�16 ksi

Use Eqs. (2-12a and b) of Example 2-5.

For steel:

For brass:

Steel  governs.�Pallow � 1300  lb

Ps � (1.776 � 106
 lb)¢ 16  ksi

15 � 106
 psi
≤� 1890  lb

sb �
PEb

Es  As � Eb  Ab

�Ps � (Es  As � Eb  Ab)
sb

Eb

Ps � (1.776 � 106
 lb)¢ 22  ksi

30 � 106
 psi
≤� 1300  lb

ss �
PEs

Es  As � Eb  Ab

�Ps � (Es  As � Eb  Ab)
ss

Es

� 1330  lb

P � (1.776 � 106
 lb)¢0.003  in.

4.0  in.
≤

 � 1.776 � 106
 lb

� (15 � 106
 psi) (0.04909  in.2)

 Es  As � Eb  Ab � (30 � 106
 psi) (0.03464  in.2)



Problem 2.4-2 A cylindrical assembly consisting of a brass core and 
an aluminum collar is compressed by a load P (see figure). The length 
of the aluminum collar and brass core is 350 mm, the diameter of the 
core is 25 mm, and the outside diameter of the collar is 40 mm. Also, the
moduli of elasticity of the aluminum and brass are 72 GPa and 100 GPa,
respectively. 

(a) If the length of the assembly decreases by 0.1% when the load 
P is applied, what is the magnitude of the load? 

(b) What is the maximum permissible load Pmax if the allowable
stresses in the aluminum and brass are 80 MPa and 120 MPa,
respectively? (Suggestion: Use the equations derived in 
Example 2-5.)

Solution 2.4-2 Cylindrical assembly in compression
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Aluminum collar

Brass core

25 mm

40 mm

P

350 mm

A
B

db

da

P

350 mm

A � aluminum

B � brass

L � 350 mm

da �40 mm

db � 25 mm

�765.8 mm2

(a) DECREASE IN LENGTH

(� � 0.1% of L � 0.350 mm)

Use Eq. (2-13) of Example 2-5.

� 490.9  mm2

Ea � 72  GPa�Eb � 100  GPa�Ab �
�

4
db

2

Aa �
�

4
(da

2 � db
2)

Substitute numerical values:

Ea Aa � Eb Ab � (72 GPa)(765.8 mm2)
�(100 GPa)(490.9 mm2)

� 55.135 MN � 49.090 MN

� 104.23 MN

(b) ALLOWABLE LOAD

�a � 80 MPa �b � 120 MPa

Use Eqs. (2-12a and b) of Example 2-5.

For aluminum:

For brass:

Aluminum  governs.�Pmax � 116  kN

Pb � (104.23  MN)¢120  MPa

100  GPa
≤� 125.1  kN

sb �
PEb

Ea Aa� Eb Ab

�Pb � (Ea  Aa � Eb  Ab)¢sb

Eb

≤

Pa � (104.23  MN)¢80  MPa

72  GPa
≤� 115.8  kN

sa �
PEa

Ea Aa � Eb Ab

�Pa � (Ea Aa� Eb Ab)¢sa

Ea

≤

� 104.2  kN  

P � (104.23  MN)¢0.350  mm

350  mm
≤

P � (Ea  Aa � Eb  Ab)¢�

L
≤

� �
PL

Ea  Aa � Eb Ab

�or



Problem 2.4-3 Three prismatic bars, two of material A and one of material B,
transmit a tensile load P (see figure). The two outer bars (material A) are identical.
The cross-sectional area of the middle bar (material B) is 50% larger than the
cross-sectional area of one of the outer bars. Also, the modulus of elasticity of
material A is twice that of material B.

(a) What fraction of the load P is transmitted by the middle bar?
(b) What is the ratio of the stress in the middle bar to the stress in the outer

bars?
(c) What is the ratio of the strain in the middle bar to the strain in the outer

bars?

Solution 2.4-3 Prismatic bars in tension
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A

A

B
P

A

A

B
P

FREE-BODY DIAGRAM OF END PLATE

EQUATION OF EQUILIBRIUM

©Fhoriz� 0 PA � PB � P � 0 (1)

EQUATION OF COMPATIBILITY

�A � �B (2)

FORCE-DISPLACEMENT RELATIONS

AA � total area of both outer bars

(3)

Substitute into Eq. (2):

(4)

SOLUTION OF THE EQUATIONS

Solve simultaneously Eqs. (1) and (4):

(5)

Substitute into Eq. (3):

(6)� � �A � �B �
PL

EA AA � EB AB

PA �
EA AAP

EA AA � EB AB

�PB �
EB ABP

EA AA � EB AB

PA  L

EA  AA

 �
PB  L

EB  AB

�A �
PA  L

EA  AA

��B �
PB  L

EB  AB

STRESSES:

(7)

(a) LOAD IN MIDDLE BAR

(b) RATIO OF STRESSES

(c) RATIO OF STRAINS

All bars have the same strain

Ratio � 1

sB

sA
�

EB

EA

�
1

2

∴
PB

P
�

1

¢EA

EB

≤ ¢AA

AB

≤� 1

�
1

8

3
� 1

�
3

11

Given:  

EA

EB

� 2�
AA

AB

�
1 � 1

1.5
�

4

3

PB

P
�

EB AB

EA AA � EB AB

�
1

EA AA

EB AB

� 1

sB �
PB

AB

�
EBP

EA AA � EB AB

sA �
PA

AA

�
EAP

EA AA � EB ABP

PA
2

PB
PA
2



Problem 2.4-4 A bar ACB having two different cross-sectional areas A1
and A2 is held between rigid supports at A and B (see figure). A load P
acts at point C, which is distance b1 from end A and distance b2 from 
end B. 

(a) Obtain formulas for the reactions RA and RB at supports A and B,
respectively, due to the load P. 

(b) Obtain a formula for the displacement �C of point C. 
(c) What is the ratio of the stress �1 in region AC to the stress �2 in 

region CB?

Solution 2.4-4 Bar with intermediate load
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C B

b1

A1

b2

A
A2

P

C B

b1 b2

A1 A2

A
P

FREE-BODY DIAGRAM

EQUATION OF EQUILIBRIUM

©Fhoriz � 0 RA � RB � P (Eq. 1)

EQUATION OF COMPATIBILITY

�AC � elongation of AC

�CB � shortening of CB

�AC � �CB (Eq. 2)

FORCE DISPLACEMENT RELATIONS

(Eqs. 3&4)

(a) SOLUTION OF EQUATIONS

Substitute Eq. (3) and Eq. (4) into Eq. (2):

(Eq. 5)
RA  b1

EA1
�

RB  b2

EA2

�AC �
RA b1

EA1
��CB �

RB b2

EA2

Solve Eq. (1) and Eq. (5) simultaneously:

(b) DISPLACEMENT OF POINT C

(c) RATIO OF STRESSES

(Note that if b1 � b2, the stresses are numerically
equal regardless of the areas A1 and A2.)

s1

s2
�

b2

b1

s1 �
RA

A1
 (tension)�s2 �

RB

A2
 (compression)

�C � �AC �
RA  b1

EA1
�

b1  b2  P

E(b1  A2 � b2  A1)

RA �
b2 A1  P

b1  A2 � b2  A1
�RB �

b1 A2  P

b1  A2 � b2  A1

C B

RA

RB
A

P



Problem 2.4-5 Three steel cables jointly support a load of 12 k (see
figure). The diameter of the middle cable is 3⁄4 in. and the diameter of each
outer cable is 1⁄2 in. The tensions in the cables are adjusted so that each
cable carries one-third of the load (i.e., 4 k). Later, the load is increased
by 9 k to a total load of 21 k. 

(a) What percent of the total load is now carried by the middle cable? 
(b) What are the stresses �M and �O in the middle and outer cables,

respectively? (Note: See Table 2-1 in Section 2.2 for properties 
of cables.)

Solution 2.4-5 Three cables in tension
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P

1
2

in.

1
2

in.

3
4

in.

AREAS OF CABLES (from Table 2-1)

Middle cable: AM � 0.268 in.2

Outer cables: AO � 0.119 in.2

(for each cable)

FIRST LOADING

P1 � 12 k 

SECOND LOADING

P2 � 9 k (additional load)

EQUATION OF EQUILIBRIUM

©Fvert � 0 2PO � PM � P2 � 0 (1)

EQUATION OF COMPATIBILITY

�M � �O (2)

¢Each  cable  carries  

P1

3
 or  4  k.≤

FORCE-DISPLACEMENT RELATIONS

(3, 4)

SUBSTITUTE INTO COMPATIBILITY EQUATION:

(5)

SOLVE SIMULTANEOUSLY EQS. (1) AND (5):

FORCES IN CABLES

Middle cable: Force � 4 k � 4.767 k � 8.767 k

Outer cables: Force � 4 k � 2.117 k � 6.117 k

(for each cable)

(a) PERCENT OF TOTAL LOAD CARRIED BY MIDDLE CABLE

(b) STRESSES IN CABLES (� � P/A)

Outer  cables:    sO �
6.117  k

0.119  in.2
� 51.4  ksi

Middle  cable:  sM �
8.767  k

0.268  in.2
� 32.7  ksi

Percent �
8.767  k

21  k
(100%) � 41.7%

� 2.117  k

 Po � P2  ¢ Ao

AM � 2AO

≤� (9  k)¢0.119  in.2

0.506  in.2
≤

� 4.767  k

 PM � P2  ¢ AM

AM � 2AO

≤� (9  k)¢0.268  in.2

0.506  in.2
≤

PML

EAM

�
POL

EAO

�
PM

AM

�
PO

AO

�M �
PML

EAM

��O �
PoL

EAo

P2 = 9 k

PO POPM



Problem 2.4-6 A plastic rod AB of length L � 0.5 m has a 
diameter d1 � 30 mm (see figure). A plastic sleeve CD of length 
c � 0.3 m and outer diameter d2 � 45 mm is securely bonded 
to the rod so that no slippage can occur between the rod and the
sleeve. The rod is made of an acrylic with modulus of elasticity 
E1 � 3.1 GPa and the sleeve is made of a polyamide with 
E2 � 2.5 GPa. 

(a) Calculate the elongation � of the rod when it is pulled by
axial forces P � 12 kN. 

(b) If the sleeve is extended for the full length of the rod, 
what is the elongation? 

(c) If the sleeve is removed, what is the elongation?

Solution 2.4-6 Plastic rod with sleeve
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L

c bb

P P

A BC D

d1 d2

L

c bb

P P

A BC Dd1 d1
d2

P � 12 kN d1 � 30 mm b � 100 mm

L � 500 mm d2 � 45 mm c � 300 mm

Rod:   E1 � 3.1 GPa

Sleeve: E2 � 2.5 GPa

E1A1 � E2A2 � 4.400 MN

(a) ELONGATION OF ROD

(From Eq. 2-13 of Example 2-5)

� � 2�AC � �CD � 1.91  mm

 � 0.81815  mm

 Part  CD:  �CD �
Pc

E1A1E2A2

 Part  AC:  �AC �
Pb

E1A1
� 0.5476  mm

Sleeve:  A2 �
�

4
(d2

2� d1
2) � 883.57  mm2

Rod:  A1 �
�d1

2

4
� 706.86  mm2

(b) SLEEVE AT FULL LENGTH

(c) SLEEVE REMOVED

� �
PL

E1A1
� 2.74  mm

� 1.36  mm

� � �CD  ¢L
c
≤� (0.81815  mm)  ¢500  mm

300  mm
≤



Problem 2.4-7 The axially loaded bar ABCD shown in the figure is held
between rigid supports. The bar has cross-sectional area A1 from A to C
and 2A1 from C to D. 

(a) Derive formulas for the reactions RA and RD at the ends of the bar. 
(b) Determine the displacements �B and �C at points B and C,

respectively. 
(c) Draw a diagram in which the abscissa is the distance from the 

left-hand support to any point in the bar and the ordinate is the
horizontal displacement � at that point.

Solution 2.4-7 Bar with fixed ends
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A B

A1 1.5A1

C

P

D

L
4

— L
4

— L
2

—

FREE-BODY DIAGRAM OF BAR

EQUATION OF EQUILIBRIUM

©Fhoriz � 0 RA � RD � P
(Eq. 1)

EQUATION OF COMPATIBILITY

�AB � �BC � �CD � 0 (Eq. 2)

Positive means elongation.

FORCE-DISPLACEMENT EQUATIONS

(Eqs. 3, 4)

(Eq. 5)

SOLUTION OF EQUATIONS

Substitute Eqs. (3), (4), and (5) into Eq. (2):

(Eq. 6)
RAL

4EA1
�

(RA � P)(L)

4EA1
�

RDL

4EA1
� 0

�CD � �
RD(L�2)

E(2A1)

�AB �
RA(L �4)

EA1
��BC �

(RA � P)(L �4)

EA1

(a) REACTIONS

Solve simultaneously Eqs. (1) and (6):

(b) DISPLACEMENTS AT POINTS B AND C

(c) DISPLACEMENT DIAGRAM

�
PL

12EA1
 (To  the  right)

�C � ��CD� �
RDL

4EA1

�B � �AB �
RAL

4EA1
�

PL

6EA1
 (To  the  right)

RA �
2P

3
�RD �

P

3A B

A1
2A1

C

P

D

L
4

— L
4

— L
2

—

RDRA

Displacement

Distance from
end AL

4
— L

2
— L0

A B C D

PL
6EA1
——

PL
12EA1
——



Problem 2.4-8 The fixed-end bar ABCD consists of three prismatic
segments, as shown in the figure. The end segments have cross-
sectional area A1 � 840 mm2 and length L1 � 200 mm. The middle
segment has cross-sectional area A2 � 1260 mm2 and length L2 � 250
mm. Loads PB and PC are equal to 25.5 kN and 17.0 kN, respectively. 

(a) Determine the reactions RA and RD at the fixed supports. 
(b) Determine the compressive axial force FBC in the middle

segment of the bar. 

Solution 2.4-8 Bar with three segments
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A1 A1A2

A D
B C

PB PC

L1 L1L2

A1
A1A2

A D
B C

PB PC

L1 L1L2

PB � 25.5 kN PC � 17.0 kN

L1 � 200 mm L2 � 250 mm

A1 � 840 mm2 A2 � 1260 mm2

m � meter

SOLUTION OF EQUATIONS

Substitute Eqs. (3), (4), and (5) into Eq. (2):

Simplify and substitute PB � 25.5 kN:

(Eq. 6)

(a) REACTIONS RA AND RD

Solve simultaneously Eqs. (1) and (6).

From (1): RD � RA � 8.5 kN

Substitute into (6) and solve for RA:

(b) COMPRESSIVE AXIAL FORCE FBC

FBC � PB � RA � PC � RD � 15.0  kN

RD � RA � 8.5  kN � 2.0  kN

RA � 10.5 kN

RA ¢674.603  

1
m
≤� 7083.34  

kN
m

� 5,059.53  

kN
m

RA ¢436.508  

1
m
≤� RD ¢238.095  

1
m
≤

�
PB

E
 ¢198.413  

1
m
≤�

RD

E
 ¢238.095  

1
m
≤� 0

RA

E
 ¢238.095 

1
m
≤�

RA

E
 ¢198.413  

1
m
≤

FREE-BODY DIAGRAM

EQUATION OF EQUILIBRIUM

©Fhoriz � 0 S
�

d�

PB � RD � PC � RA � 0 or 

RA � RD � PB � PC � 8.5 kN (Eq. 1)

EQUATION OF COMPATIBILITY

�AD � elongation of entire bar

�AD � �AB � �BC � �CD � 0 (Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eq. 3)

(Eq. 4)

(Eq. 5)�CD �
RDL1

EA1
�

RD

E
 ¢238.095  

1
m
≤

�
RA

E
 ¢198.413  

1
m
≤�

PB

E
 ¢198.413  

1
m
≤

�BC �
(RA � PB)L2

EA2

�AB �
RAL1

EA1
�

RA

E
 ¢238.095  

1
m
≤

A DB C

PB PCRA RD



Problem 2.4-9 The aluminum and steel pipes shown in the figure are
fastened to rigid supports at ends A and B and to a rigid plate C at their
junction. The aluminum pipe is twice as long as the steel pipe. Two equal
and symmetrically placed loads P act on the plate at C. 

(a) Obtain formulas for the axial stresses �a and �s in the aluminum
and steel pipes, respectively. 

(b) Calculate the stresses for the following data: P � 12 k, cross-sectional
area of aluminum pipe Aa � 8.92 in.2, cross-sectional area of steel
pipe As � 1.03 in.2, modulus of elasticity of aluminum Ea � 10 � 106

psi, and modulus of elasticity of steel Es � 29 � 106 psi.

Solution 2.4-9 Pipes with intermediate loads
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P

C

P

B

A Steel pipe

Aluminum
pipe

2L

L

Pipe 1 is steel.
Pipe 2 is aluminum.

EQUATION OF EQUILIBRIUM

©Fvert � 0 RA � RB � 2P (Eq. 1)

EQUATION OF COMPATIBILITY

�AB � �AC � �CB � 0 (Eq. 2)

(A positive value of � means elongation.)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4))�AC �
RAL

Es As

��BC � �
RB(2L)

Ea Aa

SOLUTION OF EQUATIONS

Substitute Eqs. (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

(Eqs. 6, 7)

(a) AXIAL STRESSES

(Eq. 8)

(compression)

(Eq. 9)

(tension)

(b) NUMERICAL RESULTS

P � 12 k Aa � 8.92 in.2 As � 1.03 in.2

Ea � 10 � 106 psi Es � 29 � 106 psi

Substitute into Eqs. (8) and (9):

ss � 9,350  psi  (tension)

sa � 1,610  psi  (compression)

Steel:  ss �
RA

As

�
4Es P

Ea Aa � 2Es As

Aluminum:  sa �
RB

Aa

�
2EaP

Ea Aa � 2Es As

RA �
4Es  As P

Ea  Aa � 2Es  As

�RB �
2Ea  Aa P

Ea  Aa � 2Es  As

RAL

Es  As

�
RB(2L)

Ea  Aa

� 0
P

C

P

B

A

2L

L
1

2

P

C

P

B

A

RA

RB

EsAs

Ea Aa



Problem 2.4-10 A rigid bar of weight W � 800 N hangs from three
equally spaced vertical wires, two of steel and one of aluminum (see figure).
The wires also support a load P acting at the midpoint of the bar. The
diameter of the steel wires is 2 mm, and the diameter of the aluminum wire
is 4 mm.

What load Pallow can be supported if the allowable stress in the 
steel wires is 220 MPa and in the aluminum wire is 80 MPa? (Assume 
Es � 210 GPa and Ea � 70 GPa.)

Solution 2.4-10 Rigid bar hanging from three wires
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P

Rigid bar
of weight W

S A S

STEEL WIRES

ds � 2 mm �s � 220 MPa Es � 210 GPa

ALUMINUM WIRES

dA � 4 mm �A � 80 MPa

EA � 70 GPa

FREE-BODY DIAGRAM OF RIGID BAR

EQUATION OF EQUILIBRIUM

©Fvert � 0

2Fs � FA � P � W � 0 (Eq. 1)

EQUATION OF COMPATIBILITY

�s � �A (Eq. 2)

FORCE DISPLACEMENT RELATIONS

(Eqs. 3, 4)�s �
Fs L

Es As

�    �A �
FAL

EAAA

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

(Eq. 6)

(Eq. 7)

STRESSES IN THE WIRES

(Eq. 8)

(Eq. 9)

ALLOWABLE LOADS (FROM EQS. (8) AND (9))

(Eq. 10)

(Eq. 11)

SUBSTITUTE NUMERICAL VALUES INTO EQS. (10) AND (11):

PA � 1713 N

Ps � 1504 N

Steel  governs.�Pallow � 1500  N

AA �
�

4
 (4  mm)2 � 12.5664  mm2

As �
�

4
 (2  mm)2 � 3.1416  mm2

Ps �
ss

Es

(EAAA � 2Es As) � W

PA �
sA

EA

(EAAA � 2Es As) � W

ss �
Fs

As

�
(P � W)Es

EAAA � 2Es As

sA �
FA

AA

�
(P � W)EA

EAAA � 2Es As

Fs � (P � W)¢ Es As

EAAA � 2Es As

≤

FA � (P � W)¢ EAAA

EAAA � 2Es As

≤

Fs L

Es As

�
FAL

EAAA

P

S A S

W = 800 N

P + W

FS FA FS



Problem 2.4-11 A bimetallic bar (or composite bar) of square cross
section with dimensions 2b � 2b is constructed of two different metals
having moduli of elasticity E1 and E2 (see figure). The two parts of the
bar have the same cross-sectional dimensions. The bar is compressed by
forces P acting through rigid end plates. The line of action of the loads
has an eccentricity e of such magnitude that each part of the bar is
stressed uniformly in compression. 

(a) Determine the axial forces P1 and P2 in the two parts of the bar. 
(b) Determine the eccentricity e of the loads. 
(c) Determine the ratio �1/�2 of the stresses in the two parts of the bar.

Solution 2.4-11 Bimetallic bar in compression
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2b

P

e

b
b

b
b

P

e
E1

E2

2b

b2

b
b

P2

P1

P2

P1
E1

E2

E1

E2

FREE-BODY DIAGRAM

(Plate at right-hand end)

EQUATIONS OF EQUILIBRIUM

©F � 0 P1 � P2 � P (Eq. 1)

(Eq. 2)

EQUATION OF COMPATIBILITY

�2 � �1

(Eq. 3)
P2L

E2A
�

P1L

E1A
�or�

P2

E2
�

P1

E1

©M � 0  �  ��Pe � P1¢b2≤� P2¢b2≤� 0

(a) AXIAL FORCES

Solve simultaneously Eqs. (1) and (3):

(b ECCENTRICITY OF LOAD P

Substitute P1 and P2 into Eq. (2) and solve for e:

(c) RATIO OF STRESSES

s1 �
P1

A
�s2 �

P2

A
�
s1

s2
�

P1

P2
�

E1

E2

e �
b(E2 � E1)

2(E2 � E1)

P1 �
PE1

E1 � E2
�P2 �

PE2

E1 � E2

P2

P1

e
P

b
2

b
2



Problem 2.4-12 A circular steel bar ABC (E = 200 GPa) has cross-
sectional area A1 from A to B and cross-sectional area A2 from B to C
(see figure). The bar is supported rigidly at end A and is subjected to 
a load P equal to 40 kN at end C. A circular steel collar BD having 
cross-sectional area A3 supports the bar at B. The collar fits snugly at 
B and D when there is no load.

