SOLUTIONS MANUAL

A solid steel rod consisting of *n* cylindrical elements welded together is subjected to the loading shown. The diameter of element *i* is denoted by d_i and the load applied to its lower end by \mathbf{P}_i with the magnitude P_i of this load being assumed positive if \mathbf{P}_i is directed downward as shown and negative otherwise. (*a*) Write a computer program that can be used with either SI or U.S. customary units to determine the average stress in each element of the rod. (*b*) Use this program to solve Problems 1.2 and 1.4.

SOLUTION

Force in element *i*:

It is the sum of the forces applied to that element and all lower ones:

$$F_i = \sum_{k=1}^i P_k$$

Average stress in element *i*:

Area =
$$A_i = \frac{1}{4}\pi d_i^2$$

Ave stress = $\frac{F_i}{A_i}$

Program Outputs

Ele	Problem 1.2 ement Stress (ksi)	Problem Element Stres	1.4 s (MPa)
1	42.441	1	12.732
2	38.651	2	-2.829

A 20-kN load is applied as shown to the horizontal member ABC. Member ABC has a 10×50 -mm uniform rectangular cross section and is supported by four vertical links, each of 8×36-mm uniform rectangular cross section. Each of the four pins at A, B, C, and D has the same diameter d and is in double shear. (a) Write a computer program to calculate for values of d from 10 to 30 mm, using 1-mm increments, (1) the maximum value of the average normal stress in the links connecting Pins B and D, (2) the average normal stress in the links connecting Pins C and E, (3) the average shearing stress in Pin B, (4) the average shearing stress in Pin C, (5) the average bearing stress at B in member ABC, (6) the average bearing stress at C in member ABC. (b) Check your program by comparing the values obtained for d = 16 mm with the answers given for Probs 1.7 and 1.27. (c) Use this program to find the permissible values of the diameter d of the pins, knowing that the allowable values of the normal, shearing, and bearing stresses for the steel used are, respectively, 150 MPa, 90 MPa, and 230 MPa. (d) Solve Part c, assuming that the thickness of member ABC has been reduced from 10 to 8 mm.

PROBLEM 1.C2 (Continued)

Program	Outputs
---------	---------

Input data for Parts (a), (b), (c):

P = 20 kN,	AB = 0.25 m,	BC = 0.40 m,	AC = 0.65 m,
TL = 8 mm,	WL = 36 mm,	TAC = 10 mm,	WAC = 50 mm

d	Sigma BD	Sigma CE	Tau B	Tau C Si	igBear B	SigBear C	
10.00 11.00 12.00 13.00 14.00 15.00 16.00	78.13 81.25 84.64 88.32 92.33 96.73 101.56	-21.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.70	206.90 110.99 143.68 122.43 105.56 91.96 80.82	79.58 65.77 55.26 47.09 40.60 35.37 31.08	325 00 295 45 270 83 250 00 232 24 216.67 203.12	125.00 113.64 104.17 96.15 89.29 83.33 78.13	<u>— (Ъ)</u>
17.00	106.91	-21.70	71.59	27.54	191.18	73.53	
18.00	112.85	-21.70	63.86	24.56	180.56	69.44	
19.00	119.49	-21.70	57.31	22.04	171.05	65.79	
20.00	126.95	-21.70	51.73	19.89	162.50	62.50	
21.00	135.42	-21.70	46.92	18.04	154.76	59.52	
22.00	145.09	-21.70	42.75	16.44	147.73	56.82	
23.00	136/25/	-21.70	39.11	15.04	141.30	54.35	
24.00	10927	-21.70	35.92	13.82	135.42	52.08	
25.00	184 66	-21.70	33.10	12.73	130.00	50.00	
26.00	203 13	-21.70	30.61	11.77	125.00	48.08	
27.00	225.69	-21.70	28.38	10.92	120.37	46.30	
28.00	253.91	-21.70	26.39	10.15	116.07	44.64	
29.00	290.18	-21.70	24.60	9.46	112.07	43.10	
30.00	338.54	-21.70	22.99	8.84	108.33	41.67	
		(c) .	Answer: 16 m	$m \le d \le 22 mm$	1	(c)	◄
Check: Fo	or $d = 22 \text{ mm}, \tau_{d}$	$_{4C} = 65 \text{ MPa} < 9$	0 MPa O.K.				