Determine the elongation �AC of the bar due to the load P. 
(Assume L1� 2L3 � 250 mm, L2 � 225 mm, A1 � 2A3 � 960 mm2,
and A2 � 300 mm2.)

Solution 2.4-12 Bar supported by a collar
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A1

A3

A2

L3

L1

L2

P

C

D

B

A

FREE-BODY DIAGRAM OF BAR ABC AND COLLAR BD

EQUILIBRIUM OF BAR ABC

©Fvert � 0 RA � RD � P � 0 (Eq. 1)

COMPATIBILITY (distance AD does not change)

�AB(bar) � �BD(collar) � 0 (Eq. 2)

(Elongation is positive.)

FORCE-DISPLACEMENT RELATIONS

Substitute into Eq. (2):

(Eq. 3)
RAL1

EA1
�

RDL3

EA3
� 0

�AB �
RAL1

EA1
�  �BD � �

RDL3

EA3

SOLVE SIMULTANEOUSLY EQS. (1) AND (3):

CHANGES IN LENGTHS (Elongation is positive)

ELONGATION OF BAR ABC

�AC � �AB � �AC

SUBSTITUTE NUMERICAL VALUES:

P � 40 kN E � 200 GPa

L1 � 250 mm

L2 � 225 mm

L3 � 125 mm

A1 � 960 mm2

A2 � 300 mm2

A3 � 480 mm2

RESULTS:

RA � RD � 20 kN

�AB � 0.02604 mm

�BC � 0.15000 mm

�AC � �AB � �AC � 0.176  mm

�AB �
RAL1

EA1
�

PL1L3

E(L1A3 � L3A1)
�  �BC �

PL2

EA2

RA �
PL3A1

L1A3 � L3A1
�RD �

PL1A3

L1A3 � L3A1

A1

A2

L1

L2

P

C

RD

B

A

A3
L3

D

B

RD

RD

RA



Problem 2.4-13 A horizontal rigid bar of weight W � 7200 lb is
supported by three slender circular rods that are equally spaced (see
figure). The two outer rods are made of aluminum (E1 � 10 � 106 psi)
with diameter d1 � 0.4 in. and length L1 � 40 in. The inner rod is
magnesium (E2 � 6.5 � 106 psi) with diameter d2 and length L2. The
allowable stresses in the aluminum and magnesium are 24,000 psi and
13,000 psi, respectively. 

If it is desired to have all three rods loaded to their maximum
allowable values, what should be the diameter d2 and length L2 of 
the middle rod?

Solution 2.4-13 Bar supported by three rods
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W = weight of rigid bar

d1d1

d2

L2

L1

BAR 1 ALUMINUM

E1 � 10 � 106 psi

d1 � 0.4 in.

L1 � 40 in.

�1 � 24,000 psi

BAR 2 MAGNESIUM

E2 � 6.5 � 106 psi

d2 � ? L2 � ?

�2 � 13,000 psi

FREE-BODY DIAGRAM OF RIGID BAR

EQUATION OF EQUILIBRIUM

©Fvert � 0

2F1 � F2 � W � 0 (Eq. 1)

FULLY STRESSED RODS

F1 � �1A1 F2 � �2A2

Substitute into Eq. (1):

Diameter d1 is known; solve for d2:

(Eq. 2)d2
2 �

4W
�s2

�
2s1d2

2

s2

2s1¢�d1
2

4
≤�s2¢�d2

2

4
≤� W

A1 �
�d1

2

4
�          A2 �

�d2
2

4

SUBSTITUTE NUMERICAL VALUES:

EQUATION OF COMPATIBILITY

�1 � �2 (Eq. 3)

FORCE-DISPLACEMENT RELATIONS

(Eq. 4)

(Eq. 5)

Substitute (4) and (5) into Eq. (3):

Length L1 is known; solve for L2:

(Eq. 6)

SUBSTITUTE NUMERICAL VALUES:

 � 48.0  in.

 L2 � (40  in.)¢24,000  psi

13,000  psi
≤ ¢6.5 � 106

 psi

10 � 106
 psi
≤

L2 � L1 ¢s1E2

s2E1
≤

s1 ¢L1

E1
≤�s2 ¢L2

E2
≤

�2 �
F2L2

E2A2
�s2 ¢L2

E2
≤

�1 �
F1L1

E1A1
�s1 ¢L1

E1
≤

 d2 � 0.338  in.

 � 0.70518  in.2 � 0.59077  in.2 � 0.11441  in.2

 d2
2 �

4(7200  lb)

�(13,000  psi)
�

2(24,000  psi)  (0.4  in.)2

13,000  psi

W = 7200 lb

1

2

1

W

F1 F2
F1



Problem 2.4-14 A rigid bar ABCD is pinned at point B and 
supported by springs at A and D (see figure). The springs at A and D
have stiffnesses k1 � 10 kN/m and k2 � 25 kN/m, respectively, and the
dimensions a, b, and c are 250 mm, 500 mm, and 200 mm, respectively.
A load P acts at point C.

If the angle of rotation of the bar due to the action of the load P
is limited to 3°, what is the maximum permissible load Pmax?

Solution 2.4-14 Rigid bar supported by springs
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A B C

P

D

c = 200 mm

k1 = 10 kN/m
k2 = 25 kN/m

a = 250 mm b = 500 mm

NUMERICAL DATA

a � 250 mm

b � 500 mm

c � 200 mm

k1 � 10 kN/m

k2 � 25 kN/m

FREE-BODY DIAGRAM AND DISPLACEMENT DIAGRAM

EQUATION OF EQUILIBRIUM

(Eq. 1)©MB � 0   ��   FA(a) � P(c) � FD(b) � 0

umax � 3� �
�

60
 rad

EQUATION OF COMPATIBILITY

(Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

SOLVE SIMULTANEOUSLY EQS. (1) AND (5):

ANGLE OF ROTATION

MAXIMUM LOAD

SUBSTITUTE NUMERICAL VALUES:

 � 1800  N

� (500  mm)2(25  kN�m) ]

 Pmax �
��60  rad

200  mm
[ (250  mm)2(10  kN�m)

Pmax �
umax

c
 (a2k1 � b2k2)

P �
u

c
 (a2k1 � b2k2)

�D �
FD

k2
�

bcP

a2k1 � b2k2

�u�
�D

b
�

cP

a2k1 � b2k2

FA �
ack1P

a2k1 � b2k2

�FD �
bck2P

a2k1 � b2k2

FA

ak1
�

FD

bk2

�A �
FA

k1
�  �D �

FD

k2

�A

a
�

�D

b

A B C

P

D

c
k1

k2

a b

P FD

c

a b

FA RB

A
B C D

�A

�C

�D

�



Problem 2.4-15 A rigid bar AB of length L � 66 in. is hinged to a support
at A and supported by two vertical wires attached at points C and D (see
figure). Both wires have the same cross-sectional area (A � 0.0272 in.2) and
are made of the same material (modulus E � 30 � 106 psi). The wire at C
has length h � 18 in. and the wire at D has length twice that amount. The
horizontal distances are c � 20 in. and d � 50 in.

(a) Determine the tensile stresses �C and �D in the wires due to the
load P � 340 lb acting at end B of the bar. 

(b) Find the downward displacement �B at end B of the bar.

Solution 2.4-15 Bar supported by two wires
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P

A BDC

L

c

d

h

2h

h � 18 in.

2h � 36 in.

c � 20 in.

d � 50 in.

L � 66 in.

E� 30 � 106 psi

A � 0.0272 in.2

P � 340 lb

FREE-BODY DIAGRAM

DISPLACEMENT DIAGRAM

EQUATION OF EQUILIBRIUM

(Eq. 1)

EQUATION OF COMPATIBILITY

(Eq. 2)
�C

c
�

�D

d

©MA � 0  �  ��TC(c) � TD(d) � PL

P

A BDC

L

c

d

h

2h

P

A BDC

RA

TC

TD

A C D B

�C

�D

�B



Problem 2.4-16 A trimetallic bar is uniformly compressed by an
axial force P � 40 kN applied through a rigid end plate (see figure).
The bar consists of a circular steel core surrounded by brass and cop-
per tubes. The steel core has diameter 30 mm, the brass tube has outer
diameter 45 mm, and the copper tube has outer diameter 60 mm. The
corresponding moduli of elasticity are Es � 210 GPa, Eb � 100 GPa,
and Ec � 120 GPa.

Calculate the compressive stresses �s, �b, and �c in the steel, brass,
and copper, respectively, due to the force P.
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FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

TENSILE FORCES IN THE WIRES

Solve simultaneously Eqs. (1) and (5):

(Eqs. 6, 7)

TENSILE STRESSES IN THE WIRES

(Eq. 8)

(Eq. 9)sD �
TD

A
�

dPL

A(2c2 � d2)

sC �
TC

A
�

2cPL

A(2c2 � d2)

TC �
2cPL

2c2 � d2�TD �
dPL

2c2 � d2

TCh

cEA
�

TD(2h)

dEA
�or�

TC

c
�

2TD

d

�C �
TCh

EA
�  �D �

TD(2h)

EA

DISPLACEMENT AT END OF BAR

(Eq. 10)

SUBSTITUTE NUMERICAL VALUES

(a)

(b)

 � 0.0198  in.

�
2(18  in.) (340  lb)(66  in.)2

(30 � 106
 psi) (0.0272  in.2) (3300  in.2)

 �B �
2hPL2

EA(2c2 � d2)

� 12,500  psi

 sD �
dPL

A(2c2 � d2)
�

(50  in.) (340  lb)(66  in.)

(0.0272  in.2) (3300  in.2)

� 10,000  psi

 sC �
2cPL

A(2c2 � d2)
�

2(20  in.) (340  lb)(66  in.)

(0.0272  in.2) (3300  in.2)

2c2 � d2 � 2(20  in.)2 � (50  in.)2 � 3300  in.2

�B � �D  ¢L
d
≤�

2hTD

EA
 ¢L

d
≤�

2hPL2

EA(2c2 � d2)

P = 40 kN
Copper tube Brass tube

Steel core

30
mm

45
mm

60
mm



Solution 2.4-16 Trimetallic bar in compression
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Ps � compressive force in steel core

Pb � compressive force in brass tube

Pc � compressive force in copper tube

FREE-BODY DIAGRAM OF RIGID END PLATE

EQUATION OF EQUILIBRIUM

©Fvert � 0 Ps � Pb � Pc � P (Eq. 1)

EQUATIONS OF COMPATIBILITY

�s � �b �c � �s (Eqs. 2)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4, 5)

SOLUTION OF EQUATIONS

Substitute (3), (4), and (5) into Eqs. (2):

(Eqs. 6, 7)Pb � Ps

Eb Ab

Es As

�Pc � Ps

Ec Ac

Es As

�s �
Ps L

Es As

��b �
Pb L

Eb Ab

��c �
Pc L

Ec Ac

SOLVE SIMULTANEOUSLY EQS. (1), (6), AND (7):

COMPRESSIVE STRESSES

Let ©EA � EsAs � EbAb � EcAc

SUBSTITUTE NUMERICAL VALUES:

P � 40 kN Es � 210 GPa

Eb � 100 GPa Ec � 120 GPa

d1 � 30 mm d2 � 45 mm d3 � 60 mm

©EA�385.238 � 106 N

sc �
PEc

©EA
� 12.5  MPa

sb �
PEb

©EA
� 10.4  MPa

ss �
PEs

©EA
� 21.8  MPa

Ac �
�

4
(d3

2 � d2
2) � 1237.00  mm2

Ab �
�

4
(d2

2 � d1
2) � 883.57  mm2

As �
�

4
d1

2 � 706.86  mm2

sc �
Pc

Ac

�
PEc

©EA

ss �
Ps

As

�
PEs

©EA
�sb �

Pb

Ab

�
PEb

©EA

Pc � P
Ec  Ac

Es  As � Eb  Ab � Ec � Ac

Pb � P 
Eb  Ab

Es  As � Eb  Ab � Ec  Ac

Ps � P 
Es  As

Es  As � Eb  Ab � Ec  Ac

Copper

Brass

Steel

P

Ps

Pb

Pc



Thermal Effects

Problem 2.5-1 The rails of a railroad track are welded together at their
ends (to form continuous rails and thus eliminate the clacking sound of
the wheels) when the temperature is 60°F. 

What compressive stress � is produced in the rails when they 
are heated by the sun to 120°F if the coefficient of thermal expansion 
	 � 6.5 � 10�6/°F and the modulus of elasticity E � 30 � 106 psi?

Solution 2.5-1 Expansion of railroad rails
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The rails are prevented from expanding because of
their great length and lack of expansion joints.

Therefore, each rail is in the same condition as a bar
with fixed ends (see Example 2-7).

The compressive stress in the rails may be calculated
from Eq. (2-18).

 s� 11,700  psi

� (30 � 106
 psi) (6.5 � 10�6��F)(60�F)

 s� E	(¢T )

¢T � 120�F � 60�F � 60�F

Problem 2.5-2 An aluminum pipe has a length of 60 m at a temperature
of 10°C. An adjacent steel pipe at the same temperature is 5 mm longer
than the aluminum pipe. 

At what temperature (degrees Celsius) will the aluminum pipe 
be 15 mm longer than the steel pipe? (Assume that the coefficients 
of thermal expansion of aluminum and steel are 	a � 23 � 10�6/°C 
and 	s � 12 � 10�6/°C, respectively.)

Solution 2.5-2 Aluminum and steel pipes 

INITIAL CONDITIONS

La � 60 m T0 � 10�C

Ls � 60.005 m T0 � 10�C

	a � 23 � 10�6/�C 	s � 12 � 10�6/�C

FINAL CONDITIONS

Aluminum pipe is longer than the steel pipe by the
amount �L � 15 mm.

�T � increase in temperature

�a � 	a(�T)La �s � 	s(�T)Ls

From the figure above:

�a � La � �L � �s � Ls

or, 	a(�T)La � La � �L � 	s(�T)Ls � Ls

Solve for �T:

Substitute numerical values:

	a La � 	s Ls � 659.9 � 10�6 m/�C

� 40.3�C

T � T0 � ¢T � 10�C � 30.31�C

¢T �
15  mm � 5  mm

659.9 � 10�6
 m��C

� 30.31�C

¢T �
¢L � (Ls � La)

	a La � 	s Ls

�a La


L �s Ls

Aluminum pipe

Steel pipe
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Problem 2.5-3 A rigid bar of weight W � 750 lb hangs from three
equally spaced wires, two of steel and one of aluminum (see figure). 
The diameter of the wires is 1⁄8 in. Before they were loaded, all three 
wires had the same length.

What temperature increase �T in all three wires will result in the
entire load being carried by the steel wires? (Assume Es � 30 � 106 psi,
�s � 6.5 � 10�6/°F, and �a � 12 � 10�6/°F.)

Solution 2.5-3 Bar supported by three wires

W = 750 lb

S A S

S � steel A � aluminum

W � 750 lb

Es � 30 � 106 psi

EsAs � 368,155 lb

�s � 6.5 � 10�6/�F

�a � 12 � 10�6/�F

L � Initial length of wires

�1 � increase in length of a steel wire due to
temperature increase �T

� �s (�T)L

As �
�d2

4
� 0.012272  in.2

d �
1

8
 in.

�2 � increase in length of a steel wire due to load
W/2

�3 � increase in length of aluminum wire due to
temperature increase �T

� �a(�T)L

For no load in the aluminum wire:

�1 � �2 � �3

or

Substitute numerical values:

NOTE: If the temperature increase is larger than �T,
the aluminum wire would be in compression, which
is not possible. Therefore, the steel wires continue to
carry all of the load. If the temperature increase is
less than �T, the aluminum wire will be in tension
and carry part of the load.

 � 185�F�

 ¢T �
750  lb

(2)(368,155  lb)(5.5 � 10�6��F)

¢T �
W

2Es As(�a � �s)
�

�s(¢T)L �
WL

2Es As

� �a(¢T )L

�
WL

2Es As

W

S A S

Rigid
Bar

S A S

W
2

W
2

�3

�1

�2
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Problem 2.5-4 A steel rod of diameter 15 mm is held snugly (but
without any initial stresses) between rigid walls by the arrangement
shown in the figure. 

Calculate the temperature drop �T (degrees Celsius) at which 
the average shear stress in the 12-mm diameter bolt becomes 45 MPa.
(For the steel rod, use � � 12 � 10�6/°C and E � 200 GPa.)

Solution 2.5-4 Steel rod with bolted connection

15 mm

12 mm diameter bolt

R � rod

B � bolt

P � tensile force in steel rod due to temperature drop
�T

AR � cross-sectional area of steel rod

From Eq. (2-17) of Example 2-7: P � EAR�(�T)

Bolt is in double shear.

V � shear force acting over one cross section of the
bolt

� � average shear stress on cross section of the bolt

AB � cross-sectional area of bolt

t�
V

AB

�
EAR �(¢T)

2AB

V � P�2 �
1

2
EAR�(¢T)

SUBSTITUTE NUMERICAL VALUES:

� � 45 MPa dB � 12 mm dR � 15 mm

� � 12 � 10�6/�C E � 200 GPa

 ¢T � 24�C�

 ¢T �
2(45  MPa)(12  mm)2

(200  GPa)(12 � 10�6��C)(15  mm)2

¢T �
2tdB

2

E�dR
2

AR �
�dR

2

4
�where  dR � diameter  of  steel  rod

AB �
�dB

2

4
�where  dB � diameter  of  bolt

Solve  for  ¢T:   ¢T �
2tAB

EAR�

15 mm

12 mm diameter bolt

B
R

Problem 2.5-5 A bar AB of length L is held between rigid supports and
heated nonuniformly in such a manner that the temperature increase �T at
distance x from end A is given by the expression �T � �TBx3/L3, where
�TB is the increase in temperature at end B of the bar (see figure). 

Derive a formula for the compressive stress �c in the bar. (Assume
that the material has modulus of elasticity E and coefficient of thermal
expansion �.)

L

A

∆T
∆TB

B

x

0
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Solution 2.5-5 Bar with nonuniform temperature change

At distance x:

REMOVE THE SUPPORT AT END B OF THE BAR:

Consider an element dx at a distance x from end A.

¢T � ¢TB ¢ x3

L3≤

d� � Elongation of element dx

� � elongation of bar

COMPRESSIVE FORCE P REQUIRED TO SHORTEN THE BAR

BY THE AMOUNT �

COMPRESSIVE STRESS IN THE BAR

sc �
P

A
�

E�(¢TB)

4
�

P �
EA�

L
�

1

4
EA�(¢TB)

� � �
L

0

d� � �
L

0

�(¢TB) ¢ x3

L3≤ dx �
1

4
 �(¢TB)L

d� � �(¢T )dx � �(¢TB)¢ x3

L3≤ dx

L

A

∆T
∆TB

B

x

0

L

A B

x dx

Problem 2.5-6 A plastic bar ACB having two different solid circular cross
sections is held between rigid supports as shown in the figure. The diameters 
in the left- and right-hand parts are 50 mm and 75 mm, respectively. The
corresponding lengths are 225 mm and 300 mm. Also, the modulus of elasticity
E is 6.0 GPa, and the coefficient of thermal expansion � is 100 � 10�6/°C. The
bar is subjected to a uniform temperature increase of 30°C. 

Calculate the following quantities: (a) the compressive force P in the bar;
(b) the maximum compressive stress �c; and (c) the displacement �C of point C.

Solution 2.5-6 Bar with rigid supports

300 mm

75 mm

225 mm

A BC50 mm

300 mm

75 mm

225 mm

A B
50 mm

C

E � 6.0 GPa � � 100 � 10�6/�C

LEFT-HAND PART:

L1 � 225 mm d1 � 50 mm

� 1963.5 mm2

�T � 30°C

A1 �  
�

4
 d1

2 �
�

4
 (50  mm)2

RIGHT-HAND PART:

L2 � 300 mm d2 � 75 mm

(a) COMPRESSIVE FORCE P

Remove the support at end B.

A2 �
�

4
 d2

2 �
�

4
 (75  mm)2 � 4417.9  mm2

A
BC

A
BC

P

L1 L2
A1 A2
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Problem 2.5-7 A circular steel rod AB (diameter d1 � 1.0 in., length 
L1 � 3.0 ft) has a bronze sleeve (outer diameter d2 � 1.25 in., length 
L2 � 1.0 ft) shrunk onto it so that the two parts are securely bonded 
(see figure). 

Calculate the total elongation � of the steel bar due to a temperature rise
�T � 500°F. (Material properties are as follows: for steel, Es � 30 � 106 psi 
and �s � 6.5 � 10�6/°F; for bronze, Eb � 15 � 106 psi and �b � 11 � 10�6/°F.)

Solution 2.5-7 Steel rod with bronze sleeve

�T � elongation due to temperature

P � �(�T)(L1�L2)

� 1.5750 mm

�P � shortening due to P

� P(19.0986 � 10�9 m/N�11.3177 � 10�9 m/N)

� (30.4163 � 10�9 m/N)P

(P � newtons)

Compatibility: �T � �P

1.5750 � 10�3 m � (30.4163 � 10�9 m/N)P

P � 51,781  N�or�P � 51.8  kN�

�
PL1

EA1
�

PL2

EA2

(b) MAXIMUM COMPRESSIVE STRESS

(c) DISPLACEMENT OF POINT C

�C � Shortening of AC

(Positive means AC shortens and point C displaces to
the left.)

 �C � 0.314  mm�

� 0.9890  mm � 0.6750  mm

 �C �
PL1

EA1
� �(¢T )L1

sc �
P

A1
�

51.78  kN

1963.5  mm2 � 26.4  MPa�

d2d1
A B

L2

L1

d2d1
A B

L2

L1

L1 � 36 in. L2 � 12 in.

ELONGATION OF THE TWO OUTER PARTS OF THE BAR

�1 � �s(�T)(L1 � L2)

� (6.5 � 10�6/�F)(500�F)(36 in. � 12 in.)

� 0.07800 in.

ELONGATION OF THE MIDDLE PART OF THE BAR

The steel rod and bronze sleeve lengthen the same
amount, so they are in the same condition as the bolt
and sleeve of Example 2-8. Thus, we can calculate
the elongation from Eq. (2-21):

�2 �
(�s  Es  As � �b  Eb  Ab)(¢T)L2

Es  As � Eb  Ab

SUBSTITUTE NUMERICAL VALUES:

�s � 6.5 � 10�6/�F �b � 11 � 10�6/�F

Es � 30 � 106 psi Eb � 15 � 106 psi

d1 � 1.0 in.

d2 � 1.25 in.

�T � 500�F L2 � 12.0 in.

�2 � 0.04493 in.

TOTAL ELONGATION

� � �1 � �2 � 0.123  in.�

Ab �
�

4
(d2

2 � d1
2) � 0.44179  in.2

As �
�

4
 d1

2 � 0.78540  in.2
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Problem 2.5-8 A brass sleeve S is fitted over a steel bolt B (see figure),
and the nut is tightened until it is just snug. The bolt has a diameter 
dB � 25 mm, and the sleeve has inside and outside diameters 
d1 � 26 mm and d2 � 36 mm, respectively.

Calculate the temperature rise �T that is required to produce a
compressive stress of 25 MPa in the sleeve. (Use material properties 
as follows: for the sleeve, �S � 21 � 10�6/°C and ES � 100 GPa; 
for the bolt, �B � 10 � 10�6/°C and EB � 200 GPa.) 
(Suggestion: Use the results of Example 2-8.)

Solution 2.5-8 Brass sleeve fitted over a Steel bolt

Sleeve (S)

Bolt (B)

d2
d1

dB

Subscript S means “sleeve”.

Subscript B means “bolt”.

Use the results of Example 2-8.

�S � compressive force in sleeve

EQUATION (2-20a):

SOLVE FOR �T :

or

¢T �
sS

ES(�S � �B)
¢1 �

ES  AS

EB  AB

≤�

¢T �
sS(ES  AS � EB  AB)

(�S � �B)ES  EB  AB

sS �
(�S � �B)(¢T)ES  EB  AB

ES  AS � EB  AB

 (Compression)

SUBSTITUTE NUMERICAL VALUES:

�S � 25 MPa

d2 � 36 mm d1 � 26 mm dB � 25 mm

ES � 100 GPa EB � 200 GPa

�S � 21 � 10�6/�C �B � 10 � 10�6/�C

(Increase in temperature)

¢T � 34�C�

¢T �
25  MPa  (1.496)

(100  GPa)(11 � 10�6��C)

1 �
ES  AS

EB  AB

� 1.496

 AB �
�

4
(dB)2 �

�

4
(625  mm2)

 AS �
�

4
(d2

2 � d1
2) �

�

4
(620  mm2)

S

B

Steel Bolt
Brass Sleeve

Problem 2.5-9 Rectangular bars of copper and aluminum are held 
by pins at their ends, as shown in the figure. Thin spacers provide a
separation between the bars. The copper bars have cross-sectional
dimensions 0.5 in. � 2.0 in., and the aluminum bar has dimensions 
1.0 in. � 2.0 in. 

Determine the shear stress in the 7/16 in. diameter pins if the
temperature is raised by 100°F. (For copper, Ec � 18,000 ksi and 
�c � 9.5 � 10�6/°F; for aluminum, Ea � 10,000 ksi and 
�a � 13 � 10�6/°F.) Suggestion: Use the results of Example 2-8.

Copper bar

Copper bar

Aluminum bar
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Solution 2.5-9 Rectangular bars held by pins

C

C

A

Pin AluminumCopper

0.5 in. × 2.0 in.
1.0 in. × 2.0 in.
0.5 in. × 2.0 in.

Area of two copper bars: Ac � 2.0 in.2

Area of aluminum bar: Aa � 2.0 in.2

�T � 100�F

Copper: Ec � 18,000 ksi �c � 9.5 � 10�6/�F

Aluminum: Ea � 10,000 ksi �a � 13 � 10�6/�F

Use the results of Example 2-8.

Find the forces Pa and Pc in the aluminum bar and
copper bar, respectively, from Eq. (2-19).

Replace the subscript “S” in that equation by “a” 
(for aluminum) and replace the subscript “B” 
by “c” (for copper), because � for aluminum
is larger than � for copper.

Note that Pa is the compressive force in the
aluminum bar and Pc is the combined tensile 
force in the two copper bars.

Pa � Pc �
(�a � �c)(¢T)Ec  Ac

1 �
Ec  Ac

Ea  Aa

Pa � Pc �
(�a � �c)(¢T)Ea  Aa  Ec  Ac

Ea  Aa � Ec  Ac

Area  of  pin:  AP �
�

4
 dP

2 � 0.15033  in.2

Diameter  of  pin:  dP �
7

16
 in. � 0.4375  in. SUBSTITUTE NUMERICAL VALUES:

� 4,500 lb

FREE-BODY DIAGRAM OF PIN AT THE LEFT END

V � shear force in pin

� Pc /2

� 2,250 lb

� � average shear stress on cross section of pin

t� 15.0  ksi�

t�
V

AP

�
2,250  lb

0.15033  in.2

Pa � Pc �
(3.5 � 10�6��F)(100�F)(18,000  ksi)(2  in.2)

1 � ¢18

10
≤  ¢2.0

2.0
≤

Pc
2

Pc
2

Pa

Problem 2.5-10 A rigid bar ABCD is pinned at end A and supported by
two cables at points B and C (see figure). The cable at B has nominal 
diameter dB � 12 mm and the cable at C has nominal diameter dC � 20 mm.
A load P acts at end D of the bar. 

What is the allowable load P if the temperature rises by 60°C and 
each cable is required to have a factor of safety of at least 5 against its 
ultimate load? 

(Note: The cables have effective modulus of elasticity E � 140 GPa
and coefficient of thermal expansion � � 12 � 10�6/°C. Other properties
of the cables can be found in Table 2-1, Section 2.2.) P

DCBA

b2b

dB dC

2b
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Solution 2.5-10 Rigid bar supported by two cables 

FREE-BODY DIAGRAM OF BAR ABCD

P

DCBA

RAH
RAV

TB TC

2b 2b b

TB � force in cable B TC � force in cable C

dB � 12 mm dC � 20 mm

From Table 2-1:

AB � 76.7 mm2 E � 140 GPa

�T � 60�C AC � 173 mm2

� � 12 � 10�6/�C

EQUATION OF EQUILIBRIUM

or 2TB � 4TC � 5P (Eq. 1)

DISPLACEMENT DIAGRAM

COMPATIBILITY:

�C � 2�B (Eq. 2)

FORCE-DISPLACEMENT AND TEMPERATURE-
DISPLACEMENT RELATIONS

(Eq. 3)

(Eq. 4)�C �
TC  L

EAC

� �(¢T )L

�B �
TB  L

EAB

� �(¢T )L

©MA � 0   ���TB(2b) � TC(4b) � P(5b) � 0

SUBSTITUTE EQS. (3) AND (4) INTO EQ. (2):

or

2TB AC � TC AB � �E�(�T)AB AC (Eq. 5)

SUBSTITUTE NUMERICAL VALUES INTO EQ. (5):

TB(346) � TC(76.7) � �1,338,000 (Eq. 6)

in which TB and TC have units of newtons.

SOLVE SIMULTANEOUSLY EQS. (1) AND (6):

TB � 0.2494 P � 3,480 (Eq. 7)

TC � 1.1253 P � 1,740 (Eq. 8)

in which P has units of newtons.

SOLVE EQS. (7) AND (8) FOR THE LOAD P:

PB � 4.0096 TB � 13,953 (Eq. 9)

PC � 0.8887 TC � 1,546 (Eq. 10)

ALLOWABLE LOADS

From Table 2-1:

(TB)ULT � 102,000 N (TC)ULT � 231,000 N

Factor of safety � 5

(TB)allow � 20,400 N (TC)allow � 46,200 N

From Eq. (9): PB � (4.0096)(20,400 N) � 13,953 N

� 95,700 N

From Eq. (10): PC � (0.8887)(46,200 N) � 1546 N

� 39,500 N

Cable C governs.

Pallow � 39.5  kN

TC  L

EAC

� �(¢T)L �
2TB  L

EAB

� 2�(¢T)L

A B C b D

�B

�C

2b 2b

B

CD

A

P

b

b

2b

Problem 2.5-11 A rigid triangular frame is pivoted at C and held by two iden-
tical horizontal wires at points A and B (see figure). Each wire has axial rigidity
EA � 120 k and coefficient of thermal expansion � � 12.5 � 10�6/°F. 

(a) If a vertical load P � 500 lb acts at point D, what are the tensile forces
TA and TB in the wires at A and B, respectively? 

(b) If, while the load P is acting, both wires have their temperatures raised
by 180°F, what are the forces TA and TB?

(c) What further increase in temperature will cause the wire at B to become
slack?
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Solution 2.5-11 Triangular frame held by two wires 

FREE-BODY DIAGRAM OF FRAME

B

CD

A

P 2b

b

b

TA

TB

EQUATION OF EQUILIBRIUM

P(2b) � TA(2b) � TB(b) � 0 or 2TA � TB � 2P (Eq. 1)

DISPLACEMENT DIAGRAM

EQUATION OF COMPATIBILITY

�A � 2�B (Eq. 2)

(a) LOAD P ONLY

Force-displacement relations:

(Eq. 3, 4)

(L � length of wires at A and B.)

Substitute (3) and (4) into Eq. (2):

or TA � 2TB (Eq. 5)

Solve simultaneously Eqs. (1) and (5):

(Eqs. 6, 7)

Numerical values:

∴ TA � 400  lb      TB � 200  lb

P � 500  lb

TA �
4P

5
�  TB �

2P

5
  

TA  L

EA
�

2TB  L

EA

�A �
TA  L

EA
�  �B �

TB  L

EA

©MC � 0  ��

(b) LOAD P AND TEMPERATURE INCREASE �T

Force-displacement and temperature-
displacement relations:

(Eq. 8)

(Eq. 9)

Substitute (8) and (9) into Eq. (2):

or TA � 2TB � EA�(�T) (Eq. 10)

Solve simultaneously Eqs. (1) and (10):

(Eq. 11)

(Eq. 12)

Substitute numerical values:

P � 500 lb EA � 120,000 lb
�T � 180�F

� � 12.5 � 10�6/�F

(c) WIRE B BECOMES SLACK

Set TB � 0 in Eq. (12):

P � EA�(�T)

or

Further increase in temperature:

 � 153�F

 ¢T � 333.3�F � 180�F

 � 333.3�F

 ¢T �
P

EA�
�

500  lb

(120,000  lb)(12.5 � 10�6��F)

TB �
2

5
(500  lb � 270  lb) � 92  lb

TA �
1

5
(2000  lb � 270  lb) � 454  lb

TB �
2

5
[P � EA�(¢T ) ]

TA �
1

5
[4P � EA�(¢T ) ]

TAL

EA
� �(¢T)L �

2TBL

EA
� 2�(¢T)L

�B �
TBL

EA
� �(¢T)L

�A �
TAL

EA
� �(¢T)L

B

C

A

b

b

�A

�B
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Misfits and Prestrains

Problem 2.5-12 A steel wire AB is stretched between rigid supports 
(see figure). The initial prestress in the wire is 42 MPa when the
temperature is 20°C. 

(a) What is the stress � in the wire when the temperature drops 
to 0°C? 

(b) At what temperature T will the stress in the wire become zero?
(Assume � � 14 � 10�6/°C and E � 200 GPa.)

Solution 2.5-12 Steel wire with initial prestress

A B

Steel wire

Initial prestress: �1 � 42 MPa

Initial temperature: T1 � 20�C

E � 200 GPa

� � 14 � 10�6/�C

(a) STRESS � WHEN TEMPERATURE DROPS TO 0�C

T2 � 0�C �T � 20�C

Note: Positive �T means a decrease in temperature
and an increase in the stress in the wire.

Negative �T means an increase in temperature and a
decrease in the stress.

Stress � equals the initial stress �1 plus the
additional stress �2 due to the temperature drop.

From Eq. (2-18): �2 � E�(�T)

(b) TEMPERATURE WHEN STRESS EQUALS ZERO

� � �1 � �2 � 0 �1 � E�(�T) � 0

(Negative means increase in temp.)

T � 20�C � 15�C � 35�C

¢T � �
42  MPa

(200  GPa)(14 � 10�6��C)
� � 15�C

¢T � �
s1

E�

 � 42  MPa � 56  MPa � 98  MPa

 � 42  MPa � (200  GPa)(14 � 10�6��C)(20�C)

 s�s1 �s2 �s1 � E�(¢T )

A B

Problem 2.5-13 A copper bar AB of length 25 in. is placed in position 
at room temperature with a gap of 0.008 in. between end A and a rigid
restraint (see figure). 

Calculate the axial compressive stress �c in the bar if the temperature
rises 50°F. (For copper, use � � 9.6 � 10�6/°F and E � 16 � 106 psi.)

25 in.

0.008 in.

A

B



SECTION 2.5 Misfits and Prestrains 115

Solution 2.5-13 Bar with a gap

L � 25 in.

S � 0.008 in.

�T � 50�F (increase)

� � 9.6 � 10�6/�F

E � 16 � 106 psi

� � elongation of the bar if it is free to expand

� �(�T)L

�C � elongation that is prevented by the support

� �(�T)L � S

eC � strain in the bar due to the restraint

� �C /L

�c � stress in the bar

Note: This result is valid only if �(�T)L � S.
(Otherwise, the gap is not closed).

Substitute numerical values:

� 0.008 in. ] � 2,560  psi

[ (9.6 � 10�6��F)(50�F)(25  in.) sc �
16 � 106

 psi

25  in.

� EeC �
E�C

L
�

E

L
[�(¢T)L � S ]

L

A

B

S

Problem 2.5-14 A bar AB having length L and axial rigidity EA is fixed
at end A (see figure). At the other end a small gap of dimension s exists
between the end of the bar and a rigid surface. A load P acts on the bar at
point C, which is two-thirds of the length from the fixed end. 

If the support reactions produced by the load P are to be equal in
magnitude, what should be the size s of the gap?

Solution 2.5-14 Bar with a gap (load P)

BA C

P

2L
3

— L
3
L
3

—
s

L � length of bar

S � size of gap

EA � axial rigidity

Reactions must be equal; find S.

FORCE-DISPLACEMENT RELATIONS

�2 �
RBL

EA

�1 �
P(2L

3 )

EA

COMPATIBILITY EQUATION

�1 � �2 � S or 

(Eq. 1)

EQUILIBRIUM EQUATION

RA � reaction at end A (to the left)

RB � reaction at end B (to the left)

P � RA � RB

Reactions must be equal.

P � 2RB

Substitute for RB in Eq. (1):

NOTE: The gap closes when the load reaches the
value P/4. When the load reaches the value P, equal
to 6EAs/L, the reactions are equal (RA � RB � P/2).
When the load is between P/4 and P, RA is greater
than RB. If the load exceeds P, RB is greater than RA.

2PL

3EA
�

PL

2EA
� S�or�S �

PL

6EA

RB �
P

2
∴ RA � RB

2PL

3EA
�

RBL

EA
� S

P RBRA

BA P

2L
3

— L
3
L
3

—
S

P
2L
3

—

�1

�2

RB
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Problem 2.5-15 Wires B and C are attached to a support at the left-hand
end and to a pin-supported rigid bar at the right-hand end (see figure).
Each wire has cross-sectional area A � 0.03 in.2 and modulus of elasticity
E � 30 � 106 psi. When the bar is in a vertical position, the length of
each wire is L � 80 in. However, before being attached to the bar, the
length of wire B was 79.98 in. and of wire C was 79.95 in. 

Find the tensile forces TB and TC in the wires under the action of 
a force P � 700 lb acting at the upper end of the bar.

Solution 2.5-15 Wires B and C attached to a bar

B

C

80 in.

700 lb

b

b

b

B

C

L = 80 in.

P = 700 lb

b

b

b

P � 700 lb

A � 0.03 in.2

E � 30�106 psi

LB � 79.98 in.

LC � 79.95 in.

EQUILIBRIUM EQUATION

TC(b) � TB(2b) � P(3b)

2TB � TC � 3P (Eq. 1)

DISPLACEMENT DIAGRAM

SB � 80 in. � LB � 0.02 in.

SC � 80 in. � LC � 0.05 in.

©Mpin � 0  ��

Elongation of wires:

�B � SB � 2� (Eq. 2)

�C � SC � � (Eq. 3)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 4, 5)

SOLUTION OF EQUATIONS

Combine Eqs. (2) and (4): 

(Eq. 6)

Combine Eqs. (3) and (5): 

(Eq. 7)

Eliminate � between Eqs. (6) and (7):

(Eq. 8)

Solve simultaneously Eqs. (1) and (8):

SUBSTITUTE NUMERICAL VALUES:

(Both forces are positive, which means tension, as
required for wires.)

TC � 420  lb � 90  lb � 450  lb � 780  lb

TB � 840  lb � 45  lb � 225  lb � 660  lb

EA

5L
� 2250  lb�in.

TC �
3P

5
�

2EASB

5L
�

4EASC

5L

TB �
6P

5
�

EASB

5L
�

2EASC

5L

TB � 2TC �
EASB

L
�

2EASC

L

TCL

EA
� SC � �

TBL

EA
� SB � 2�

�B �
TBL

EA
��C �

TCL

EA

P = 700 lb

b

b

b
Pin

TB

TC

B

C

L = 80 in.

SB

SC

2 �

�
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Problem 2.5-16 A rigid steel plate is supported by three posts of 
high-strength concrete each having an effective cross-sectional area 
A � 40,000 mm2 and length L � 2 m (see figure). Before the load 
P is applied, the middle post is shorter than the others by an amount 
s � 1.0 mm. 

Determine the maximum allowable load Pallow if the allowable
compressive stress in the concrete is �allow � 20 MPa. (Use E � 30 GPa
for concrete.)

Solution 2.5-16 Plate supported by three posts

S

P

CC C L

s

P

CC C L

s

Steel plate

s � size of gap � 1.0 mm

L � length of posts � 2.0 m

A � 40,000 mm2

�allow � 20 MPa

E � 30 GPa

C � concrete post

DOES THE GAP CLOSE?

Stress in the two outer posts when the gap is just
closed:

Since this stress is less than the allowable stress, the
allowable force P will close the gap.

 � 15  MPa

 s� Ee� E ¢ s

L
≤� (30  GPa) ¢1.0  mm

2.0  m
≤

EQUILIBRIUM EQUATION

2P1 � P2 � P (Eq. 1)

COMPATIBILITY EQUATION

�1 � shortening of outer posts

�2 � shortening of inner post

�1 � �2 � s (Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

By inspection, we know that P1 is larger than P2.
Therefore, P1 will control and will be equal to
�allow A.

 � 1.8  MN

 � 2400  kN � 600  kN � 1800  kN

 Pallow � 3sallow  A �
EAs

L

P � 3P1 �
EAs

L

P1L

EA
�

P2L

EA
� s�or�P1 � P2 �

EAs

L

�1 �
P1L

EA
��2 �

P2L

EA

P

P1 P2 P1
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Problem 2.5-17 A copper tube is fitted around a steel bolt and the nut 
is turned until it is just snug (see figure). What stresses �s and �c will be
produced in the steel and copper, respectively, if the bolt is now tightened
by a quarter turn of the nut?

The copper tube has length L � 16 in. and cross-sectional area 
Ac � 0.6 in.2, and the steel bolt has cross-sectional area As � 0.2 in.2 The
pitch of the threads of the bolt is p � 52 mils (a mil is one-thousandth 
of an inch). Also, the moduli of elasticity of the steel and copper are 
Es � 30 � 106 psi and Ec � 16 � 106 psi, respectively.

Note: The pitch of the threads is the distance advanced by the nut 
in one complete turn (see Eq. 2-22).

Solution 2.5-17 Steel bolt and copper tube

Copper tube

Steel bolt

Copper tube

Steel bolt

L � 16 in.

p � 52 mils � 0.052 in.

n � (See Eq. 2-22)

Steel bolt: As � 0.2 in.2

Es � 30 � 106 psi

Copper tube: Ac � 0.6 in.2

Ec � 16 � 106 psi

EQUILIBRIUM EQUATION

Ps � tensile force in steel bolt

Pc � compressive force in copper tube

Pc � Ps (Eq. 1)

COMPATIBILITY EQUATION

�c � shortening of copper tube

�s � elongation of steel bolt

�c � �s � np (Eq. 2)

1

4

FORCE-DISPLACEMENT RELATIONS

(Eq. 3, Eq. 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

(Eq. 6)

Substitute numerical values:

Ps � Pc � 3,000 lb

STRESSES

Steel bolt: 

Copper tube: 

� 5  ksi  (compression)

sc �
Pc

Ac

�
3,000  lb

0.6  in.2

ss �
Ps

As

�
3,000  lb

0.2  in.2
� 15  ksi  (tension)

Ps � Pc �
npEs As Ec Ac

L(Es As � Ec Ac)

PcL

EcAc

�
PsL

EsAs

� np

�c �
Pc L

Ec  Ac

��s �
Ps L

Es As

PsPc

Ps Pc

np
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Problem 2.5-18 A plastic cylinder is held snugly between a rigid plate
and a foundation by two steel bolts (see figure). 

Determine the compressive stress �p in the plastic when the nuts on 
the steel bolts are tightened by one complete turn. 

Data for the assembly are as follows: length L � 200 mm, pitch of 
the bolt threads p � 1.0 mm, modulus of elasticity for steel Es � 200 GPa,
modulus of elasticity for the plastic Ep � 7.5 GPa, cross-sectional area of
one bolt As � 36.0 mm2, and cross-sectional area of the plastic cylinder 
Ap � 960 mm2.