PROBLEM 1.C2 (Continued)

<u>Program Outputs</u> (Continued)

Input data for Part (d) P = 20 kN,

AB = 0.25 m, BC = 0.40 m, AC = 0.65 m, TL = 8 mm, WL = 36 mm, TAC = 8 mm, WAC = 50 mm

d	Sigma BD	Sigma CE	Tau B	Tau C S:	igBear B S	SigBear C
10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00	78.13 81.25 84.64 88.32 92.33 96.73 101.56 106.91 112.85 119.49 126.95 135.42 145.09 126.25 169.27 184.66 203.13 225.69 156.25 169.27 184.66 203.13 225.69 156.25 169.27 184.56 203.13 225.69 184.54	-21.70 -21.70	206 90 170.99 142.68 122.43 105.56 91.96 80.82 71.59 63.86 57.31 51.73 46.92 42.75 39.11 35.92 33.10 30.61 28.38 26.39 24.60 22.99 (d) Answer: 18	$79.58 \\ 65.77 \\ 55.26 \\ 47.09 \\ 40.60 \\ 35.37 \\ 31.08 \\ 27.54 \\ 24.56 \\ 22.04 \\ 19.89 \\ 18.04 \\ 16.44 \\ 15.04 \\ 13.82 \\ 12.73 \\ 11.77 \\ 10.92 \\ 10.15 \\ 9.46 \\ 8.84 \\ 8 mm \leq d \leq 22$	406.25 269.32 38.54 312.50 290.18 270.83 253.91 238.97 225.69 213.82 203.12 193.45 184.66 176.63 169.27 162.50 156.25 150.46 145.09 140.09 135.42 mm	156.25 142.05 130.21 120.19 111.61 104.17 97.66 91.91 86.81 82.24 78.13 74.40 71.02 67.93 65.10 62.50 60.10 57.87 55.80 53.88 52.08 (d) ◄
Check: For	$\tau d = 22 \text{ mm}, \tau_{AC}$	= 81.25 MPa < 9	0 MPa O.K.			

Two horizontal 5-kip forces are applied to Pin B of the assembly shown. Each of the three pins at A, B, and C has the same diameter d and is double shear. (a) Write a computer program to calculate for values of d from 0.50 to 1.50 in., using 0.05-in. increments, (1) the maximum value of the average normal stress in member AB, (2) the average normal stress in member BC, (3) the average shearing stress in Pin A, (4) the average shearing stress in Pin C, (5) the average bearing stress at A in member AB, (6) the average bearing stress at C in member BC, (7) the average bearing stress at B in member BC. (b) Check your program by comparing the values obtained for d = 0.8 in. with the answers given for Problems 1.60 and 1.61. (c) Use this program to find the permissible values of the diameter d of the pins, knowing that the allowable values of the normal, shearing, and bearing stresses for the steel used are, respectively, 22 ksi, 13 ksi, and 36 ksi. (d) Solve Part c, assuming that a new design is being investigated in which the thickness and width of the two members are changed, respectively, from 0.5 to 0.3 in. and from 1.8 to 2.4 in.

PROBLEM 1.C3 (Continued)

Input data for Parts (a), (b), (c):

P = 5 kips, w = 1.8 in., t = 0.5 in.