Solution 2.5-18 Plastic cylinder and two steel bolts

L
Steel
bolt

L � 200 mm

P � 1.0 mm

Es � 200 GPa

As � 36.0 mm2 (for one bolt)

Ep � 7.5 GPa

Ap � 960 mm2

n � 1 (See Eq. 2-22)

EQUILIBRIUM EQUATION

Ps � tensile force in one steel bolt

Pp � compressive force in plastic cylinder

Pp � 2Ps (Eq. 1)

COMPATIBILITY EQUATION

�s � elongation of steel bolt

�p � shortening of plastic cylinder

�s � �p � np (Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eq. 3, Eq. 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

STRESS IN THE PLASTIC CYLINDER

SUBSTITUTE NUMERICAL VALUES:

N � Es As Ep � 54.0 � 1015 N2/m2

D � Ep Ap � 2Es As � 21.6 � 106 N

 � 25.0  MPa

 sp �
2np

L
¢N
D
≤�

2(1)(1.0  mm)

200  mm
 ¢N

D
≤

sp �
Pp

Ap

�
2 np Es As Ep

L(Ep Ap � 2Es As)

Pp �
2npEs As Ep Ap

L(Ep Ap � 2Es As)

Ps L

Es As

�
Pp L

Ep Ap

� np

�s �
Ps L

Es As

��p �
Pp L

Ep Ap

Ps Ps

Pp

S SP

Ps Ps
Pp

np

S SP

Probs. 2.5-18 and 2.5-19
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Problem 2.5-19 Solve the preceding problem if the data for the
assembly are as follows: length L � 10 in., pitch of the bolt threads 
p � 0.058 in., modulus of elasticity for steel Es � 30 � 106 psi, 
modulus of elasticity for the plastic Ep � 500 ksi, cross-sectional 
area of one bolt As � 0.06 in.2, and cross-sectional area of the 
plastic cylinder Ap � 1.5 in.2

Solution 2.5-19 Plastic cylinder and two steel bolts

L � 10 in.

p � 0.058 in.

Es � 30 � 106 psi

As � 0.06 in.2 (for one bolt)

Ep � 500 ksi

Ap � 1.5 in.2

n � 1 (see Eq. 2-22)

EQUILIBRIUM EQUATION

Ps � tensile force in one steel bolt

Pp � compressive force in plastic cylinder

Pp � 2Ps (Eq. 1)

COMPATIBILITY EQUATION

�s � elongation of steel bolt

�p � shortening of plastic cylinder

�s � �p � np (Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eq. 3, Eq. 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

STRESS IN THE PLASTIC CYLINDER

SUBSTITUTE NUMERICAL VALUES:

N � Es As Ep � 900 � 109 lb2/in.2

D � Ep Ap � 2Es As � 4350 � 103 lb

 � 2400  psi

 sP �
2np

L
¢N

D
≤�

2(1)(0.058  in.)

10  in.
 ¢N

D
≤

sp �
Pp

Ap

�
2 np Es As Ep

L(Ep Ap � 2Es As)

Pp �
2 np Es As Ep Ap

L(Ep Ap � 2Es As)

Ps L

Es As

�
Pp L

Ep Ap

� np

�s �
Ps L

Es As

��p �
Pp L

Ep Ap

Ps Ps

Pp

S SP

Ps Ps
Pp

np

S SP
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Problem 2.5-20 Prestressed concrete beams are sometimes
manufactured in the following manner. High-strength steel wires are
stretched by a jacking mechanism that applies a force Q, as represented
schematically in part (a) of the figure. Concrete is then poured around
the wires to form a beam, as shown in part (b). 

After the concrete sets properly, the jacks are released and the 
force Q is removed [see part (c) of the figure]. Thus, the beam is 
left in a prestressed condition, with the wires in tension and the 
concrete in compression.

Let us assume that the prestressing force Q produces in the steel
wires an initial stress �0 � 620 MPa. If the moduli of elasticity of the
steel and concrete are in the ratio 12:1 and the cross-sectional areas are in
the ratio 1:50, what are the final stresses �s and �c in the two materials?

Solution 2.5-20 Prestressed concrete beam

Q

Q

Q

Q

(a)

(b)

(c)

Steel wires

Concrete

Q

Steel wires

Concrete

PcPs

L � length

�0 � initial stress in wires

As � total area of steel wires

Ac � area of concrete

� 50 As

Es � 12 Ec

Ps� final tensile force in steel wires

Pc � final compressive force in concrete

�
Q

As

� 620  MPa

EQUILIBRIUM EQUATION

Ps � Pc (Eq. 1)

COMPATIBILITY EQUATION AND

FORCE-DISPLACEMENT RELATIONS

�1 � initial elongation of steel wires

�2 � final elongation of steel wires

�3 � shortening of concrete

(Eq. 2, Eq. 3)

Solve simultaneously Eqs. (1) and (3):

Ps � Pc �
s0 As

1 �
Es As

Ec Ac

�1 � �2 � �3�or�
s0 L

Es

�
Ps L

Es As

�
Pc L

Ec Ac

�
Pc L

Ec Ac

�
Ps L

Es As

�
QL

EsAs

�
s0L

Es

STRESSES

SUBSTITUTE NUMERICAL VALUES:

sc �
620  MPa

50 � 12
� 10  MPa  (Compression)

ss �
620  MPa

1 �
12

50

� 500  MPa  (Tension)

s0 � 620  MPa�
Es

Ec

� 12�
As

Ac

�
1

50

 sc �
Pc

Ac

�
s0

Ac

As

�
Es

Ec

 ss �
Ps

As

�
s0

1 �
Es As

Ec Ac
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Stresses on Inclined Sections

Problem 2.6-1 A steel bar of rectangular cross section 
(1.5 in. � 2.0 in.) carries a tensile load P (see figure). The 
allowable stresses in tension and shear are 15,000 psi and 
7,000 psi, respectively. 

Determine the maximum permissible load Pmax.

Solution 2.6-1 Rectangular bar in tension

P P

1.5 in.

2.0 in.

Problem 2.6-2 A circular steel rod of diameter d is subjected to a tensile
force P � 3.0 kN (see figure). The allowable stresses in tension and shear
are 120 MPa and 50 MPa, respectively. 

What is the minimum permissible diameter dmin of the rod?

Solution 2.6-2 Steel rod in tension

�allow � 120 MPa �allow � 50 MPa

Maximum  shear  stress:  tmax �
sx

2
�

P

2A

Maximum  normal  stress:  sx �
P

A

P � 3.0  kN�A �
�d2

4
Because �allow is less than one-half of �allow, the
shear stress governs.

Solve  for  d:  dmin � 6.18  mm

tmax �
P

2A
�or�50  MPa �

3.0  kN

(2)¢�d2

4
≤

P

P

1.5 in.

2.0 in.

A � 1.5 in. � 2.0 in.

� 3.0 in.2

Maximum Normal Stress:

sx �
P

A

�allow � 15,000 psi �allow � 7,000 psi

Because �allow is less than one-half of �allow, the
shear stress governs.

Pmax � 2�allow  A � 2(7,000 psi) (3.0 in.2)

� 42,000 lb

Maximum  shear  stress: tmax �
sx

2
�

P

2A

P = 3.0 kNP
d

P P
d



Problem 2.6-3 A standard brick (dimensions 8 in. � 4 in. � 2.5 in.) 
is compressed lengthwise by a force P, as shown in the figure. If the
ultimate shear stress for brick is 1200 psi and the ultimate compressive
stress is 3600 psi, what force Pmax is required to break the brick?

Solution 2.6-3 Standard brick in compression
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A � 2.5 in. � 4.0 in. � 10.0 in.2

Maximum normal stress:

sx �
P

A

Maximum shear stress:

�ult � 3600 psi �ult � 1200 psi

Because �ult is less than one-half of �ult, the shear
stress governs.

� 24,000  lb

Pmax � 2(10.0  in.2) (1200  psi)

tmax �
P

2A
�or�Pmax � 2Atult

tmax �
sx

2
�

P

2A

P

2.5 in.8 in. 4 in.

P

2.5 in.8 in. 4 in.

Problem 2.6-4 A brass wire of diameter d � 2.42 mm is stretched tightly
between rigid supports so that the tensile force is T � 92 N (see figure). 

What is the maximum permissible temperature drop �T if the allowable
shear stress in the wire is 60 MPa? (The coefficient of thermal expansion for
the wire is 20 � 10�6/°C and the modulus of elasticity is 100 GPa.)

Solution 2.6-4 Brass wire in tension

T d T

T d T

d � 2.42 mm

� � 20 � 10�6/�C E � 100 GPa �allow � 60 MPa

Initial tensile force: T � 92 N

Stress due to initial tension: 

Stress due to temperature drop: �x � E�(�T)

(see Eq. 2-18 of Section 2.5)

Total stress: sx �
T

A
� E�(¢T )

sx �
T

A

A �
�d2

4
� 4.60  mm2

MAXIMUM SHEAR STRESS

Solve for temperature drop �T:

SUBSTITUTE NUMERICAL VALUES:

 �
120  MPa � 20  MPa

2  MPa��C
� 50�C

 ¢T �
2(60  MPa) � (92  N)�(4.60  mm2)

(100  GPa)(20 � 10�6��C)

¢T �
2tmax � T�A

E�
�    tmax � tallow

tmax �
sx

2
�

1

2
B T

A
� E�(¢T )R

Probs. 2.6-4 and 2.6-5
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Problem 2.6-5 A brass wire of diameter d � 1/16 in. is stretched
between rigid supports with an initial tension T of 32 lb (see figure). 

(a) If the temperature is lowered by 50°F, what is the maximum shear
stress �max in the wire? 

(b) If the allowable shear stress is 10,000 psi, what is the maximum
permissible temperature drop? (Assume that the coefficient of
thermal expansion is 10.6 � 10�6/°F and the modulus of elasticity
is 15 � 106 psi.)

Solution 2.6-5 Brass wire in tension

� � 10.6 � 10�6/�F

E � 15 � 106 psi

Initial tensile force: T � 32 lb

Stress due to initial tension: 

Stress due to temperature drop: �x � E�(�T )

(see Eq. 2-18 of Section 2.5)

Total stress: sx �
T

A
� E�(¢T )

sx �
T

A

 � 0.003068  in.2

 A �
�d2

4

d �
1

16
 in.

(a) MAXIMUM SHEAR STRESS WHEN TEMPERATURE

DROPS 50�F

(Eq. 1)

Substitute numerical values:

(b) MAXIMUM PERMISSIBLE TEMPERATURE DROP IF

�allow � 10,000 psi

Solve Eq. (1) for �T:

Substitute numerical values:

¢T � 60.2�F

¢T �
2tmax � T�A

E�
�tmax � tallow

tmax � 9,190  psi

tmax �
sx

2
�

1

2
B T

A
� E�(¢T )R

T d T

Problem 2.6-6 A steel bar with diameter d � 12 mm is subjected to a
tensile load P � 9.5 kN (see figure). 

(a) What is the maximum normal stress �max in the bar? 
(b) What is the maximum shear stress �max? 
(c) Draw a stress element oriented at 45° to the axis of the bar and show

all stresses acting on the faces of this element.

P = 9.5 kNP
d = 12 mm



Solution 2.6-6 Steel bar in tension
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P � 9.5 kN

(a) MAXIMUM NORMAL STRESS

(b) MAXIMUM SHEAR STRESS

The maximum shear stress is on a 45� plane and
equals �x /2.

tmax �
sx

2
� 42.0  MPa

smax � 84.0  MPa

sx �
P

A
�

9.5  kN
�
4 (12  mm)2 � 84.0  MPa

(c) STRESS ELEMENT AT � � 45�

NOTE: All stresses have units of MPa.

P = 9.5 kNP
d = 12 mm

y
x

0

9,000

9,000

9,000

9,000

9,000

9,000

� = 45° 

Problem 2.6-7 During a tension test of a mild-steel specimen
(see figure), the extensometer shows an elongation of 0.00120 
in. with a gage length of 2 in. Assume that the steel is stressed
below the proportional limit and that the modulus of elasticity 
E � 30 � 106 psi. 

(a) What is the maximum normal stress �max in the speci-
men? 

(b) What is the maximum shear stress �max? 
(c) Draw a stress element oriented at an angle of 45° to the

axis of the bar and show all stresses acting on the faces 
of this element.

T T
2 in.



126 CHAPTER 2 Axially Loaded Members

�T � 50�C (Increase)

� � 17.5 � 10�6/�C

E � 120 GPa

STRESS DUE TO TEMPERATURE INCREASE

�x � E� (�T) (See Eq. 2-18 of Section 2.5)

� 105 MPa (Compression)

MAXIMUM SHEAR STRESS

� 52.5  MPa

tmax �
sx

2

STRESSES ON ELEMENTS A AND B

NOTE: All stresses have units of MPa.

A B

45° 

y

x0 52.5

52.5

52.5

52.5
52.5

� = 45° 

B

A
105105

52.5

Elongation: � � 0.00120 in.

(2 in. gage length)

Hooke’s law : �x � Ee� (30 � 106 psi)(0.00060)

� 18,000 psi

(a) MAXIMUM NORMAL STRESS

�x is the maximum normal stress.

smax � 18,000  psi

Strain: e�
�

L
�

0.00120  in.

2  in.
� 0.00060

(b) MAXIMUM SHEAR STRESS

The maximum shear stress is on a 45� plane and
equals �x /2.

(c) STRESS ELEMENT AT � � 45�

NOTE: All stresses have units of psi.

tmax �
sx

2
� 9,000  psi

T T
2 in.

y
x

0

9,000

9,000

9,000

9,000

9,000

9,000

� = 45° 

Problem 2.6-8 A copper bar with a rectangular cross section is held
without stress between rigid supports (see figure). Subsequently, the
temperature of the bar is raised 50°C.

Determine the stresses on all faces of the elements A and B, 
and show these stresses on sketches of the elements. 
(Assume � � 17.5 � 10�6/°C and E � 120 GPa.)

Solution 2.6-8 Copper bar with rigid supports

A B

45°

Solution 2.6-7 Tension test
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Problem 2.6-9 A compression member in a bridge truss is fabri-
cated from a wide-flange steel section (see figure). The 
cross-sectional area A � 7.5 in.2 and the axial load P � 90 k. 

Determine the normal and shear stresses acting on all faces of
stress elements located in the web of the beam and oriented at (a) an
angle � � 0°, (b) an angle � � 30°, and (c) an angle � � 45°. In each
case, show the stresses on a sketch of a properly oriented element.

Solution 2.6-9 Truss member in compression

PP
�

P � 90 k

A � 7.5 in.2

(a) � � 0�

(b) � � 30�

Use Eqs. (2-29a) and (2-29b):

�� � �x cos2� � (�12.0 ksi)(cos 30�)2

� �9.0 ksi

�� � ��x sin � cos � � �(�12.0 ksi)(sin 30�)(cos 30�)

� 5.2 ksi

� � 30� � 90� � 120�

�� � �x cos2� � (�12.0 ksi)(cos 120�)2 � �3.0 ksi

 � � 12.0  ksi  (Compression)

 sx � �
P

A
� �

90  k

7.5  in.2

�� � ��x sin � cos � � �(�12.0 ksi)(sin 120�) (cos 120�)

� �5.2 ksi

NOTE: All stresses have units of ksi.

(c) � � 45�

�� � �x cos2� � (�12.0 ksi)(cos 45�)2 � �6.0 ksi

�� � ��x sin � cos � � �(�12.0 ksi)(sin 45�) (cos 45�)

� 6.0 ksi

NOTE: All stresses have units of ksi.

PP
�

y

x0
12.0 ksi12.0 ksi

y

x0

9.0

3.0

3.0
5.2

9.05.2 � = 30° 

y

x0

6.0

6.0

6.06.0

6.0

6.0 � = 45° 



128 CHAPTER 2 Axially Loaded Members

Problem 2.6-10 A plastic bar of diameter d � 30 mm is compressed 
in a testing device by a force P � 170 N applied as shown in the figure. 

Determine the normal and shear stresses acting on all faces of stress
elements oriented at (a) an angle � � 0°, (b) an angle � � 22.5°, and 
(c) an angle � � 45°. In each case, show the stresses on a sketch of a
properly oriented element.

Solution 2.6-10 Plastic bar in compression

Plastic bar

100 mm
P = 170 N

d = 30 mm

300 mm

�

FREE-BODY DIAGRAM

F � Compressive force in plastic bar

F � 4P � 4(170 N)�680 N

PLASTIC BAR (ROTATED TO THE HORIZONTAL)

(a) � � 0�

(b) � � 22.5�

Use Eqs. (2-29a) and (2-29b)

�� � �x cos2� � (�962.0 kPa)(cos 22.5�)2

� �821 kPa

� � 962.0  kPa  (Compression)

sx � �
F

A
� �

680  N
�
4 (30  mm)2

�� � ��x sin � cos �

� �(�962.0 kPa)(sin 22.5�)(cos 22.5�)

� 340 kPa

� � 22.5� � 90� � 112.5�

�� � �x cos2� � (�962.0 kPa)(cos 112.5�)2

� �141 kPa

�� � ��x sin � cos �

� �(�962.0 kPa)(sin 112.5�)(cos 112.5�)

� �340 kPa

NOTE: All stresses have units of kPa.

(c) � � 45�

�� � �x cos2� � (�962.0 kPa)(cos 45�)2

� �481 kPa

�� � ��x sin � cos �

� �(�962.0 kPa)(sin 45�)(cos 45�) � 481 kPa

NOTE: All stresses have units of kPa.

Plastic bar

100 mm P = 170 N

d = 30 mm

300 mm

�

100 mm
P = 170 N

300 mm
F

d = 30 mm

F F
x

y

0

�

x

y

0
962 kPa962 kPa

y

x0

821

141

141
340

821
340

� = 22.5° 

y
x

0

481

481

481481

481
481 � = 45° 



Problem 2.6-11 A plastic bar fits snugly between rigid supports at 
room temperature (68°F) but with no initial stress (see figure). When 
the temperature of the bar is raised to 160°F, the compressive stress 
on an inclined plane pq becomes 1700 psi. 

(a) What is the shear stress on plane pq? (Assume � � 60 � 10�6/°F
and E � 450 � 103 psi.) 

(b) Draw a stress element oriented to plane pq and show the stresses
acting on all faces of this element.

Solution 2.6-11 Plastic bar between rigid supports
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q

p
�

� � 60 � 10�6/�F E � 450 � 103 psi

Temperature increase:

�T � 160�F � 68�F � 92�F

NORMAL STRESS �x IN THE BAR

�x� �E�(�T ) (See Eq. 2-18 in Section 2.5)

�x � �(450 � 103 psi)(60 � 10�6/�F)(92�F)

� �2484 psi (Compression)

ANGLE � TO PLANE pq

�� � �x cos2� For plane pq: �� � �1700 psi

Therefore, �1700 psi � (�2484 psi)(cos2�)

cos � � 0.8273 � � 34.18�

(a) SHEAR STRESS ON PLANE pq

�� � ��x sin � cos �

� �(�2484 psi)(sin 34.18�)(cos 34.18�)

� 1150  psi (Counter clockwise)

cos2u�
� 1700  psi

� 2484  psi
� 0.6844

(b) STRESS ELEMENT ORIENTED TO PLANE pq

� � 34.18� �� � �1700 psi �� � 1150 psi

� � 34.18� � 90� � 124.18�

�� � �x cos2� � (�2484 psi)(cos 124.18�)2

� �784 psi

�� � ��x sin � cos �

� �(�2484 psi)(sin 124.18�)(cos 124.18�)

� �1150 psi

NOTE: All stresses have units of psi.

q

p
�

y

x0

1700

784

784

1150 1700

1150

� = 34.18° 

Probs. 2.6-11 and 2.6-12



Problem 2.6-12 A copper bar is held snugly (but without any initial
stress) between rigid supports (see figure). The allowable stresses on the
inclined plane pq, for which � � 55°, are specified as 60 MPa in
compression and 30 MPa in shear. 

(a) What is the maximum permissible temperature rise �T if the
allowable stresses on plane pq are not to be exceeded? (Assume 
� � 17 � 10�6/°C and E � 120 GPa.) 

(b) If the temperature increases by the maximum permissible amount,
what are the stresses on plane pq?

Solution 2.6-12 Copper bar between rigid supports
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� � 17 � 10�6/�C

E � 120 GPa

Plane pq: � � 55�

Allowable stresses on plane pq:

�allow � 60 MPa (Compression)

�allow � 30 MPa (Shear)

(a) MAXIMUM PERMISSIBLE TEMPERATURE RISE �T

�� � �x cos2� �60 MPa � �x (cos 55�)2

�x � �182.4 MPa

�� � ��x sin � cos �

30 MPa � ��x (sin 55�)(cos 55�)

�x � �63.85 MPa

Shear stress governs. �x � �63.85 MPa

Due to temperature increase �T:

�x � �E�(�T) (See Eq. 2-18 in Section 2.5)

�63.85 MPa � �(120 GPa)(17 � 10�6/�C)(�T)

(b) STRESSES ON PLANE pq

�x � �63.85 MPa

�� � �x cos2� � (�63.85 MPa)(cos 55�)2

�� � ��x sin � cos �

� �(�63.85 MPa)(sin 55�)(cos 55�)

� 30.0  MPa (Counter clockwise)

� � 21.0  MPa  (Compression)

¢T � 31.3�C

q

p
�

Problem 2.6-13 A circular brass bar of diameter d is composed
of two segments brazed together on a plane pq making an angle
� � 36° with the axis of the bar (see figure). The allowable
stresses in the brass are 13,500 psi in tension and 6500 psi in
shear. On the brazed joint, the allowable stresses are 6000 psi 
in tension and 3000 psi in shear. 

If the bar must resist a tensile force P � 6000 lb, what is 
the minimum required diameter dmin of the bar?

PP

q

p d
�



Solution 2.6-13 Brass bar in tension
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� � 36�

� � 90� � � � 54�

P � 6000 lb

STRESS �x BASED UPON ALLOWABLE STRESSES

IN THE BRASS

Tensile stress (� � 0�): �allow � 13,500 psi

�x � 13,500 psi (1)

Shear stress (� � 45�): �allow � 6500 psi

�x � 2 �allow

� 13,000 psi (2)

STRESS �x BASED UPON ALLOWABLE STRESSES ON THE

BRAZED JOINT (� � 54�)

�allow � 6000 psi (tension)

�allow � 3000 psi (shear)

tmax �
sx

2

A �
�d2

4

Tensile stress: �� � �x cos2�

� 17,370 psi (3)

Shear stress: �� � ��x sin � cos �

� 6,310 psi (4)

ALLOWABLE STRESS

Compare (1), (2), (3), and (4).

Shear stress on the brazed joint governs.

�x � 6310 psi

DIAMETER OF BAR

dmin � 1.10  in.

A �
�d2

4
�d2 �

4A
�
�dmin �B4A

�

A �
P
sx

�
6000  lb

6310  psi
� 0.951  in.2

sx � ` tallow

sin  ucos  u
` � 3,000  psi

(sin  54�)(cos  54�)

sx �
sallow

cos2u
�

6000  psi

(cos  54�)2

PP

q

p
d �

n
� = 54°

Problem 2.6-14 Two boards are joined by gluing along a scarf joint, 
as shown in the figure. For purposes of cutting and gluing, the angle 
� between the plane of the joint and the faces of the boards must be
between 10° and 40°. Under a tensile load P, the normal stress in the
boards is 4.9 MPa. 

(a) What are the normal and shear stresses acting on the glued 
joint if � � 20°? 

(b) If the allowable shear stress on the joint is 2.25 MPa, what 
is the largest permissible value of the angle �? 

(c) For what angle � will the shear stress on the glued joint be
numerically equal to twice the normal stress on the joint?

PP

�



Solution 2.6-14 Two boards joined by a scarf joint
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Due to load P: �x � 4.9 MPa

(a) STRESSES ON JOINT WHEN � � 20�

� � 90� � � � 70�

�� � �x cos2� � (4.9 MPa)(cos 70�)2

�� � ��x sin � cos �

� (�4.9 MPa)(sin 70�)(cos 70�)

(b) LARGEST ANGLE � IF �allow � 2.25 MPa

�allow � ��x sin � cos �

The shear stress on the joint has a negative sign. Its
numerical value cannot exceed �allow � 2.25 MPa.
Therefore,

�2.25 MPa � �(4.9 MPa)(sin �)(cos �) or  
sin � cos � � 0.4592

Therefore: sin 2� � 2(0.4592) � 0.9184

Solving : 2� � 66.69� or 113.31�

From trigonometry:  sin  u cos  u�
1

2
 sin  2u

� � 1.58  MPa

� 0.57  MPa

10� � � � 40� � � 33.34� or 56.66�

� � 90� � � ‹ � � 56.66� or 33.34�

Since � must be between 10� and 40�, we select

Note: If � is between 10� and 33.3�,

|��| � 2.25 MPa.

If � is between 33.3� and 40�,

|��| 	 2.25 MPa.

(c) WHAT IS � if �� � 2��?

Numerical values only:

|��| � �x sin � cos � |��| � �x cos2�

�x sin � cos � � 2�xcos2�

sin � � 2 cos � or tan � � 2

� � 63.43� � � 90� � �

NOTE: For � � 26.6� and � � 63.4�, we find �� �
0.98 MPa and �� � �1.96 MPa.

Thus, as required.` tu
su
` � 2

a� 26.6�

` tu
su
` � 2

� � 33.3�

PP

�

y

x

�

n
� =

        90°� a



Problem 2.6-15 Acting on the sides of a stress element cut from a bar in
uniaxial stress are tensile stresses of 10,000 psi and 5,000 psi, as shown 
in the figure. 

(a) Determine the angle � and the shear stress �� and show all stresses
on a sketch of the element. 

(b) Determine the maximum normal stress �max and the maximum
shear stress �max in the material.

Solution 2.6-15 Bar in uniaxial stress
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   = 10,000 psi

5,000 psi10,000 psi

5,000 psi

�

�� ��

�� ��

��

(a) ANGLE � AND SHEAR STRESS ��

�� � �x cos2�

�� � 10,000 psi

(1)

PLANE AT ANGLE � � 90�

(2)

Equate (1) and (2):

tan2u�
1

2
�tan u�

1

�2
�u� 35.26�

10,000  psi

cos2u
�

5,000  psi

sin2u

sx �
su�90�

sin2u
�

5,000  psi

sin2u

 su�90� � 5,000  psi

 �sx  sin2u

 su�90� �sx[cos(u� 90�) ] 2 �sx[�sin  u ] 2

sx �
su

cos2u
�

10,000  psi

cos2u

From Eq. (1) or (2):

Minus sign means that �� acts clockwise on the plane
for which � � 35.26�.

NOTE: All stresses have units of psi.

(b) MAXIMUM NORMAL AND SHEAR STRESSES

tmax �
sx

2
� 7,500  psi

smax �sx � 15,000  psi

 � �7,070  psi

 � (�15,000  psi)(sin  35.26�)(cos  35.26�)

 tu� �sx  sin  u  cos  u

 sx � 15,000  psi

10,000 psi

5,000 psi

10,000 psi

5,000 psi

�

��

��

10,000

5,000

10,000

5,000

� = 35.26°
7,070

7,070

y

x0



Problem 2.6-16 A prismatic bar is subjected to an axial force that
produces a tensile stress �� � 63 MPa and a shear stress �� � �21 MPa
on a certain inclined plane (see figure). 

Determine the stresses acting on all faces of a stress element oriented
at � � 30° and show the stresses on a sketch of the element.

Solution 2.6-16 Bar in uniaxial stress
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21 MPa

63 MPa
�

�� � 63 MPa �� � � 21 MPa

INCLINED PLANE AT ANGLE �

�� � �xcos2�

63 MPa � �xcos2�

(1)

(2)

Equate (1) and (2):

or 

From (1) or (2): �x�70.0 MPa (tension)

tan  u�
21

63
�

1

3
�    u� 18.43�

63  MPa

cos2u
�

21  MPa

sin  u  cos  u

sx �
21  MPa

sin  u  cos  u

�21  MPa � �sx sin u cos u

tu� �sx  sin  u  cos  u

sx �
63  MPa

cos2u

STRESS ELEMENT AT � � 30�

Plane at � � 30� � 90� � 120�

NOTE: All stresses have units of MPa.

� 30.31  MPa

 tu� ( � 70  MPa)(sin  120�)(cos  120�)

 su� (70  MPa)(cos  120�)2 � 17.5  MPa

 � �30.31  MPa

� (�70  MPa)(sin  30�)(cos  30�)

 tu� �sx sin  u  cos  u

� 52.5  MPa

 su�sx cos2u� (70  MPa)(cos  30�)2

�

30°

17.5

30.31

52.5

30.31

52.5

y

x0



Problem 2.6-17 The normal stress on plane pq of a prismatic bar in
tension (see figure) is found to be 7500 psi. On plane rs, which makes 
an angle � � 30° with plane pq, the stress is found to be 2500 psi. 

Determine the maximum normal stress �max and maximum shear
stress �max in the bar.

Solution 2.6-17 Bar in tension
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q

p

r

P P

s

�

Eq. (2-29a):

�� � �xcos2�

� � 30�

PLANE pq: �1 � �xcos2�1 �1 � 7500 psi

PLANE rs: �2 � �xcos2(�1 � �) �2 � 2500 psi

Equate �x from �1 and �2:

(Eq. 1)

or 

(Eq. 2)
cos2

 u1

cos2(u1 � b)
�
s1

s2
�

cos  u1

cos(u1 � b)
�Bs1

s2

sx �
s1

cos2u1

�
s2

cos2(u1 � b)

SUBSTITUTE NUMERICAL VALUES INTO EQ. (2):

Solve by iteration or a computer program:

�1 � 30�

MAXIMUM NORMAL STRESS (FROM EQ. 1)

MAXIMUM SHEAR STRESS

tmax �
sx

2
� 5,000  psi

� 10,000  psi

smax �sx �
s1

cos2u1

�
7500  psi

cos230�

cos  u1

cos(u1 � 30�)
�B7500  psi

2500  psi
� �3 � 1.7321

q

p

r
P P

s

�



Problem 2.6-18 A tension member is to be constructed of two pieces of
plastic glued along plane pq (see figure). For purposes of cutting and
gluing, the angle � must be between 25° and 45°. The allowable stresses
on the glued joint in tension and shear are 5.0 MPa and 3.0 MPa,
respectively.

(a) Determine the angle � so that the bar will carry the largest load P.
(Assume that the strength of the glued joint controls the design.) 

(b) Determine the maximum allowable load Pmax if the cross-sectional
area of the bar is 225 mm2.

Solution 2.6-18 Bar in tension with glued joint
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q

pP P�

25� � � � 45�

A � 225 mm2

On glued joint: �allow � 5.0 MPa

�allow � 3.0 MPa

ALLOWABLE STRESS �x IN TENSION

(1)

�� � � �xsin � cos �

Since the direction of �� is immaterial, we can write:
|��| � �xsin � cos �

or 

(2)

GRAPH OF EQS. (1) AND (2)

sx �
�tu�

sin  u  cos  u
�

3.0  MPa

sin  u  cos  u

su�sx  cos2u�sx �
su

cos2u
�

5.0  MPa

cos2u

(a) DETERMINE ANGLE � FOR LARGEST LOAD

Point A gives the largest value of �x and hence the
largest load. To determine the angle � corresponding
to point A, we equate Eqs. (1) and (2).

(b) DETERMINE THE MAXIMUM LOAD

From Eq. (1) or Eq. (2):

 � 1.53  kN

 Pmax �sx A � (6.80  MPa)(225  mm2)

sx �
5.0  MPa

cos2 u
�

3.0  MPa

sin  u  cos  u
� 6.80  MPa

tan  u�
3.0

5.0
�u� 30.96�

�
3.0  MPa

sin  u cos  u

5.0  MPa

cos2u

q

pP P�

15° 30° 45° 60° 75° 90°

15

10

0

5

Eq.(2)

Eq.(1)

25° 45°

A

sx
(MPa)

u



Strain Energy

When solving the problems for Section 2.7, assume that the material
behaves linearly elastically.

Problem 2.7-1 A prismatic bar AD of length L, cross-sectional area A,
and modulus of elasticity E is subjected to loads 5P, 3P, and P acting at
points B, C, and D, respectively (see figure). Segments AB, BC, and CD
have lengths L /6, L /2, and L/3, respectively. 

(a) Obtain a formula for the strain energy U of the bar. 
(b) Calculate the strain energy if P � 6 k, L � 52 in., A � 2.76 in.2,

and the material is aluminum with E � 10.4 � 106 psi.

Solution 2.7-1 Bar with three loads
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A B C D

5P 3P P

L
6
— L

2
— L

3
—

P � 6 k

L � 52 in.

E � 10.4 � 106 psi

A � 2.76 in.2

INTERNAL AXIAL FORCES

NAB � 3P NBC � �2P NCD � P

LENGTHS

LAB �
L

6
�   LBC �

L

2
�   LCD �

L

3
  

(a) STRAIN ENERGY OF THE BAR (EQ. 2-40)

(b) SUBSTITUTE NUMERICAL VALUES:

 � 125  in.-lb

 U �
23(6  k)2(52  in.)

12(10.4 � 106
 psi) (2.76  in.2)

 �
P2L

2EA
¢23

6
≤�

23P2L

12EA

�
1

2EA
B(3P)2 ¢L

6
≤� (�2P)2 ¢L

2
≤� (P)2¢L

3
≤ R

 U � a Ni
2Li

2Ei Ai

A B C D

5P 3P P

L
6
— L

2
— L

3
—



138 CHAPTER 2 Axially Loaded Members

(a) STRAIN ENERGY OF THE BAR

Add the strain energies of the two segments of the
bar (see Eq. 2-40).

(b) SUBSTITUTE NUMERICAL VALUES:

 �
P2L

�E
¢ 1

4d2 �
1

d2≤�
5P2L

4�Ed2

 U � a
2

i�1

Ni
2 Li

2 Ei Ai

�
P2(L�2)

2E
B 1

�
4 (2d)2 �

1
�
4 (d2)

R

P � 27 kN L � 600 mm

d � 40 mm E � 105 GPa

 � 1.036  N � m � 1.036  J

 U �
5(27  kN)2(600  mm)

4�(105  GPa)(40  mm)2

P P

2d
d

L
2

— L
2

—

Problem 2.7-3 A three-story steel column in a building supports roof
and floor loads as shown in the figure. The story height H is 10.5 ft, the
cross-sectional area A of the column is 15.5 in.2, and the modulus of
elasticity E of the steel is 30 � 106 psi.

Calculate the strain energy U of the column assuming P1 � 40 k and
P2 � P3 � 60 k.

P1

P2

P3

H

H

H

Problem 2.7-2 A bar of circular cross section having two different
diameters d and 2d is shown in the figure. The length of each segment 
of the bar is L/2 and the modulus of elasticity of the material is E. 

(a) Obtain a formula for the strain energy U of the bar due to the 
load P. 

(b) Calculate the strain energy if the load P � 27 kN, the length 
L � 600 mm, the diameter d � 40 mm, and the material is brass
with E � 105 GPa.

Solution 2.7-2 Bar with two segments

P P

2d
d

L
2

— L
2

—



Solution 2.7-3 Three-story column
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H � 10.5 ft E � 30 � 106 psi

A � 15.5 in.2 P1 � 40 k

P2 � P3 � 60 k

To find the strain energy of the column, add the
strain energies of the three segments (see Eq. 2-40).

Upper segment: N1 � �P1

Middle segment: N2 � �(P1 � P2)

Lower segment: N3 � �(P1 � P2 � P3)

STRAIN ENERGY

[Q] � (40 k)2 � (100 k)2 � (160 k)2 � 37,200 k2

2EA � 2(30 � 106 psi)(15.5 in.2) � 930 � 106 lb

 � 5040  in.-lb

 U �
(10.5  ft) (12  in.�ft)

930 � 106
 lb

[37,200  k2]

�
H

2EA
[Q]

�
H

2EA
[P1

2 � (P1 � P2)2 � (P1 � P2 � P3)2 ]

U � a Ni
2Li

2Ei Ai

P1

P2

P3

H

H

H

Problem 2.7-4 The bar ABC shown in the figure is loaded by a force 
P acting at end C and by a force Q acting at the midpoint B. The bar 
has constant axial rigidity EA. 

(a) Determine the strain energy U1 of the bar when the force P acts
alone (Q � 0). 

(b) Determine the strain energy U2 when the force Q acts alone (P � 0). 
(c) Determine the strain energy U3 when the forces P and Q act 

simultaneously upon the bar.

Solution 2.7-4 Bar with two loads

A B C

PQ

L/2 L/2

(a) FORCE P ACTS ALONE (Q � 0)

(b) FORCE Q ACTS ALONE (P � 0)

U2 �
Q2(L�2)

2EA
�

Q2L

4EA

U1 �
P2L

2EA

(c) FORCES P AND Q ACT SIMULTANEOUSLY

(Note that U3 is not equal to U1 � U2. In this case,
U3 > U1 � U2. However, if Q is reversed in
direction, U3 � U1 � U2. Thus, U3 may be larger or
smaller than U1 � U2.)

U3 � UBC � UAB �
P2L

2EA
�

PQL

2EA
�

Q2L

4EA

 �
P2L

4EA
�

PQL

2EA
�

Q2L

4EA

 Segment  AB:  UAB �
(P � Q)2(L�2)

2EA

 Segment  BC:  UBC �
P2(L�2)

2EA
�

P2L

4EA
A B C

PQ

L/2 L/2



Problem 2.7-5 Determine the strain energy per unit volume (units of
psi) and the strain energy per unit weight (units of in.) that can be stored
in each of the materials listed in the accompanying table, assuming that
the material is stressed to the proportional limit.

DATA FOR PROBLEM 2.7-5

Weight Modulus of Proportional 
density elasticity limit 

Material (lb/in.3) (ksi) (psi)

Mild steel 0.284 30,000 36,000
Tool steel 0.284 30,000 75,000
Aluminum 0.0984 10,500 60,000
Rubber (soft) 0.0405 0.300 300

Solution 2.7-5 Strain-energy density 

DATA:
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STRAIN ENERGY PER UNIT VOLUME

Volume V � AL

At the proportional limit:

u � uR � modulus of resistance

(Eq. 1)uR �
sPL

2

2E

u �
U

V
�
s2

2E

Stress  s�
P

A

U �
P2L

2EA

STRAIN ENERGY PER UNIT WEIGHT

Weight W � �AL

� � weight density

At the proportional limit:

(Eq. 2)

RESULTS

uW �
sPL

2

2gE

uW �
U

W
�
s2

2gE

U �
P2L

2EA

Weight Modulus of Proportional
density elasticity limit

Material (lb/in.3) (ksi) (psi)

Mild steel 0.284 30,000 36,000

Tool steel 0.284 30,000 75,000

Aluminum 0.0984 10,500 60,000

Rubber (soft) 0.0405 0.300 300

uR uW
(psi) (in.)

Mild steel 22 76

Tool steel 94 330

Aluminum 171 1740

Rubber (soft) 150 3700



Problem 2.7-6 The truss ABC shown in the figure is subjected to a
horizontal load P at joint B. The two bars are identical with cross-
sectional area A and modulus of elasticity E. 

(a) Determine the strain energy U of the truss if the angle � � 60°.
(b) Determine the horizontal displacement �B of joint B by equating

the strain energy of the truss to the work done by the load.

Solution 2.7-6 Truss subjected to a load P
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� �

PB

CA

L

� � 60�

LAB � LBC � L

cos � � 1/2

FREE-BODY DIAGRAM OF JOINT B

©Fvert � 0 ↑� ↓�

�FAB sin � � FBC sin � � 0

FAB � FBC (Eq. 1)

©Fhoriz � 0 →� ←�

�FAB cos � � FBC cos � � P � 0

(Eq. 2)FAB � FBC �
P

2  cos  b
�

P

2(1�2)
� P

sin  b� �3�2

Axial forces: NAB � P (tension)

NBC � �P (compression)

(a) STRAIN ENERGY OF TRUSS (EQ. 2-40)

(b) HORIZONTAL DISPLACEMENT OF JOINT B (EQ. 2-42)

�B �
2U

P
�

2

P
 ¢P

2L

EA
≤�

2PL

EA

�
P2L

EA

U � a Ni
2Li

2EiAi

�
(NAB)2L

2EA
�

(NBC)2L

2EA

� �

PB

CA

L

� �

PB

FAB FBC



Problem 2.7-7 The truss ABC shown in the figure supports a horizontal
load P1 � 300 lb and a vertical load P2 � 900 lb. Both bars have 
cross-sectional area A � 2.4 in.2 and are made of steel with 
E � 30 � 106 psi. 

(a) Determine the strain energy U1 of the truss when the load P1 acts
alone (P2 �0). 

(b) Determine the strain energy U2 when the load P2 acts alone
(P1�0). 

(c) Determine the strain energy U3 when both loads act simultaneously.

Solution 2.7-7 Truss with two loads
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P1 � 300 lb

P2 � 900 lb

A � 2.4 in.2

E � 30 � 106 psi

LBC � 60 in.

� � 30�

sin � � sin 30� �

2EA � 2(30 � 106 psi)(2.4 in.2) � 144 � 106 lb

FORCES FAB AND FBC IN THE BARS

From equilibrium of joint B:

FAB � 2P2 � 1800 lb

FBC � P1 � P2�3 � 300  lb � 1558.8  lb

LAB �
 LBC

cos  30�
�

120

�3
 in. � 69.282  in.

cos  b� cos  30� �
�3

2

1

2

(a) LOAD P1 ACTS ALONE

(b) LOAD P2 ACTS ALONE

(c) LOADS P1 AND P2 ACT SIMULTANEOUSLY

NOTE: The strain energy U3 is not equal to U1 � U2.

� 2.22  in.-lb

 �
319.548 � 106

 lb2-in.

144 � 106
 lb

� ( � 1258.8  lb)2(60  in.) R

 �
1

2EA
B (1800  lb)2(69.282  in.)

 U3 �
1

2EA
B (FAB)2LAB � (FBC)2LBCR

 �
370.265 � 106

 lb2-in.

144 � 106
 lb

� 2.57  in.-lb

� ( � 1558.8  lb)2(60  in.) R

 �
1

2EA
B (1800  lb)2(69.282  in.)

 U2 �
1

2EA
B (FAB)2LAB � (FBC)2LBCR

 � 0.0375  in.-lb

 U1 �
(FBC)2LBC

2EA
�

(300  lb)2(60  in.)

144 � 106
 lb

Force P1 alone P2 alone P1 and P2

FAB 0 1800 lb 1800 lb

FBC 300 lb �1558.8 lb �1258.8 lb

P1

P2

BC

A

LBC

30°

LAB

P1 = 300 lb

P2 = 900 lb

BC

A

60 in.

30°



Problem 2.7-8 The statically indeterminate structure shown in the
figure consists of a horizontal rigid bar AB supported by five equally
spaced springs. Springs 1, 2, and 3 have stiffnesses 3k, 1.5k, and k,
respectively. When unstressed, the lower ends of all five springs lie
along a horizontal line. Bar AB, which has weight W, causes the
springs to elongate by an amount �.

(a) Obtain a formula for the total strain energy U of the springs 
in terms of the downward displacement � of the bar. 

(b) Obtain a formula for the displacement � by equating the strain
energy of the springs to the work done by the weight  W. 

(c) Determine the forces F1, F2, and F3 in the springs. 
(d) Evaluate the strain energy U, the displacement �, and the 

forces in the springs if W � 600 N and k � 7.5 N/mm.