D in.	SIGAB ksi	SIGBC ksi	TAUA ksi	TAUC ksi	SIGBRGA S ksi	IGBRGC S ksi	IGBRGB ksi	
in. 0.500 0.550 0.600 0.700 0.750 0.800 0.850 0.900 0.950 1.000 1.050 1.100 1.150 1.200 1.250 1.300 1.350 1.400 1.450 1.500	ksi 11.262 11.713 12.201 12.731 13.310 13.944 14.641 15.412 16.268 17.225 18.301 19.521 20.916 22.828 24.402 26.628 24.803 24.803 24.803 24.803 24.803 24.803	ksi -9.962	ks1 18,642 12,945 11,030 9,511 8,285 7,282 6,450 5,754 5,164 4,660 4,227 3,852 3,524 3,236 2,983 2,758 2,557 2,378 2,217 2,071	ks1 18.869 18.955 12.510 11.649 10.147 8.918 7.900 7.047 6.324 5.708 5.177 4.316 3.964 3.653 3.377 3.132 2.912 2.715 2.537	KS1 29.282 26.620 24.402 22.525 20.916 19.521 18.301 17.225 16.268 15.412 14.641 13.944 13.310 12.731 12.201 11.713 11.262 10.845 10.458 10.097 9.761	KS1 35.863 32.603 29.886 27.587 25.616 23.909 22.414 21.096 19.924 18.875 17.932 17.078 16.301 15.593 14.943 14.345 13.793 13.283 12.808 12.367 11.954	17.932 16.301 14.943 13.793 12.808 11.954 11.207 10.548 9.962 9.438 8.966 8.539 8.151 7.796 7.471 7.173 6.897 6.641 6.404 6.183 5.977	€—(b)
				(c) Answ	ver: 0.70 in. ≤	$\leq d \leq 1.10$ in	(c)	•

PROBLEM 1.C3 (Continued)

Input data for Part (d),

P = 5 kips, w = 2.4 in., t = 0.3 in.

D	SIGAE	SIGBC	TAUA	TAUC	SIGBRGA	SIGBRGC	SIGBRGB	
in.	ksi	ksi	ksi	ksi	ksi	ksi	ksi	
0.500	12.843	-12.452	18.642	22.831	1 48 .803	59.772	29.886	
7).550	13.190	-12.452	15.406	128,809	144,267	84 1338	27.169	
Õ.600	13.556	-12.452	12.945	15.885	40.60	145.810	24.905	
0.650	13.944	-12.452	11.030	13.520	X37.5A1	X 45 1978	22.989	
0.700	14.354	-12.452	9.511	11.649	34.860	42,694	21.347	
0.750	14.789	-12.452	8.285	10.147	32.536	29.848	19.924	
0.800	15.251	-12.452	7.282	8.918	30.502	37,351	18.679	
0.850	15.743	-12.452	6.450	7.900	28.708	35.160	17.580	
0.900	16.268	-12.452	5.754	7.047	27.113	33.206	16.603	
0.950	16.829	-12.452	5.164	6.324	25.686	31.459	15.729	
1.000	17.430	-12.452	4.660	5.708	24.402	29.886	14.943	
1.050	18.075	-12.452	4.227	5.177	23.240	28.463	14.231	
1.100	18.771	-12.452	3.852	4.717	22.183	27.169	13.584	
1.150	19.521	-12.452	3.524	4.316	21.219	25.988	12.994	
1.200	20.335	-12.452	3.236	3.964	20.335	24.905	12.452	
1.250	21-219	-12.452	2.983	3.653	19.521	23.909	11.954	
1.300	22.183/	-12.452	2.758	3.377	18.771	22.989	11.495	
1.350	22,240,	-12.452	2.557	3.132	18.075	22.138	11.069	
1.400	24,482	-12.452	2.378	2.912	17.430	21.347	10.674	
1.450	25,686	-12.452	2.217	2.715	16.829	20.611	10.305	
1.500	21/13	-12.452	2.071	2.537	16.268	19.924	9.962	
				(d) Answer:	$0.85 \text{ in.} \leq d$	≤ 1.25 in.	(d)	◀

A 4-kip force **P** forming an angle α with the vertical is applied as shown to member *ABC*, which is supported by a pin and bracket at *C* and by a cable *BD* forming an angle β with the horizontal. (*a*) Knowing that the ultimate load of the cable is 25 kips, write a computer program to construct a table of the values of the factor of safety of the cable for values of α and β from 0 to 45°, using increments in α and β corresponding to 0.1 increments in tan α and tan β . (*b*) Check that for any given value of α the maximum value of the factor of safety is obtained for $\beta = 38.66^{\circ}$ and explain why. (*c*) Determine the smallest possible value of the factor of safety for $\beta = 38.66^{\circ}$, as well as the corresponding value of α , and explain the result obtained.