Solution 2.7-8 Rigid bar supported by springs
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1.5k 1.5k

A B

W

k

3k3k1 2 12 3

k1 � 3k

k2 � 1.5k

k3 � k

� � downward displacement of rigid bar 

For a spring: U

(a) STRAIN ENERGY U OF ALL SPRINGS

(b) DISPLACEMENT �

Strain energy of the springs equals 5k�2

∴
W�

2
� 5k�2�and�� �

W

10k

Work  done  by  the  weight  W  equals  

W�

2

� 5k�2

U � 2 ¢3k�2

2
≤� 2 ¢1.5k�2

2
≤�

k�2

2

�
k�2

2
�Eq.  (2-38b)

(c) FORCES IN THE SPRINGS

(d) NUMERICAL VALUES

W � 600 N k � 7.5 N/mm � 7500 N/mm

NOTE: W � 2F1 � 2F2 � F3 � 600 N (Check)

F3 �
W

10
� 60  N

F2 �
3W

20
� 90  N

F1 �
3W

10
� 180  N

� �
W

10k
� 8.0  mm

 � 2.4  N �  m � 2.4  J

 U � 5k�2 � 5k ¢ W

10k
≤

2

�
W 2

20k

F3 � k� �
W

10

F1 � 3k� �
3W

10
�F2 � 1.5k� �

3W

20

1 2 12 3

W



Problem 2.7-9 A slightly tapered bar AB of rectangular cross section
and length L is acted upon by a force P (see figure). The width of the 
bar varies uniformly from b2 at end A to b1 at end B. The thickness t
is constant. 

(a) Determine the strain energy U of the bar. 
(b) Determine the elongation � of the bar by equating the strain 

energy to the work done by the force P.

Solution 2.7-9 Tapered bar of rectangular cross section
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b2

b1

L

A B
P

(a) STRAIN ENERGY OF THE BAR

From  Appendix  C:  � dx

a � bx
�

1

b
 ln  (a � bx)

 � �
L

0

P2dx

2Et  b(x)
�

P2

2Et �
L

0

dx

b2 � (b2 � b1)x
L

�(1)

 U � � [N(x) ] 2dx

2E A(x)
�(Eq.  2-41)

 � tBb2 �
(b2 � b1)x

L
R

 A(x) � tb(x)

b(x) � b2 �
(b2 � b1)x

L
Apply this integration formula to Eq. (1):

(b) ELONGATION OF THE BAR (EQ. 2-42)

NOTE: This result agrees with the formula derived in
Prob. 2.3-11.

� �
2U

P
�

PL

Et(b2 � b1)
 ln 

b2

b1

 U �
P2L

2Et(b2 � b1)
 ln  

b2

b1

 �
P2

2Et
B �L

(b2 � b1)
 ln  b1 �

�L

(b2 � b1)
 ln  b2R

�
(b2 � b1)x

L
R R

0

L

 U �
P2

2Et
B 1

�(b2 � b1) (1
L)

 ln  Bb2

b2

b1

L

A B
P

dx

b(x)

x

Problem 2.7-10 A compressive load P is transmitted through a rigid
plate to three magnesium-alloy bars that are identical except that initially
the middle bar is slightly shorter than the other bars (see figure). The
dimensions and properties of the assembly are as follows: length L � 1.0 m,
cross-sectional area of each bar A � 3000 mm2, modulus of elasticity 
E � 45 GPa, and the gap s � 1.0 mm.

(a) Calculate the load P1 required to close the gap. 
(b) Calculate the downward displacement � of the rigid plate when 

P � 400 kN. 
(c) Calculate the total strain energy U of the three bars when 

P � 400 kN. 
(d) Explain why the strain energy U is not equal to P�/2. 

(Hint: Draw a load-displacement diagram.)

L

P

s



Solution 2.7-10 Three bars in compression
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s � 1.0 mm

L � 1.0 m

For each bar:

A � 3000 mm2

E � 45 GPa

(a) LOAD P1 REQUIRED TO CLOSE THE GAP

For two bars, we obtain:

(b) DISPLACEMENT � FOR P � 400 kN

Since P � P1, all three bars are compressed. The 
force P equals P1 plus the additional force required 
to compress all three bars by the amount � � s.

or 400 kN � 270 kN � 3(135 � 106 N/m)(� � 0.001 m)

Solving,  we  get  � � 1.321  mm

P � P1 � 3¢EA

L
≤(� � s)

 P1 � 270  kN

 P1 � 2 ¢EAs

L
≤� 2(135 � 106

 N�m)(1.0  mm)

In  general,  � �
PL

EA
 and  P �

EA�

L

EA

L
� 135 � 106

 N�m

(c) STRAIN ENERGY U FOR P � 400 kN

Outer bars: � � 1.321 mm

Middle bar:  � � 1.321 mm � s

� 0.321 mm

(d) LOAD-DISPLACEMENT DIAGRAM

U � 243 J � 243 N . m

The strain energy U is not equal to because the

load-displacement relation is not linear.

U � area under line OAB.

under a straight line from O to B, 

which is larger than U.

P�

2
� area

P�

2

P�

2
�

1

2
(400  kN)(1.321  mm) � 264  N  �  m

 � 243  N �  m � 243  J

 �
1

2
(135 � 106

 N�m)(3.593  mm2)

 U �
EA

2L
[2(1.321  mm)2 � (0.321  mm)2]

U � a EA�2

2L

100

0 0.5 1.0 1.5 2.0

200

400

300

400 kN

270 kN A

B

� = 1.0 mm

� = 1.321 mm

Displacement � (mm)

Load P
(kN)

L

P

s = 1.0 mm



(b) STRAIN ENERGY U1 WHEN x � 2s

(5)

(c) STRAIN ENERGY U1 IS NOT EQUAL TO

For 

(This quantity is greater than U1.)

U1 � area under line OAB.

under a straight line from O to B, which 

is larger than U1.

Thus, is not equal to the strain energy because

the force-displacement relation is not linear.

P�

2

P�

2
� area

� � 2s:  

P�

2
�

1

2
 P1(2 s) � P1s � 2(k1 � k2)s2

P�

2

 U1 � (2k1 � k2)s2

 � k1s
2 � (k1 � k2)s2

 �
1

2
P0 s � P0 s �

1

2
(P1 � P0)s � P0 s �

1

2
 P1 s

 U1 � Area  below  force-displacement  curve
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Force P0 required to close the gap:

P0 � k1s (1)

FORCE-DISPLACEMENT RELATION BEFORE GAP IS CLOSED

P � k1x (0 � x � s)(0 � P � P0) (2)

FORCE-DISPLACEMENT RELATION AFTER GAP IS CLOSED

All three springs are compressed. Total stiffness
equals k1 � 2k2. Additional displacement equals 
x � s. Force P equals P0 plus the force required to
compress all three springs by the amount x � s.

(x � s); (P � P0) (3)

P1 � force P when x � 2s

Substitute x � 2s into Eq. (3):

P1 � 2(k1 � k2)s (4)

(a) FORCE-DISPLACEMENT DIAGRAM

 P � (k1 � 2k2)x � 2k2s�

 � k1s � (k1 � 2k2)x � k1s � 2k2s

 P � P0 � (k1 � 2k2) (x � s)

P
B

x

k2

k1

k2

s

Force P
P1

P0

0 s 2s
Displacement x

Eq (2)

Eq (3)

B

Slope = k1 + 2k2

Slope = k1

A

Problem 2.7-11 A block B is pushed against three springs by a force 
P (see figure). The middle spring has stiffness k1 and the outer springs
each have stiffness k2. Initially, the springs are unstressed and the middle
spring 
is longer than the outer springs (the difference in length is denoted s). 

(a) Draw a force-displacement diagram with the force P as ordinate and
the displacement x of the block as abscissa. 

(b) From the diagram, determine the strain energy U1 of the springs when
x � 2s. 

(c) Explain why the strain energy U1 is not equal to P�/2, where � � 2s.

Solution 2.7-11 Block pushed against three springs

P
B

x

k2

k1

k2

s

= + +
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Problem 2.7-12 A bungee cord that behaves linearly elastically has an
unstressed length L0 � 760 mm and a stiffness k � 140 N/m. 
The cord is attached to two pegs, distance b � 380 mm apart, and 
pulled at its midpoint by a force P � 80 N (see figure).

(a) How much strain energy U is stored in the cord? 
(b) What is the displacement �C of the point where the load is

applied? 
(c) Compare the strain energy U with the quantity P�C/2. 
(Note: The elongation of the cord is not small compared to its

original length.)

Solution 2.7-12 Bungee cord subjected to a load P. 

DIMENSIONS BEFORE THE LOAD P IS APPLIED

C
P

B

A
b

b � 380 mm

Bungee cord:

k � 140 N/m

From triangle ACD:

(1)

DIMENSIONS AFTER THE LOAD P IS APPLIED

Let x � distance CD

Let L1 � stretched length of bungee cord

d �
1

2
�L0

2 � b2 � 329.09  mm

L0 � 760  mm�
L0

2
� 380  mm

From triangle ACD:

(2)

(3)

EQUILIBRIUM AT POINT C

Let F � tensile force in bungee cord

(4)

ELONGATION OF BUNGEE CORD

Let � � elongation of the entire bungee cord

(5)

Final length of bungee cord � original length � �

(6)L1 � L0 � � � L0 �
P

2kB1 �
b2

4x2

� �
F

k
�

P

2kB1 �
b2

4x2

�
P

2B1 � ¢ b

2x
≤

2

F

P�2
�

L1�2
x

�F � ¢P
2
≤ ¢L1

2
≤ ¢1

x
≤

L1 � �b2 � 4x2

L1

2
�B¢b2≤2 � x2

C

A

B

L0
2

L0
2

d
Db

L0 = 760 mm

C

A

B

L1
2

L1
2

x
Db

P

P � 80 N

C P

P = 80 N

F

F

F

CP/2

(Continued)
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SOLUTION OF EQUATIONS

Combine Eqs. (6) and (3):

or

(7)

This equation can be solved for x.

SUBSTITUTE NUMERICAL VALUES INTO EQ. (7):

� (8)

(9)

Units: x is in millimeters

Solve for x (Use trial & error or a computer
program):

x � 497.88 mm

(a) STRAIN ENERGY U OF THE BUNGEE CORD

U �
k�2

2
�k � 140  N�m�P � 80  N

760 � ¢1 �
142.857

x
≤�144,400 � 4x2�(9)

�(380  mm)2 � 4x2

760  mm � B1 �
(80  N)(1000  mm�m)

4(140  N�m)x
R

L0 � ¢1 �
P

4kx
≤�b2 � 4x2

L1 � L0 �
P

4kx
�b2 � 4x2 � �b2 � 4x2

L1 � L0 �
P

2kB1 �
b2

4x2 � �b2 � 4x2

From Eq. (5):

(b) DISPLACEMENT �C OF POINT C

(c) COMPARISON OF STRAIN ENERGY U WITH THE

QUANTITY P�C /2

U � 6.55 J

The two quantities are not the same. The work done
by the load P is not equal to P�C /2 because the load-
displacement relation (see below) is non-linear when
the displacements are large. (The work done by the
load P is equal to the strain energy because the
bungee cord behaves elastically and there are no
energy losses.)

U � area OAB under the curve OA.

of triangle OAB,  which is greater 

than U.

P�C

2
� area

P�C

2
�

1

2
(80  N)(168.8  mm) � 6.75  J

� 168.8  mm

�C � x � d � 497.88  mm � 329.09  mm

U � 6.55  J

U �
1

2
(140  N�m)(305.81  mm)2 � 6.55  N  �  m

� �
P

2kB1 �
b2

4x2 � 305.81  mm

Load
P

0

80 N
A

B

�C

Large
displacements

Small
displacements

Displacement



Impact Loading

The problems for Section 2.8 are to be solved on the basis of the
assumptions and idealizations described in the text. In particular, assume
that the material behaves linearly elastically and no energy is lost during
the impact.

Problem 2.8-1 A sliding collar of weight W � 150 lb falls from a height 
h � 2.0 in. onto a flange at the bottom of a slender vertical rod (see figure).
The rod has length L � 4.0 ft, cross-sectional area A � 0.75 in.2, and
modulus of elasticity E � 30 � 106 psi. 

Calculate the following quantities: (a) the maximum downward
displacement of the flange, (b) the maximum tensile stress in the rod, 
and (c) the impact factor.

Solution 2.8-1 Collar falling onto a flange
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Collar

Rod

Flange

L

h

Flange

L

h

W

W � 150 lb

h � 2.0 in. L � 4.0 ft � 48 in.

E � 30 � 106 psi A � 0.75 in.2

(a) DOWNWARD DISPLACEMENT OF FLANGE

Eq. of (2-53):

(b) MAXIMUM TENSILE STRESS (EQ. 2-55)

(c) IMPACT FACTOR (EQ. 2-61)

 � 113

 Impact  factor �
�max

�st

�
0.0361  in.

0.00032  in.

smax �
E�max

L
� 22,600  psi

 � 0.0361  in.

 �max � �stB1 � ¢1 �
2h

�st

≤
1�2 R

�st �
WL

EA
� 0.00032  in.

Probs. 2.8-1, 2.8-2, and 2.8-3



Problem 2.8-2 Solve the preceding problem if the collar has mass 
M � 80 kg, the height h � 0.5 m, the length L � 3.0 m, the cross-sectional
area A � 350 mm2, and the modulus of elasticity E � 170 GPa.

Solution 2.8-2 Collar falling onto a flange
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M � 80 kg

W � Mg � (80 kg)(9.81 m/s2)

� 784.8 N

h � 0.5 m L � 3.0 m

E � 170 GPa A � 350 mm2

(a) DOWNWARD DISPLACEMENT OF FLANGE

(b) MAXIMUM TENSILE STRESS (EQ. 2-55)

(c) IMPACT FACTOR (EQ. 2-61)

� 160

Impact  factor �
�max

�st

�
6.33  mm

0.03957  mm

smax �
E�max

L
� 359  MPa

� 6.33  mm

Eq. (2-53):��max � �stB1 � ¢1 �
2h

�st

≤
1�2 R

�st �
WL

EA
� 0.03957  mm

Flange

L

h

W

Problem 2.8-3 Solve Problem 2.8-1 if the collar has weight W � 50 lb,
the height h � 2.0 in., the length L � 3.0 ft, the cross-sectional area 
A � 0.25 in.2, and the modulus of elasticity E � 30,000 ksi.

Solution 2.8-3 Collar falling onto a flange

Flange

L

h

W

W � 50 lb h � 2.0 in.

L � 3.0 ft � 36 in.

E � 30,000 psi A � 0.25 in.2

(a) DOWNWARD DISPLACEMENT OF FLANGE

(b) MAXIMUM TENSILE STRESS (EQ. 2-55)

(c) IMPACT FACTOR (EQ. 2-61)

� 130

Impact  factor �
�max

�st

�
0.0312  in.

0.00024  in.

smax �
E�max

L
� 26,000  psi

� 0.0312  in.

Eq. (2-53):��max � �stB1 � ¢1 �
2h

�st

≤
1�2 R

�st �
WL

EA
� 0.00024  in.



Problem 2.8-4 A block weighing W � 5.0 N drops inside a cylinder
from a height h � 200 mm onto a spring having stiffness k � 90 N/m
(see figure). 

(a) Determine the maximum shortening of the spring due to the
impact, and (b) determine the impact factor.

Solution 2.8-4 Block dropping onto a spring
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hCylinder

Block

k

W � 5.0 N h � 200 mm k � 90 N/m

(a) MAXIMUM SHORTENING OF THE SPRING

� 215  mm

Eq.  (2-53):��max � �stB1 � ¢1 �
2h

�st

≤
1�2 R

�st �
W

k
�

5.0  N

90  N�m
� 55.56  mm

(b) IMPACT FACTOR (EQ. 2-61)

� 3.9

Impact  factor �
�max

�st

�
215  mm

55.56  mm

h

k

W

Prob. 2.8-4 and 2.8-5



Problem 2.8-5 Solve the preceding problem if the block weighs 
W � 1.0 lb, h � 12 in., and k � 0.5 lb/in.

Solution 2.8-5 Block dropping onto a spring
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W � 1.0 lb h � 12 in. k � 0.5 lb/in.

(a) MAXIMUM SHORTENING OF THE SPRING

(b) IMPACT FACTOR (EQ. 2-61)

� 4.6

Impact  factor �
�max

�st

�
9.21  in.

2.0  in.

� 9.21  in.

Eq.  (2-53):��max � �stB1 � ¢1 �
2h

�st

≤
1�2 R

�st �
W

k
�

1.0  lb

0.5  lb�in.
� 2.0  in.

h

k

W

Problem 2.8-6 A small rubber ball (weight W � 450 mN) is attached 
by a rubber cord to a wood paddle (see figure). The natural length of the
cord is L0 � 200 mm, its cross-sectional area is A � 1.6 mm2, and its
modulus of elasticity is E � 2.0 MPa. After being struck by the paddle,
the ball stretches the cord to a total length L1 � 900 mm. 

What was the velocity v of the ball when it left the paddle? (Assume
linearly elastic behavior of the rubber cord, and disregard the potential
energy due to any change in elevation of the ball.)

Solution 2.8-6 Rubber ball attached to a paddle

g � 9.81 m/s2 E � 2.0 MPa

A � 1.6 mm2 L0 � 200 mm

L1 � 900 mm W � 450 mN

WHEN THE BALL LEAVES THE PADDLE

KE �
Wv2

2g

WHEN THE RUBBER CORD IS FULLY STRETCHED:

CONSERVATION OF ENERGY

SUBSTITUTE NUMERICAL VALUES:

� 13.1  m�s

v � (700  mm)B (9.81  m�s2)(2.0  MPa)(1.6  mm2)

(450  mN)(200  mm)

v � (L1 � L0)BgEA

WL0

v2 �
gEA

WL0
(L1 � L0)2

KE � U�Wv2

2g
�

EA

2L0
(L1 � L0)2

U �
EA�2

2L0
�

EA

2L0
(L1 � L0)2



Problem 2.8-7 A weight W � 4500 lb falls from a height h onto 
a vertical wood pole having length L � 15 ft, diameter d � 12 in.,
and modulus of elasticity E � 1.6 � 106 psi (see figure). 

If the allowable stress in the wood under an impact load is 
2500 psi, what is the maximum permissible height h?

Solution 2.8-7 Weight falling on a wood pole
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d = 12 in.

W = 4,500 lb

h

L = 15 ft

W � 4500 lb d � 12 in.

L � 15 ft � 180 in.

E � 1.6 � 106 psi

�allow � 2500 psi (� �max)

Find hmax

A �
�d2

4
� 113.10  in.2

STATIC STRESS

MAXIMUM HEIGHT hmax

or

Square both sides and solve for h:

SUBSTITUTE NUMERICAL VALUES:

� 8.55  in.

hmax �
(180  in.) (2500  psi)

2(1.6 � 106
 psi)

 ¢ 2500  psi

39.79  psi
� 2≤

h � hmax �
Lsmax

2E
 ¢smax

sst
� 2≤

smax

sst
� 1 � ¢1 �

2hE

Lsst

≤
1�2

Eq.  (2-59):�smax �sst B1 � ¢1 �
2hE

Lsst

≤
1�2 R

sst �
W

A
�

4500  lb

113.10  in.2
� 39.79  psi

d 

W

h

L 



Problem 2.8-9 Solve the preceding problem if the slider has weight 
W � 100 lb, h � 45 in., A � 0.080 in.2, E � 21 � 106 psi, and the
allowable stress is 70 ksi.

Problem 2.8-8 A cable with a restrainer at the bottom hangs vertically
from its upper end (see figure). The cable has an effective cross-sectional
area A � 40 mm2 and an effective modulus of elasticity E � 130 GPa. 
A slider of mass M � 35 kg drops from a height h � 1.0 m onto the
restrainer.

If the allowable stress in the cable under an impact load is 500 MPa,
what is the minimum permissible length L of the cable?

Solution 2.8-8 Slider on a cable
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Restrainer

Cable

Slider

h

L

W � Mg � (35 kg)(9.81 m/s2) � 343.4 N

A � 40 mm2 E � 130 GPa

h � 1.0 m �allow � �max � 500 MPa

Find minimum length Lmin

STATIC STRESS

MINIMUM LENGTH Lmin

or

Square both sides and solve for L:

SUBSTITUTE NUMERICAL VALUES:

� 9.25  mm

Lmin �
2(130  GPa)(1.0  m)(8.585  MPa)

(500  MPa) [500  MPa � 2(8.585  MPa) ]

L � Lmin �
2Ehsst

smax(smax � 2sst)

smax

sst
� 1 � ¢1 �

2hE

Lsst

≤
1�2

Eq.  (2-59):�smax �sst B1 � ¢1 �
2hE

Lsst

≤
1�2 R

sst �
W

A
�

343.4  N

40  mm2 � 8.585  MPa

h

LW

Probs. 2.8-8 and 2.8-9
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W � 100 lb

A � 0.080 in.2 E � 21 � 106 psi

h � 45 in �allow � �max � 70 ksi

Find minimum length Lmin

STATIC STRESS

sst �
W

A
�

100  lb

0.080  in.2
� 1250  psi

MINIMUM LENGTH Lmin

or

Square both sides and solve for L:

SUBSTITUTE NUMERICAL VALUES:

� 500  in.

Lmin �
2(21 � 106

 psi) (45  in.) (1250  psi)

(70,000  psi) [70,000  psi � 2(1250  psi) ]

L � Lmin �
2Ehsst

smax(smax � 2sst)

smax

sst
� 1 � ¢1 �

2hE

Lsst

≤
1�2

Eq.  (2-59):�smax �sstB1 � ¢1 �
2hE

Lsst

≤
1�2 R

Problem 2.8-10 A bumping post at the end of a track in a railway
yard has a spring constant k � 8.0 MN/m (see figure). The maximum
possible displacement d of the end of the striking plate is 450 mm. 

What is the maximum velocity vmax that a railway car of weight
W � 545 kN can have without damaging the bumping post when it
strikes it?

Solution 2.8-10 Bumping post for a railway car

d

k

v

d

k

v

k � 8.0 MN/m W � 545 kN

d � maximum displacement of spring

d � �max � 450 mm

Find vmax

KINETIC ENERGY BEFORE IMPACT

KE �
Mv2

2
�

Wv2

2g

STRAIN ENERGY WHEN SPRING IS COMPRESSED TO THE

MAXIMUM ALLOWABLE AMOUNT

CONSERVATION OF ENERGY

SUBSTITUTE NUMERICAL VALUES:

� 5400  mm�s � 5.4  m �s

vmax � (450  mm)B 8.0  MN�m
(545  kN)�(9.81  m�s2)

v � vmax � dB k

W�g

KE � U�Wv2

2g
�

kd2

2
�v2 �

kd2

W�g

U �
k�2

max

2
�

kd2

2

Solution 2.8-9 Slider on a cable

h

LW



Problem 2.8-11 A bumper for a mine car is constructed with a spring
of stiffness k � 1120 lb/in. (see figure). If a car weighing 3450 lb is
traveling at velocity v � 7 mph when it strikes the spring, what is the
maximum shortening of the spring?

Solution 2.8-11 Bumper for a mine car
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v

k

v

k

k � 1120 lb/in. W � 3450 lb

v � 7 mph � 123.2 in./sec

g � 32.2 ft/sec2 � 386.4 in./sec2

Find the shortening �max of the spring.

KINETIC ENERGY JUST BEFORE IMPACT

STRAIN ENERGY WHEN SPRING IS FULLY COMPRESSED

U �
k�max

2

2

KE �
Mv2

2
�

Wv2

2g

Conservation of energy

SUBSTITUTE NUMERICAL VALUES:

� 11.0  in.

�max �B (3450  lb)(123.2  in.�sec)2

(386.4  in.�sec2)(1120  lb�in.)

Solve  for  �max:��max �BWv2

gk

KE � U�Wv2

2g
�

k�max
2

2



Problem 2.8-12 A bungee jumper having a mass of 55 kg leaps from 
a bridge, braking her fall with a long elastic shock cord having axial
rigidity EA � 2.3 kN (see figure). 

If the jumpoff point is 60 m above the water, and if it is desired to
maintain a clearance of 10 m between the jumper and the water, what
length L of cord should be used?

Solution 2.8-12 Bungee jumper
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W � Mg � (55 kg)(9.81 m/s2)

� 539.55 N

EA � 2.3 kN

Height: h � 60 m

Clearance: C � 10 m

Find length L of the bungee cord.

P.E. � Potential energy of the jumper at the top of
bridge (with respect to lowest position)

� W(L � �max)

U � strain energy of cord at lowest position

CONSERVATION OF ENERGY

or��max
2 �

2WL

EA
 �max �

2WL2

EA
� 0

P.E. � U�W(L � �max) �
EA�max

2

2L

�
EA�max

2

2L

SOLVE QUADRATIC EQUATION FOR �max:

VERTICAL HEIGHT

h � C � L � �max

SOLVE FOR L:

SUBSTITUTE NUMERICAL VALUES:

Numerator � h � C � 60 m � 10 m � 50 m

�1.9586

L �
50  m

1.9586
� 25.5  m

 � B1 � ¢1 �
2

0.234587
≤

1�2 R
 Denominator � 1 � (0.234587)

W

EA
�

539.55 N

2.3 kN
� 0.234587

L �
h � C

1 �
W

EA
B1 � ¢1 �

2EA

W
≤

1�2R
     

h � C � L �
WL

EA
B1 � ¢1 �

2EA

W
≤

1�2 R

 �
WL

EA
B1 � ¢1 �

2EA

W
≤

1�2 R
 �max �

WL

EA
� B ¢WL

EA
≤

2

� 2L ¢WL

EA
≤ R 1�2

h

C



Problem 2.8-14 A rigid bar AB having mass M � 1.0 kg and length 
L � 0.5 m is hinged at end A and supported at end B by a nylon cord BC
(see figure). The cord has cross-sectional area A � 30 mm2, length 
b � 0.25 m, and modulus of elasticity E � 2.1 GPa. 

If the bar is raised to its maximum height and then released, what is
the maximum stress in the cord?

Problem 2.8-13 A weight W rests on top of a wall and is attached to one
end of a very flexible cord having cross-sectional area A and modulus of
elasticity E (see figure). The other end of the cord is attached securely to
the wall. The weight is then pushed off the wall and falls freely the full
length of the cord. 

(a) Derive a formula for the impact factor. 
(b) Evaluate the impact factor if the weight, when hanging statically,

elongates the band by 2.5% of its original length.

Solution 2.8-13 Weight falling off a wall
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W W

W � Weight

Properties of elastic cord:

E � modulus of elasticity

A � cross-sectional area

L � original length

�max � elongation of elastic cord

P.E. � potential energy of weight before fall (with
respect to lowest position)

P.E. � W(L � �max)

Let U � strain energy of cord at lowest position

U �
EA�max

2

2L

CONSERVATION OF ENERGY

SOLVE QUADRATIC EQUATION FOR �max:

STATIC ELONGATION

IMPACT FACTOR

NUMERICAL VALUES

�st � (2.5%)(L) � 0.025L

Impact  factor � 1 � [1 � 2(40) ]1�2 � 10

�st �
WL

EA
�      

W

EA
� 0.025�      

EA

W
� 40

�max

�st

� 1 � B1 �
2EA

W
R 1�2

�st �
WL

EA

�max �
WL

EA
� B ¢WL

EA
≤

2

� 2L ¢WL

EA
≤ R 1�2

or     �max
2 �

2WL

EA
 �max �

2WL2

EA
� 0

P.E. � U�    W(L � �max) �
EA�max

2

2  L

A B

C

W

b

L
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A B

C

W

b

L

RIGID BAR:

W � Mg � (1.0 kg)(9.81 m/s2)

� 9.81 N

L � 0.5 m

NYLON CORD:

A � 30 mm2

b � 0.25 m

E � 2.1 GPa

Find maximum stress �max in cord BC.

GEOMETRY OF BAR AB AND CORD BC

h � height of center of gravity of raised bar AD

�max � elongation of cord

cos u�
L

�b2 � L2

From triangle  ABC:  sin  u�
b

�b2 � L2

AD � AB � L

CD � CB � b

From Appendix C: 

(Eq. 1)

CONSERVATION OF ENERGY

P.E. � potential energy of raised bar AD

(Eq. 2)

Substitute into Eq. (2) and rearrange:

(Eq. 3)

Substitute from Eq. (1) into Eq. (3):

(Eq. 4)

SOLVE FOR �max:

SUBSTITUTE NUMERICAL VALUES:

smax � 33.3  MPa

smax �
W

2A
B1 �B1 �

8L2EA

W(b2 � L2)
R

smax
2 �

W

A
 smax �

2WL2E

A(b2 � L2)
� 0

smax
2 �

W

A
 smax �

2WhE

bA
� 0

For the cord: �max �
smaxb

E

P.E. � U�W ¢h �
�max

2
≤�

EA�max
2

2b

U � strain energy of stretched cord �
EA�max

2

2b

� W ¢h �
�max

2
≤

and     h �
bL2

b2 � L2

∴
2h

L
� 2 ¢ b

�b2 � L2
≤ ¢ L

�b2 � L2
≤�

2bL

b2 � L2

sin  2u� 2  sin  u  cos  u

From line  AD  :  sin  2u�
2h

AD
�

2h

L

Solution 2.8-14 Falling bar AB

h

h b

�max

CG

�

�

CG

D

C

B

L
�max

2

A



Stress Concentrations

The problems for Section 2.10 are to be solved by considering the 
stress-concentration factors and assuming linearly elastic behavior.

Problem 2.10-1 The flat bars shown in parts (a) and (b) of the figure are
subjected to tensile forces P � 3.0 k. Each bar has thickness t � 0.25 in. 

(a) For the bar with a circular hole, determine the maximum stresses
for hole diameters d � 1 in. and d � 2 in. if the width b � 6.0 in. 

(b) For the stepped bar with shoulder fillets, determine the maximum
stresses for fillet radii R � 0.25 in. and R � 0.5 in. if the bar
widths are b � 4.0 in. and c � 2.5 in.

Solution 2.10-1 Flat bars in tension
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P

P

P

P

b

db

(a)

(b)

c

R

P � 3.0 k t � 0.25 in.

(a) BAR WITH CIRCULAR HOLE (b � 6 in.)

Obtain K from Fig. 2-63

FOR d � 1 in.: c � b � d � 5 in.

d/b � K � 2.60

�max � k�nom � 

FOR d � 2 in.: c � b � d � 4 in.

d/b � K � 2.31

�max � K�nom � 6.9  ksi

1

3

snom �
P

ct
�

3.0  k

(4  in.) (0.25  in.)
� 3.00  ksi

6.2  ksi

1

6

snom �
P

ct
�

3.0  k

(5  in.) (0.25  in.)
� 2.40  ksi

(b) STEPPED BAR WITH SHOULDER FILLETS

b � 4.0 in. c � 2.5 in.; Obtain k from Fig. 2-64

FOR R � 0.25 in.: R/c � 0.1 b/c � 1.60

k � 2.30 �max � K�nom �

FOR R � 0.5 in.: R/c � 0.2 b/c � 1.60

K � 1.87 �max � K�nom � 9.0  ksi

11.0  ksi

snom �
P

ct
�

3.0  k

(2.5  in.) (0.25  in.)
� 4.80  ksi

PP PP
bdb

(a)

(b)

c

R = radius

Probs. 2.10-1 and 2.10-2
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Problem 2.10-2 The flat bars shown in parts (a) and (b) of the figure are
subjected to tensile forces P � 2.5 kN. Each bar has thickness t � 5.0 mm. 

(a) For the bar with a circular hole, determine the maximum stresses for
hole diameters d � 12 mm and d � 20 mm if the width b � 60 mm. 

(b) For the stepped bar with shoulder fillets, determine the maximum
stresses for fillet radii R � 6 mm and R � 10 mm if the bar widths are 
b � 60 mm and c � 40 mm.

Solution 2.10-2 Flat bars in tension

PP PP
bdb

(a)

(b)

c

R = radius

P � 2.5 kN t � 5.0 mm

(a) BAR WITH CIRCULAR HOLE (b � 60 mm)

Obtain K from Fig. 2-63

FOR d � 12 mm: c � b � d � 48 mm

d/b � K � 2.51

�max � K�nom � 

FOR d � 20 mm: c � b � d � 40 mm

d/b � K � 2.31

�max � K�nom � 29 MPa

1

3

snom �
P

ct
�

2.5  kN

(40  mm)(5  mm)
� 12.50  MPa

26  MPa

1

5

snom �
P

ct
�

2.5  kN

(48  mm)(5  mm)
� 10.42  MPa

(b) STEPPED BAR WITH SHOULDER FILLETS

b � 60 mm c � 40 mm; 

Obtain K from Fig. 2-64

FOR R � 6 mm: R/c � 0.15 b/c � 1.5

K � 2.00 �max � K�nom �

FOR R � 10 mm: R/c � 0.25 b/c � 1.5

K � 1.75 �max � K�nom � 22  MPa

25  MPa

snom �
P

ct
�

2.5  kN

(40  mm)(5  mm)
� 12.50  MPa
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Problem 2.10-4 A round brass bar of diameter d1 � 20 mm 
has upset ends of diameter d2 � 26 mm (see figure). The lengths 
of the segments of the bar are L1 � 0.3 m and L2 � 0.1 m. 
Quarter-circular fillets are used at the shoulders of the bar, 
and the modulus of elasticity of the brass is E � 100 GPa. 

If the bar lengthens by 0.12 mm under a tensile load P, 
what is the maximum stress �max in the bar?

L1

d1d2 d2

L2 L2

PP

PP
b d

t � thickness

�t � allowable tensile stress

Find Pmax

Find K from Fig. 2-64

Because �t, b, and t are constants, we write:

P* �
Pmax

st bt
�

1

K
 ¢1 �

d

b
≤

�
st

K
 bt ¢1 �

d

b
≤

Pmax �snomct �
smax

K
 ct �

st

K
 (b � d)t We observe that Pmax decreases as d/b increases.

Therefore, the maximum load occurs when the hole
becomes very small.

(

Pmax �
st bt

3

S 0�and�K S 3)
d

b

K P*

0 3.00 0.333

0.1 2.73 0.330

0.2 2.50 0.320

0.3 2.35 0.298

0.4 2.24 0.268

d

b

Problem 2.10-3 A flat bar of width b and thickness t has a hole of
diameter d drilled through it (see figure). The hole may have any 
diameter that will fit within the bar. 

What is the maximum permissible tensile load Pmax if the 
allowable tensile stress in the material is �t?

Solution 2.10-3 Flat bar in tension

PP
b d

Probs. 2.10-4 and 2.10-5
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Problem 2.10-5 Solve the preceding problem for a bar of monel metal
having the following properties: d1 � 1.0 in., d2 � 1.4 in., L1 � 20.0 in.,
L2 � 5.0 in., and E � 25 � 106 psi. Also, the bar lengthens by 0.0040 in.
when the tensile load is applied.

Solution 2.10-5 Round bar with upset ends

E � 25 � 106 psi

� � 0.0040 in.

L1 � 20 in.

L2 � 5 in.

Solve for P: P �
�EA1A2

2L2A1 � L1A2

� � 2¢PL2

EA2
≤�

PL1

EA1

� 0.2  in.

R � radius  of  fillets�R �
1.4  in. � 1.0  in.

2

Use Fig. 2-65 for the stress-concentration factor.

SUBSTITUTE NUMERICAL VALUES:

Use the dashed curve in Fig. 2-65. K � 1.53

 � 6100  psi

 smax � Ksnom � (1.53)(3984  psi)

R

D1
�

0.2  in.

1.0  in.
� 0.2

snom �
(0.0040  in.) (25 � 106

 psi)

2(5  in.) (1.0
1.4)2 � 20  in.

� 3,984  psi

�
�E

2L2(d1

d2
)2 � L1

snom �
P

A1
�

�EA2

2L2A1 � L1A2
�

�E

2L2(A1

A2
) � L1L1

d1 = 1.0 ind2 = 1.4 in.

L2 L2

PP

E � 100 GPa

� � 0.12 mm

L2 � 0.1 m

L1 � 0.3 m

Solve  for  P:�P �
�EA1 A2

2L2 A1 � L1 A2

� � 2 ¢PL2

EA2
≤�

PL1

EA1

R � radius  of  fillets �
26  mm � 20  mm

2
� 3  mm

Use Fig. 2-65 for the stress-concentration factor:

SUBSTITUTE NUMERICAL VALUES:

Use the dashed curve in Fig. 2-65. K � 1.6

� 46  MPa

smax � Ksnom � (1.6)(28.68  MPa)

R

D1
�

3  mm

20  mm
� 0.15

snom �
(0.12  mm)(100  GPa)

2(0.1  m)(20
26)2 � 0.3  m

� 28.68  MPa

�
�E

2L2(d1

d2
)2 � L1

snom �
P

A1
�

�EA2

2L2 A1 � L1 A2
�

�E

2L2(A1

A2
) � L1

Solution 2.10-4 Round brass bar with upset ends

L1

d1 = 20 mmd2 = 26 mm

L2 L2

PP
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P1

P2

d1

d0d1

d2

P2

P1

d0 � 20 mm

d1 � 20 mm

d2 � 25 mm

Fillet radius: R � 2 mm

Allowable stress: �t � 80 MPa

(a) COMPARISON OF BARS

 � (80  MPa)¢�
4
≤(20  mm)2 � 25.1  kN

 Prismatic  bar:�P1 �st A0 �st ¢�d0
2

4
≤

Stepped bar: See Fig. 2-65 for the stress-
concentration factor.

R � 2.0 mm D1 � 20 mm D2 � 25 mm

Enlarging the bar makes it weaker, not stronger. The
ratio of loads is 

(b) DIAMETER OF PRISMATIC BAR FOR THE SAME

ALLOWABLE LOAD

d0 �
d1

�K
�

20  mm

�1.75
� 15.1  mm

P1 � P2�st ¢�d0
2

4
≤�
st

K
 ¢�d1

2

4
≤�d0

2�
d1

2

K

P1�P2 � K � 1.75

� 14.4  kN

� ¢80  MPa

1.75
≤¢�

4
≤(20  mm)2

P2 �snom  A1 �
smax

K
 A1 �

st

K
 A1

snom �
P2

�
4d1

2 �
P2

A1
�      snom �

smax

K

R�D1
� 0.10�D2�D1

� 1.25�K � 1.75

Problem 2.10-6 A prismatic bar of diameter d0 � 20 mm is being
compared with a stepped bar of the same diameter (d1 � 20 mm) that 
is enlarged in the middle region to a diameter d2 � 25 mm (see figure).
The radius of the fillets in the stepped bar is 2.0 mm. 

(a) Does enlarging the bar in the middle region make it stronger 
than the prismatic bar? Demonstrate your answer by determining
the maximum permissible load P1 for the prismatic bar and the
maximum permissible load P2 for the enlarged bar, assuming 
that the allowable stress for the material is 80 MPa. 

(b) What should be the diameter d0 of the prismatic bar if it is to 
have the same maximum permissible load as does the 
stepped bar?

Soluton 2.10-6 Prismatic bar and stepped bar

P1

P2

d1

d0d1

d2

P2

P1



Problem 2.10-7 A stepped bar with a hole (see figure) has widths 
b � 2.4 in. and c � 1.6 in. The fillets have radii equal to 0.2 in.

What is the diameter dmax of the largest hole that can be drilled
through the bar without reducing the load-carrying capacity?

Solution 10-7 Stepped bar with a hole
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P P
bd c

P P
bd c

b � 2.4 in.

c � 1.6 in.

Fillet radius: R � 0.2 in.

Find dmax

BASED UPON FILLETS (Use Fig. 2-64)

b � 2.4 in. c � 1.6 in. R � 0.2 in. R/c � 0.125

b/c � 1.5 K � 2.10

� 0.317  bt  smax

Pmax �snomct �
smax

K
 ct �

smax

K
 ¢c

b
≤(bt)

d (in.) d/b K

0.3 0.125 2.66 0.329

0.4 0.167 2.57 0.324

0.5 0.208 2.49 0.318

0.6 0.250 2.41 0.311

0.7 0.292 2.37 0.299

Pmax �btsmax

0.30

0.31

0.32

0.33

0.3 0.4 0.5 0.6 0.7 0.8

Based upon hole

Based upon fillets

dmax ≈ 0.51 in.

0.317

d (in.)

Pmax
bt�max

BASED UPON HOLE (Use Fig. 2-63)

b � 2.4 in. d � diameter of the hole (in.) c1 � b � d

�
1

K
 ¢1 �

d

b
≤ btsmax

Pmax �snom  c1t �
smax

K
(b � d)t



Nonlinear Behavior (Changes in Lengths of Bars)

Problem 2.11-1 A bar AB of length L and weight density � hangs
vertically under its own weight (see figure). The stress-strain relation 
for the material is given by the Ramberg-Osgood equation (Eq. 2-71):

� � �
�

E
� � �

�

E
0�
� ��

�

�

0

��
m

Derive the following formula

� � �
�

2
L
E

2

� � �
(m

�

�
0�

1
L
)E

� ��
�

�

L

0

��
m

for the elongation of the bar.

Solution 2.11-1 Bar hanging under its own weight
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A

B

L

L

x

dx

Let A � cross-sectional area

Let N � axial force at distance x

N � �Ax

s�
N

A
� gx

STRAIN AT DISTANCE x

ELONGATION OF BAR

 �
gL2

2E
�
s0�L

(m � 1)E
 ¢gL

s0
≤

m

��Q.E.D.

 � � �
L

0

e  dx � �
L

0

gx

E
 dx �

s0�

E �
L

0

¢gx

s0
≤

m

dx

e�
s

E
�
s0�

E
 ¢ s
s0
≤

m

�
gx

E
�
s0�

E
 ¢gx

s0
≤

m

Problem 2.11-2 A prismatic bar of length L � 1.8 m and cross-sectional
area A � 480 mm2 is loaded by forces P1 � 30 kN and P2 � 60 kN (see
figure). The bar is constructed of magnesium alloy having a stress-strain
curve described by the following Ramberg-Osgood equation:

� � �
45,

�

000
� � �

6
1
18
� ��

1
�

70
��10

(� � MPa)

in which � has units of megapascals. 

(a) Calculate the displacement �C of the end of the bar when the load
P1 acts alone. 

(b) Calculate the displacement when the load P2 acts alone. 
(c) Calculate the displacement when both loads act simultaneously.

Solution 2.11-2 Axially loaded bar

P2
P1A B C

L
3

——2L
3

L � 1.8 m A � 480 mm2

P1 � 30 kN P2 � 60 kN

Find displacement at end of bar.

� MPa)e�
s

45,000
�

1

618
 ¢ s

170
≤

10

(s

Ramberg�Osgood  Equation:
P2

P1A B C

L
3

——2L
3



SECTION 2.11 Nonlinear Behavior 167

(c) BOTH P1 AND P2 ARE ACTING

e � 0.008477

e � 0.002853

(Note that the displacement when both loads act
simultaneously is not equal to the sum of the
displacements when the loads act separately.)

�C � �AB � �BC � 11.88  mm

�BC � e ¢L3 ≤� 1.71  mm

BC: s�
P2

A
�

60  kN

480  mm2 � 125  MPa

�AB � e ¢2L

3
≤� 10.17  mm

AB: s�
P1 � P2

A
�

90  kN

480  mm2 � 187.5  MPa

Problem 2.11-3 A circular bar of length L � 32 in. and diameter d � 0.75
in. is subjected to tension by forces P (see figure). The wire is made of a
copper alloy having the following hyperbolic stress-strain relationship:

� � �
1
1
�

8,0
3
0
0
0
0
�

�
� 0 � � � 0.03 (� � ksi)

(a) Draw a stress-strain diagram for the material. 
(b) If the elongation of the wire is limited to 0.25 in. and the maximum

stress is limited to 40 ksi, what is the allowable load P?

Solution 2.11-3 Copper bar in tension

P P

L

d

(a) P1 ACTS ALONE

e� 0.001389

(b) P2 ACTS ALONE

e� 0.002853

�c � eL � 5.13  mm

ABC: s�
P2

A
�

60  kN

480  mm2 � 125  MPa

�c � e ¢2L

3
≤� 1.67  mm

AB: s�
P1

A
�

30  kN

480  mm2 � 62.5  MPa

L � 32 in. d � 0.75 in.

(a) STRESS-STRAIN DIAGRAM

s�
18,000e

1 � 300e
�0 � e � 0.03�(s� ksi)

A �
�d2

4
� 0.4418  in.2

(b) ALLOWABLE LOAD P

Max. elongation �max � 0.25 in.