SOLUTION

(a) <u>Dra</u>	w <i>F.B.</i> d	liagram c	of <i>ABC</i> :						
	$+\Sigma$	$M_C = 0$	$(P \sin$	α)(1.5 in	(P c)	(30α)	in.)		F
	/	C	-(F c	os β)(15	5 in.) – (F	$\sin \beta$	12 in.) =	0 —	AB
			$15 \sin \alpha$	$+30\cos$	α	170	,		B
		F = P	$\frac{15 \text{ sm} \alpha}{15 \cos \beta}$	$r = 12 \sin \theta$	$\frac{\alpha}{\beta}$			15	sin, Cy C
		FS - F	/F		Ρ				
		$1^{\circ}.5 1^{\circ}_{1}$	ult / I						/2in.
Out	tput for P	P = 4 kips	s and $F_{\rm ult}$	= 20 kip	S				
				VAL	UES OF	FS			
					BETA	10			
	0	5.71	11.31	16.70	21.80	26.56	30.96	34.99	38.66 41.99 45.00
ALPHA	_								
0.000	3.125	3.358	3.555	3.712	3.830	3.913	3.966	3.994	4.002 3.995 3.977
5.711	2.991	3.214	3.402	3.552	3.666	3.745	3.796	3.823	3.830 3.824 3.807
11.310	2.897	3.113	3.295	3.441	3.551	3.628	3.677	3.703	3.710 3.704 3.687
16.699	2.83/	3.049	3.227	3.370	3.477	3.553	3.600	3.626	3.633 3.627 3.611
$\frac{21.801}{2000}$	2.805	$\frac{3.014}{2.004}$	$\frac{3.190}{2.170}$	3.331	$\frac{3.438}{2.436}$	3.512	3.560	3.585	B.592 3.586 3.570
20 064	2.795	3.004	$\frac{3.179}{2.100}$	3.320	3.426	3.500	3.54/	3.5/2	3.579 3.573 3.558
24 002	2.003	2.012	2.109	3.330	3.436	3.510	3.558	3.503	3.590[3.584] 3.566
38 660	2.020	3.030	3.214	3.300	3.403	3.530	3.500	3.011	p.019 3.012 3.590
41 987	2.000	3.072	3,202	2 111	3.503	2 621	3.020	3.000	P - 712 + 2 - 707 + 690
45.000	2.946	3.166	3.351	3.499	3.611	3.689	3.739	3.765	8.773 3.767 3.750
									A (1)
									Т(Ь)

- (b) When $\beta = 38.66^{\circ}$; tan $\beta = 0.8$ and cable *BD* is perpendicular to the lever Arm *BC*.
- (c) F.S. = 3.579 for $\alpha = 26.6^\circ$; *P* is perpendicular to the lever Arm *AC*.

<u>Note</u>: The value F.S. = 3.579 is the smallest of the values of F.S. corresponding to $\beta = 38.66^{\circ}$ and the largest of those corresponding to $\alpha = 26.6^{\circ}$. The point $\alpha = 26.6^{\circ}$; $\beta = 38.66^{\circ}$ is a "saddle point", or "minimax" of the function $F.S.(\alpha, \beta)$.

A load **P** is supported as shown by two wooden members of uniform rectangular cross section that are joined by a simple glued scarf splice. (a) Denoting by σ_U and τ_U , respectively, the ultimate strength of the joint in tension and in shear, write a computer program which, for given values of a, b, P, σ_U and τ_U , expressed in either SI or U.S. customary units, and for values of α from 5 to 85° at 5° intervals, can be used to calculate (1) the normal stress in the joint, (2) the shearing stress in the joint, (3) the factor of safety relative to failure in tension, (4) the factor of safety relative to failure in shear, (5) the overall factor of safety for the glued joint. (b) Apply this program, using the dimensions and loading of the members of Probs 1.29 and 1.31, knowing that $\sigma_U = 1.26$ MP and $\tau_U = 1.50$ MPa for the glue used in Probs 1.29, and that $\sigma_U = 150$ psi and $\tau_U = 214$ psi for the glue used in Probs 1.31. (c) Verify in each of these two cases that the shearing stress is maximum for $a = 45^\circ$.

SOLUTION

(1) and (2) Draw the F.B. diagram of lower member:

$$\sqrt{F_x} = 0; \quad -V + P \cos \alpha = 0 \qquad V = P \cos \alpha$$

+
$$\sqrt{\Sigma}F_y = 0; \quad F - P \sin \alpha = 0 \qquad F = P \sin \alpha$$

$$\sigma = \frac{F}{A \cos \alpha} = (P/ab) \sin^2 \alpha$$

Area

Shearing stress:

Area = $ab/\sin \alpha$

Normal stress:

(3) F.S. for tension (normal stresses)

$$FSN = \sigma_U / \sigma$$

 $\tau = \frac{V}{\text{Area}} = (P/ab) \sin \alpha \cos \alpha$

(4) F.S. for shear:

$$FSS = \tau_U / \tau$$

(5) Overall F.S.:

F.S. = The <u>smaller</u> of *FSN* and *FSS*.

		PROBLE	M 1.C5 (Con	tinued)		
Program Outp Problem 1.29	<u>outs</u>					
			a = 5 in.			
			b=3 in.			
			P = 1400 lb			
		σ	$t_U = 150 \text{ psi}$			
		τ	$t_U = 214 \text{ ps}_1$			
ALPHA	SIG(psi)	TAU(psi)	FSN	FSS	FS	
5	0.709	8.104	211.574	26.408	26.408	
10	2.814	15.961	53.298	13.408	13.408	
15	6.252	23.333	23.992	9.171	9.171	
20	10.918	29.997	13.739	7.134	7.134	
25	16.670	35.749	8.998	5.986	5.986	
30	23.333	40.415	6.429	5.295	5.295	
35	30.706	43.852	4.885	4.880	4.880	
40	38.563	45.958	3.890	4.656	3.890	
45	46.667	46.667	3.214	4.586	3.214	(c) <
50	54.770	45.958	2.739	4.656	2.739	
55	62.628	43.852	2.395	4.880	2.395	
60	70.000	40.415	2.143	5.295	2.143	(b) 🖪
65	76.663	35.749	1.957	5.986	1.957	
70	82.415	29.997	1.820	7.134	1.820	
75	87.081	23.333	1.723	9.171	1.723	
80	90.519	15.961	1.657	13.408	1.657	
85	92.624	8.104	1.619	26.408	1.619	

PROBLEM 1.C5 (Continued)

Program Outputs (Continued)

Drobl 1 21

Problem 1.31						
		C	a = 150 mm			
		l	b = 75 mm			
		Ι	P = 11 kN			
		σ_{ι}	$_{J} = 1.26 \text{ MPa}$			
		τ_{L}	$_{J} = 1.50 \text{ MPa}$			
ALPHA	SIG(MPa)	TAU(MPa)	FSN	FSS	FS	
5	0.007	0.085	169.644	17.669	17.669	
10	0.029	0.167	42.736	8.971	8.971	
15	0.065	0.244	19.237	6.136	6.136	
20	0.114	0.314	11.016	4.773	4.773	
25	0.175	0.375	7.215	4.005	4.005	
30	0.244	0.423	5.155	3.543	3.543	
35	0.322	0.459	3.917	3.265	3.265	
40	0.404	0.481	3.119	3.116	3.116	
45	0.489	0.489	2.577	3.068	2.577	(b), (c) 🖪
50	0.574	0.481	2.196	3.116	2.196	
55	0.656	0.459	1.920	3.265	1.920	
60	0.733	0.423	1.718	3.543	1.718	
65	0.803	0.375	1.569	4.005	1.569	
70	0.863	0.314	1.459	4.773	1.459	
75	0.912	0.244	1.381	6.136	1.381	
80	0.948	0.167	1.329	8.971	1.329	
85	0.970	0.085	1.298	17.669	1.298	