Max. stress �max � 40 ksi

Based upon elongation:

BASED UPON STRESS:

Stress governs. P � �max A � (40 ksi)(0.4418 in.2)

� 17.7  k

smax � 40  ksi

smax �
18,000  emax

1 � 300  emax
� 42.06  ksi

emax �
�max

L
�

0.25  in.

32  in.
� 0.007813

P P

L

d

20

40

60
Slope = 18,000 ksi

Asymptote
equals 60 ksi

0 0.01 0.02 0.03

�
(ksi)

�
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Problem 2.11-4 A prismatic bar in tension has length L � 2.0 m 
and cross-sectional area A � 249 mm2. The material of the bar has the
stress-strain curve shown in the figure. 

Determine the elongation � of the bar for each of the following axial
loads: P � 10 kN, 20 kN, 30 kN, 40 kN, and 45 kN. From these results,
plot a diagram of load P versus elongation � (load-displacement diagram).

Solution 2.11-4 Bar in tension

   (MPa)

0
0

200

100

0.005 0.010

�

�

L � 2.0 m

A � 249 mm2

STRESS-STRAIN DIAGRAM

(See the problem statement for the diagram)

LOAD-DISPLACEMENT DIAGRAM

NOTE: The load-displacement curve has the same
shape as the stress-strain curve.

P P

L

P � � P/A e � � eL
(kN) (MPa) (from diagram) (mm)

10 40 0.0009 1.8

20 80 0.0018 3.6

30 120 0.0031 6.2

40 161 0.0060 12.0

45 181 0.0081 16.2

10

20

30

40

50

0 5 10 15 20

P (kN)

� (mm)

Problem 2.11-5 An aluminum bar subjected to tensile forces P has
length L � 150 in. and cross-sectional area A � 2.0 in.2 The stress-strain
behavior of the aluminum may be represented approximately by the
bilinear stress-strain diagram shown in the figure. 

Calculate the elongation � of the bar for each of the following axial
loads: P � 8 k, 16 k, 24 k, 32 k, and 40 k. From these results, plot a
diagram of load P versus elongation � (load-displacement diagram).

E2 = 2.4 × 106 psi

E1 = 10 × 106 psi

0

12,000
psi

�

�



Solution 2.11-5 Aluminum bar in tension
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L � 150 in.

A � 2.0 in.2

STRESS-STRAIN DIAGRAM

E1 � 10 � 106 psi

E2 � 2.4 � 106 psi

�1 � 12,000 psi

� 0.0012

Eq. (1)

Eq. (2)�
s

2.4 � 106 � 0.0038�(s� psi)

e� e1 �
s�s1

E2
� 0.0012 �

s� 12,000

2.4 � 106

For  s � s1:

e�
s

E2
�

s

10 � 106
 psi

 (s� psi)

For  0 � s � s1:  

e1 �
s1

E1
�

12,000  psi

10 � 106
 psi

LOAD-DISPLACEMENT DIAGRAM
P P

L

�

�1

0 �1

E1

E2

�

10

20

30

40

0 0.2 0.4 0.6 0.8

0.18 in.

0.68 in.

40 k

24 k

P (k)

� (in.)

P � � P/A e � � eL
(k) (psi) (from Eq. 1 or Eq. 2) (in.)

8 4,000 0.00040 0.060

16 8,000 0.00080 0.120

24 12,000 0.00120 0.180

32 16,000 0.00287 0.430

40 20,000 0.00453 0.680



Problem 2.11-6 A rigid bar AB, pinned at end A, is supported by a wire
CD and loaded by a force P at end B (see figure). The wire is made of
high-strength steel having modulus of elasticity E � 210 GPa and yield
stress �Y � 820 MPa. The length of the wire is L � 1.0 m and its
diameter is d � 3 mm. The stress-strain diagram for the steel is defined
by the modified power law, as follows:

� � E� 0 � � � �Y

� � �Y��
E
�

�

Y

��n
� � �Y

(a) Assuming n � 0.2, calculate the displacement �B at the end of the
bar due to the load P. Take values of P from 2.4 kN to 5.6 kN in
increments of 0.8 kN. 

(b) Plot a load-displacement diagram showing P versus �B.

Solution 2.11-6 Rigid bar supported by a wire
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P

A D

C

B

L

b2b

Wire: E � 210 GPa

�Y � 820 MPa

L � 1.0 m

d � 3 mm

STRESS-STRAIN DIAGRAM

(1)

(2)

(a) DISPLACEMENT �B AT END OF BAR

(3)

Obtain e from stress-strain equations:

(4)From  Eq.  (1):�e�
s

E
�(0 � s � sY)

� � elongation  of  wire��B �
3

2
 � �

3

2
 eL

s�sY ¢EesY
≤

n

�(s � sY)�(n � 0.2)

s� Ee�(0 � s � sY)

A �
�d2

4
� 7.0686  mm2

(5)

(6)

PROCEDURE: Assume a value of P
Calculate � from Eq. (6)
Calculate e from Eq. (4) or (5)
Calculate �B from Eq. (3)

For � � �Y � 820 MPa:

e � 0.0039048 P � 3.864 kN �B � 5.86 mm

(b) LOAD-DISPLACEMENT DIAGRAM

Stress  in  wire:  s�
F

A
�

3P

2A

Axial  force  in  wire:  F �
3P

2

From  Eq.  (2):�e�
sY

E
 ¢ s
sY
≤

1�n

2

4

6

8

0 20 40 60

P = 3.86 kN

�Y = 820 MPa

�B = 5.86 mm

P
(kN)

�B (mm)

P � (MPa) e �B (mm)
(kN) Eq. (6) Eq. (4) or (5) Eq. (3)

2.4 509.3 0.002425 3.64

3.2 679.1 0.003234 4.85

4.0 848.8 0.004640 6.96

4.8 1018.6 0.01155 17.3

5.6 1188.4 0.02497 37.5

P

A D

C

B

L

b2b



Elastoplastic Analysis

The problems for Section 2.12 are to be solved assuming that the 
material is elastoplastic with yield stress �Y, yield strain �Y, and 
modulus of elasticity E in the linearly elastic region (see Fig. 2-70).

Problem 2.12-1 Two identical bars AB and BC support a vertical 
load P (see figure). The bars are made of steel having a stress-strain 
curve that may be idealized as elastoplastic with yield stress �Y. 
Each bar has cross-sectional area A. 

Determine the yield load PY and the plastic load PP.

Solution 2.12-1 Two bars supporting a load P
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P

B

A C� �

P

B

A C� �

P

B

�YA �YA

�

Structure is statically determinate. The yield load PY
and the plastic lead PP occur at the same time,
namely, when both bars reach the yield stress.

JOINT B

	Fvert � 0

(2�Y A) sin � � P

PY � PP � 2sY  A  sin  u  

Problem 2.12-2 A stepped bar ACB with circular cross sections 
is held between rigid supports and loaded by an axial force P at
midlength (see figure). The diameters for the two parts of the bar 
are d1 � 20 mm and d2 � 25 mm, and the material is elastoplastic 
with yield stress �Y � 250 MPa.

Determine the plastic load PP.

d2d1

L
2
— L

2
—

A BC P



Solution 2.12-2 Bar between rigid supports
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d1 � 20 mm d2 � 25 mm �Y � 250 MPa

DETERMINE THE PLASTIC LOAD PP:

At the plastic load, all parts of the bar are stressed to
the yield stress.

Point C:

FAC � �Y A1 FCB � �Y A2

P � FAC � FCB

PP �sYA1 �sYA2 �sY(A1 � A2)  

SUBSTITUTE NUMERICAL VALUES:

 � 201 kN

 � (250  MPa) ¢�
4
≤  [ (20  mm)2 � (25  mm)2]

 PP � (250  MPa) ¢�
4
≤(d1

2 � d2
2)

d2d1

L
2
— L

2
—

A BC
P

P

FCBFAC

Problem 2.12-3 A horizontal rigid bar AB supporting a load P is hung
from five symmetrically placed wires, each of cross-sectional area A
(see figure). The wires are fastened to a curved surface of radius R. 

(a) Determine the plastic load PP if the material of the wires is
elastoplastic with yield stress �Y. 

(b) How is PP changed if bar AB is flexible instead of rigid? 
(c) How is PP changed if the radius R is increased?

Solution  2.12-3 Rigid bar supported by five wires

A B

P

R

(a) PLASTIC LOAD PP

At the plastic load, each wire is stressed to the yield
stress. � 5sY A  ∴  PP

A B

P

A B

F F F F F

P

F � �YA

(b) BAR AB IS FLEXIBLE

At the plastic load, each wire is stressed to the yield
stress, so the plastic load is not changed.

(c) RADIUS R IS INCREASED

Again, the forces in the wires are not changed, so the
plastic load is not changed.



Problem 2.12-4 A load P acts on a horizontal beam that is supported 
by four rods arranged in the symmetrical pattern shown in the figure.
Each rod has cross-sectional area A and the material is elastoplastic 
with yield stress �Y. 

Determine the plastic load PP.

Solution 2.12-4 Beam supported by four rods
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P

��

At the plastic load, all four rods are stressed to the
yield stress.

F � �Y A

Sum forces in the vertical direction and solve for the
load:

PP � 2F � 2F sin �

PP � 2sY A  (1 � sin �)  

P

��
P

F F F F

Problem 2.12-5 The symmetric truss ABCDE shown in the figure is
constructed of four bars and supports a load P at joint E. Each of the 
two outer bars has a cross-sectional area of 0.307 in.2, and each of 
the two inner bars has an area of 0.601 in.2 The material is elastoplastic
with yield stress �Y � 36 ksi.

Determine the plastic load PP.

21 in. 21 in.54 in.

A B C D

P

36 in.

E



Solution 2.12-5 Truss with four bars
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21 in. 21 in.27 in. 27 in.

A B C D

P

36 in.

E

5

3

4 5
3

4

LAE � 60 in. LBE � 45 in.

JOINT E
Equilibrium:

or

P �
6

5
 FAE �

8

5
 FBE

2FAE ¢35≤� 2FBE ¢45≤� P

PLASTIC LOAD PP

At the plastic load, all bars are stressed to the yield
stress.

FAE � �Y AAE FBE � �Y ABE

SUBSTITUTE NUMERICAL VALUES:

AAE � 0.307 in.2 ABE � 0.601 in.2

�Y � 36 ksi

 � 13.26  k � 34.62  k � 47.9  k  

�
8

5
(36  ksi)(0.601  in.2) PP �

6

5
(36  ksi)(0.307  in.2)

PP �
6

5
 sY  AAE �

8

5
 sY  ABE  

P

E

FAE

FBE

Problem 2.12-6 Five bars, each having a diameter of 10 mm, 
support a load P as shown in the figure. Determine the plastic 
load PP if the material is elastoplastic with yield stress 
�Y � 250 MPa.

Solution 2.12-6 Truss consisting of five bars

P

b b b b

2b

P

b b b b

2b

d � 10 mm

�Y � 250 MPa

A �
�d2

4
� 78.54  mm2

At the plastic load, all five bars are
stressed to the yield stress

F � �YA

Sum forces in the vertical direction
and solve for the load:

Substitute numerical values:

PP � (4.2031)(250 MPa)(78.54 mm2)

� 82.5  kN  

 � 4.2031  sY  A  

�
sY A

5
(5�2 � 4�5 � 5)

 PP � 2F ¢ 1

�2
≤� 2F ¢ 2

�5
≤� F

P

F F F F F



Problem 2.12-7 A circular steel rod AB of diameter d � 0.60 in. is
stretched tightly between two supports so that initially the tensile stress
in the rod is 10 ksi (see figure). An axial force P is then applied to the
rod at an intermediate location C. 

(a) Determine the plastic load PP if the material is elastoplastic
with yield stress �Y � 36 ksi. 

(b) How is PP changed if the initial tensile stress is doubled to 
20 ksi?

Solution 2.12-7 Bar held between rigid supports
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BA

d

BP    A

C

d � 0.6 in.

�Y � 36 ksi

Initial tensile stress � 10 ksi

(a) PLASTIC LOAD PP

The presence of the initial tensile stress does not
affect the plastic load. Both parts of the bar must
yield in order to reach the plastic load.

POINT C:

(B) INITIAL TENSILE STRESS IS DOUBLED

PP  is  not  changed.  

 � 20.4  k  

 PP � 2sY  A � (2)(36  ksi) ¢�
4
≤ (0.60  in.)2

d

BP    A

C �	A �	A

C

P    

Problem 2.12-8 A rigid bar ACB is supported on a fulcrum at 
C and loaded by a force P at end B (see figure). Three identical
wires made of an elastoplastic material (yield stress �Y and 
modulus of elasticity E) resist the load P. Each wire has 
cross-sectional area A and length L. 

(a) Determine the yield load PY and the corresponding yield 
displacement �Y at point B. 

(b) Determine the plastic load PP and the corresponding
displacement �P at point B when the load just reaches 
the value PP. 

(c) Draw a load-displacement diagram with the load P as
ordinate and the displacement �B of point B as abscissa.

P

A C B

L

L

a a a a



Problem 2.12-9 The structure shown in the figure consists of a
horizontal rigid bar ABCD supported by two steel wires, one of length 
L and the other of length 3L /4. Both wires have cross-sectional area A
and are made of elastoplastic material with yield stress �Y and modulus
of elasticity E. A vertical load P acts at end D of the bar. 

(a) Determine the yield load PY and the corresponding yield
displacement �Y at point D. 

(b) Determine the plastic load PP and the corresponding displacement
�P at point D when the load just reaches the value PP. 

(c) Draw a load-displacement diagram with the load P as ordinate and
the displacement �D of point D as abscissa.

Solution 2.12-8 Rigid bar supported by wires
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(a) YIELD LOAD PY

Yielding occurs when the most highly stressed wire
reaches the yield stress �Y.

	MC � 0

At point A:

At point B:

�B � 3�A � �Y �
3sYL

2E
 

�A � ¢sY A

2
≤ ¢ L

EA
≤�
sY L

2E

PY �sY  A  

(b) PLASTIC LOAD PP

At the plastic load, all wires reach the yield stress.

©MC � 0

At point A:

At point B:

(c) LOAD-DISPLACEMENT DIAGRAM

�P � 2�Y

PP �
4

3
 PY

�B � 3�A � �P �
3sY L

E
 

�A � (sY A)¢ L

EA
≤�
sYL

E

PP �
4sY A

3
 

P

A C B

L

L

a a a a

PY

A C B

�YA
2

�YA
2 �YA

PP

A C B

�YA

�YA �YA

P

PP

PY

0 �Y �P �B

2b

L

A

P

DCB

3L
4

b b
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A � cross-sectional area

�Y � yield stress

E � modulus of elasticity

DISPLACEMENT DIAGRAM

COMPATIBILITY:

(1)

(2)

FREE-BODY DIAGRAM

EQUILIBRIUM:

2FB � 3FC � 4P (3)

FORCE-DISPLACEMENT RELATIONS

(4, 5)

Substitute into Eq. (1):

FC � 2FB (6)

3FCL

4EA
�

3FBL

2EA

�B �
FBL

EA
�    �C �

FC ¢34L≤
EA

©MA � 0   ���FB(2b) � FC(3b) � P(4b)

 �D � 2�B

 �C �
3

2
 �B

STRESSES

(7)

Wire C has the larger stress. Therefore, it will yield first.

(a) YIELD LOAD

From Eq. (3):

From Eq. (4):

From Eq. (2):

(b) PLASTIC LOAD

At the plastic load, both wires yield.

�B � �Y � �C FB � FC � �Y A

From Eq. (3):

2(�Y A) � 3(�Y A) � 4P

From Eq. (4):

From Eq. (2):

(c) LOAD-DISPLACEMENT DIAGRAM

�P � 2�Y

PP �
5

4
 PY

�D � �P � 2�B �
2sY L

E
 

�B �
FBL

EA
�
sY L

E

P � PP �
5

4
sY A  

�D � �Y � 2�B �
sY L

E
 

�B �
FBL

EA
�
sY L

2E

P � PY �sY A  

2 ¢1
2
sY A≤� 3(sY A) � 4P

FC �sY A�FB �
1

2
 sY A

sC �sY�sB �
sC

2
�
sY

2
�(From  Eq. 7)

sB �
FB

A
�sC �

FC

A
�∴  sC � 2sB

Solution 2.12-9 Rigid bar supported by two wires

2b

L

A

P

DCB

3L
4

b b

A B C D

�B �C �D

2b

A

P

DCB

b b

FB FC

P

PP

PY

0 �Y �P �D



Problem 2.12-10 Two cables, each having a length L of approximately 40 m, support a
loaded container of weight W (see figure). The cables, which have effective cross-sectional
area A � 48.0 mm2 and effective modulus of elasticity E � 160 GPa, are identical except
that one cable is longer than the other when they are hanging separately and unloaded. The
difference in lengths is d � 100 mm. The cables are made of steel having an elastoplastic
stress-strain diagram with �Y � 500 MPa. Assume that the weight W is initially zero and is
slowly increased by the addition of material to the container.

(a) Determine the weight WY that first produces yielding of the shorter cable. Also,
determine the corresponding elongation �Y of the shorter cable.

(b) Determine the weight WP that produces yielding of both cables. Also, determine the
elongation �P of the shorter cable when the weight W just reaches the value WP.

(c) Construct a load-displacement diagram showing the weight W as ordinate and the
elongation � of the shorter cable as abscissa. (Hint: The load displacement diagram
is not a single straight line in the region 0 � W � WY.)

Solution 2.12-10 Two cables supporting a load
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L

W

L � 40 m A � 48.0 mm2

E � 160 GPa

d � difference in length � 100 mm

�Y � 500 MPa

INITIAL STRETCHING OF CABLE 1

Initially, cable 1 supports all of the load.

Let W1 � load required to stretch cable 1
to the same length as cable 2

�1 � 100 mm (elongation of cable 1 )

(a) YIELD LOAD WY

Cable 1 yields first. F1 � �Y A � 24 kN

�1Y � total elongation of cable 1

�2Y � elongation of cable 2

� �1Y � d � 25 mm

� 28.8  kN

WY � F1 � F2 � 24  kN � 4.8  kN

F2 �
EA

L
 �2Y � 4.8  kN

�Y � �1Y � 125  mm

�1Y �
F1L

EA
�
sYL

E
� 0.125  m � 125  mm

s1 �
W1

A
�

Ed

L
� 400  MPa  (s1 6 sY  ∴  OK)

W1 �
EA

L
d � 19.2  kN

(b) PLASTIC LOAD WP

�2P � elongation of cable 2

�1P � �2P � d � 225 mm

(c) LOAD-DISPLACEMENT DIAGRAM

0 
 W 
 W1: slope � 192,000 N/m

W1 
 W 
 WY: slope � 384,000 N/m

WY 
 W 
 WP: slope � 192,000 N/m

WP

WY

� 1.667�
�P

�Y

� 1.8

WY

W1
� 1.5�

�Y

�1
� 1.25

�P � �1P � 225  mm

� F2 ¢ L

EA
≤�
sYL

E
� 0.125  mm � 125 mm

WP � 2sY A � 48 kN

F1 �sY A�F2 �sY A

0

10

20

30

40

50

100 200 300 � (mm)

W
(kN)

WP

WY

W1

�1 �Y �P

L

W

1 2



Clearance = c

L

P

T B T B

T

Problem 2.12-11 A hollow circular tube T of length L � 15 in. 
is uniformly compressed by a force P acting through a rigid plate 
(see figure). The outside and inside diameters of the tube are 3.0 
and 2.75 in., repectively. A concentric solid circular bar B of 1.5 in.
diameter is mounted inside the tube. When no load is present, there 
is a clearance c � 0.010 in. between the bar B and the rigid plate. Both
bar and tube are made of steel having an elastoplastic stress-strain 
diagram with E � 29 � 103 ksi and �Y � 36 ksi.

(a) Determine the yield load PY and the corresponding shortening
�Y of the tube.

(b) Determine the plastic load PP and the corresponding shortening
�P of the tube.

(c) Construct a load-displacement diagram showing the load P
as ordinate and the shortening � of the tube as abscissa. 
(Hint: The load-displacement diagram is not a single straight 
line in the region 0 � P � PY.)

Solution 2.12-11 Tube and bar supporting a load

SECTION 2.12 Elastoplastic Analysis 179

c

L

P

T B T B

T

L � 15 in.

c � 0.010 in.

E � 29 � 103 ksi

�Y � 36 ksi

TUBE:

d2 � 3.0 in.

d1 � 2.75 in.

AT �
�

4
(d2

2 � d1
2) � 1.1290  in.2

BAR:

d � 1.5 in.

INITIAL SHORTENING OF TUBE T

Initially, the tube supports all of the load.

Let P1 � load required to close the clearance

Let �1 � shortening of tube �1 � c � 0.010 in.

s1 �
P1

AT

� 19,330  psi        (s1 6 sY  ∴  OK)

P1 �
EAT

L
c � 21,827  lb

AB �
�d2

4
� 1.7671  in.2

(Continued)
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(a) YIELD LOAD PY

Because the tube and bar are made of the same
material, and because the strain in the tube is larger
than the strain in the bar, the tube will yield first.

FT � �Y AT � 40,644 lb

�TY � shortening of tube at the yield stress

�BY � shortening of bar

� �TY � c � 0.008621 in.

PY � FT � FB � 40,644 lb � 29,453 lb
� 70,097 lb

(b) PLASTIC LOAD PP

FT � �Y AT FB � �Y AB

�BP � shortening of bar

�TP � �BP � c � 0.028621 in.

�P � �TP � 0.02862  in.

� FB ¢ L

EAB

≤�
sYL

E
� 0.018621  in.

� 104,300  lb

PP � FT � FB �sY(AT � AB)

PY � 70,100  lb

FB �
EAB

L
�BY � 29,453  lb

�Y � �TY � 0.01862  in.

�TY �
FTL

EAT

�
sYL

E
� 0.018621  in.

(c) LOAD-DISPLACEMENT DIAGRAM

0 
 P 
P1:    slope � 2180 k/in.

P1 
P 
 PY: slope � 5600 k/in.

PY 
 P 
 PP: slope � 3420 k/in.
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