Member ABC is supported by a pin and bracket at A and by two links, which are pin-connected to the member at B and to a fixed support at D. (a) Write a computer program to calculate the allowable load P_{all} for any given values of (1) the diameter d_1 of the pin at A, (2) the common diameter d_2 of the pins at B and D, (3) the ultimate normal stress σ_U in each of the two links, (4) the ultimate shearing stress σ_{U} in each of the three pins, (5) the desired overall factor of safety F.S. Your program should also indicate which of the following three stresses is critical: the normal stress in the links, the shearing stress in the pin at A, or the shearing stress in the pins at B and D. (b and c) Check your program by using the data of Probs 1.55 and 1.56, respectively, and comparing the answers obtained for P_{all} with those given in the text. (d) Use your program to determine the allowable load P_{all} , as well as which of the stresses is critical, when $d_1 = d_2 = 15$ mm, $\sigma_U = 110$ MP for aluminum links, $\tau_{U} = 100$ MPa for steel pins, and F.S. = 3.2.

PROBLEM 1.C6 (Continued)

Program Outputs

(b)	<u>Problem 1.53</u> .	Data: $d_1 = 8 \text{ mm}$, $d_2 = 12 \text{ mm}$, $\sigma_U = 250 \text{ MPa}$, $\tau_U = 100 \text{ MPa}$, $F.S. = 3.0$	
		$P_{\rm all} = 3.72$ kN. Stress in Pin A is critical	◀
(c)	Problem 1.54	Data: $d_1 = 10 \text{ mm}$, $d_2 = 12 \text{ mm}$, $\sigma_U = 250 \text{ MPa}$, $\tau_U = 100 \text{ MPa}$, $F.S. = 30$	
		$P_{\text{all}} = 3.97 \text{ kN}$. Stress in Pins <i>B</i> and <i>D</i> is critical	◀
(d)	<u>Data</u> :	$d_1 = d_2 = 15 \text{ mm}, \sigma_U = 110 \text{ MPa}, \tau_U = 100 \text{ MPa}, F.S. = 3.2$	
		$P_{\rm all} = 5.79$ kN. Stress in links is critical	◀

A rod consisting of *n* elements, each of which is homogeneous and of uniform cross section, is subjected to the loading shown. The length of element *i* is denoted by L_i , its cross-sectional area by A_i , modulus of elasticity by E_i , and the load applied to its right end by P_i , the magnitude P_i of this load being assumed to be positive if P_i is directed to the right and negative otherwise. (*a*) Write a computer program that can be used to determine the average normal stress in each element, the deformation of each element, and the total deformation of the rod. (*b*) Use this program to solve Probs 2.20 and 2.126.

SOLUTION

For each elem	ient, enter		
		L_i , L_i	A_i, E_i
Compute defo	ormation		
Update axial l	oad	P =	$P + P_i$
Compute for e	each element		
		$\sigma_{c} =$	P/A_i
		$\delta_i =$	PL_i/A_iE_i
Total deforma	ition:		
Update throug	gh <i>n</i> elements		
		δ =	$\delta + \delta_i$
Program Out	t <u>puts</u>		
Problem 2.20			
	Element	Stress (MPa)	Deformation (mm)
	1	19.0986	0.1091
	2	-12.7324	-0.0909
	Total Deforma	ation =	0.0182 mm
Problem 2.12	6		
	Element	Stress (ksi)	Deformation (in.)
	1	12.7324	0.0176
	2	-2.8294	-0.0057
	Total Deforma	ation =	0.01190 in.

Rod *AB* is horizontal with both ends fixed; it consists of *n* elements, each of which is homogeneous and of uniform cross section, and is subjected to the loading shown. The length of element *i* is denoted by L_i , its cross-sectional area by A_i , its modulus of elasticity by E_i , and the load applied to its right end by \mathbf{P}_i , the magnitude P_i of this load being assumed to be positive if \mathbf{P}_i is directed to the right and negative otherwise. (Note that $P_1 = 0$.) (*a*) Write a computer program which can be used to determine the reactions at *A* and *B*, the average normal stress in each element, and the deformation of each element. (*b*) Use this program to solve Probs 2.41 and 2.42.

SOLUTION

We Consider the reaction at <i>B</i> red	lundant	and release the rod at <i>B</i>
Compute δ_B with $R_B = 0$		
For each element, enter		
		L_i, A_i, E_i
Update axial load		
		$P = P + P_i$
Compute for each element		
		$\sigma_i = P/A_i$
		$\delta_i = PL_i / A_i E_i$
Update total deformation		
	Е	$\delta_B = \delta_B + \delta_i$
Compute δ_B due to unit load at <i>B</i>		
	Unit	$\sigma_i = 1/A_i$
	Unit	$\delta_i = L_i / A_i E_i$
Update total unit deformation		
	Unit	$\delta_B = \text{Unit } \delta_B + \text{Unit } \delta_i$
Superposition		
For total displacement at		B = 0
$\delta_B + R_B$	Unit	$\delta_B = 0$
Solving:		
		$R_B = -\delta_B / \text{Unit } \delta_B$
Then:		$R_A = \Sigma P_i + R_B$

F	PROBLEM 2.C2	(Continued)		
For each element				
	$\sigma = \sigma_i + R_B$	Unit σ_i		
	$\delta = \delta_i + R_B$	Unit δ_i		
Program Outputs				
Problem 2.41				
RA = -62.809 kN				
	RB = -37.191 km	N		
Element Stress (MPa) Deformation (mm)				
1	-52.615	-0.05011		
2	3.974	0.00378		
3	2.235	0.00134		
4	49.982	0.04498		
Problem 2.42				
RA = -45.479 kN				
	RB = -54.521 kN	N		
Element Stress (MPa) Deformation (m	ım)			
1	-77.131	-0.03857		
2	-20.542	-0.01027		
3	-11.555	-0.01321		
4	36.191	0.06204		

Rod *AB* consists of *n* elements, each of which is homogeneous and of uniform cross section. End *A* is fixed, while initially there is a gap δ_0 between end *B* and the fixed vertical surface on the right. The length of element *i* is denoted by L_i , its cross-sectional area by A_i , its modulus of elasticity by E_i , and its coefficient of thermal expansion by α_i . After the temperature of the rod has been increased by ΔT , the gap at *B* is closed and the vertical surfaces exert equal and opposite forces on the rod. (*a*) Write a computer program which can be used to determine the magnitude of the reactions at *A* and *B*, the normal stress in each element, and the deformation of each element. (*b*) Use this program to solve Probs 2.51, 2.59, and 2.60.

SOLUTION

We compute the displacements at B

Assuming there is no support at *B*:

Enter

 L_i, A_i, E_i, α_i

Enter temperature change T compute for each element

$$\delta_i = \alpha_i L_i T$$

Update total deformation

$$\delta_{B} = \delta_{B} + \delta_{i}$$

Compute δ_B due to unit load at *B*

Unit $\delta_i = L_i / A_i E_i$

Update total unit deformation

Unit $\delta_B = \text{Unit } \delta_B + \text{Unit } \delta_i$

Compute Reactions

From superposition

 $R_B = (\delta_B - \delta_0) / \text{Unit } \delta_B$

Then

 $R_A = -R_B$

For each element

$$\sigma_i = -R_B / A_i$$

$$\delta_i = \alpha_i L_i T + R_B L_i / A_i E_i$$

PROBLEM 2.C3 (Continued)

Program Outputs

Problem 2.51

		R = 125.62	8 kN
	Element	Stress (MPa)	Deformation (microm)
	1	-44.432	0.500
	2	-99.972	-0.500
em 2.59			
		R = 52.279	kips
	Element	Stress (ksi)	Deformation $(10*-3 \text{ in.})$
	1	-21.783	9.909
	2	-18.671	10.091
<u>n 2.60</u>			
		R = 232.39	00 kN
	Element	Stress (MPa)	Deformation (microm)
	1	-116.195	363.220
	2	-290.487	136.780

Bar *AB* has a length *L* and is made of two different materials of given cross-sectional area, modulus of elasticity, and yield strength. The bar is subjected as shown to a load **P** which is gradually increased from zero until the deformation of the bar has reached a maximum value δ_m and then decreased back to zero. (*a*) Write a computer program which, for each of 25 values of δ_m equally spaced over a range extending from 0 to a value equal to 120% of the deformation causing both materials to yield, can be used to determine the maximum value P_m of the load, the maximum normal stress in each material, the permanent deformation δ_P of the bar, and the residual stress in each material. (*b*) Use this program to solve Probs 2.111 and 2.112.

SOLUTION

PROBLEM 2.C4 (Continued)

Permanent deformations, residual stresses

Slope of first (elastic) segment

Slope = $(A_1E_1 + A_2E_2)/L$ $\delta_P = \delta_m - (P_m/\text{Slope})$ $(\sigma_1)_{\text{res}} = \sigma_1 - (E_1P_m/(L \text{ Slope}))$ $(\sigma_2)_{\text{res}} = \sigma_2 - (E_2P_m/(L \text{ Slope}))$

Program Outputs

Problems 2.111 and 2.112

DM 10** - 3 in.	PM kips	SIGM (1) ksi	SIGM (2) ksi	DP 10** – 3 in.	SIGR (1) ksi	SIG (2) ksi	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2.414	8.750	5.000	5.000	0.000	0.000	0.000	
4.828	17.500	10.000	10.000	0.000	0.000	0.000	
7.241	26.250	15.000	15.000	0.000	0.000	0.000	
9.655	35.000	20.000	20.000	0.000	0.000	0.000	
12.069	43.750	25.000	25.000	0.000	0.000	0.000	
14.483	52.500	30.000	30.000	0.000	0.000	0.000	
16.897	61.250	35.000	35.000	0.000	0.000	0.000	
19.310	70.000	40.000	40.000	0.000	0.000	0.000	
21.724	78.750	45.000	45.000	0.000	0.000	0.000	
24.138	87.500	50.000	50.000	0.000	0.000	0.000	
26.552	91.250	50.000	55.000	1.379	-2.143	2.857	
28.966	95.000	50.000	60.000	2.759	-4.286	5.714	
31.379	98.750	50.000	65.000	4.138	-6.429	8.571	2.112
33.793	102.500	50.000	70.000	5.517	-8.571	11.429	
36.207	106.250	50.000	75.000	6.897	-10.714	14.286	
38.621	110.000	50.000	80.000	8.276	-12.857	17.143	
41.034	113.750	50.000	85.000	9.655	-15.000	20.000	2.111
43.448	117.500	50.000	90.000	11.034	-17.143	22.857	
45.862	121.250	50.000	95.000	12.414	-19.286	25.714	
48.276	125.000	50.000	100.000	13.793	-21.429	28.571	
50.690	125.000	50.000	100.000	16.207	-21.429	28.571	
53.103	125.000	50.000	100.000	18.621	-21.429	28.571	
55.517	125.000	50.000	100.000	21.034	-21.429	28.571	
57.931	125.000	50.000	100.000	23.448	-21.429	28.571	