SOLUTIONS MANUAL

COMPUTER

 PROBLEMS

SOLUTION

Force in element i :

It is the sum of the forces applied to that element and all lower ones:

$$
F_{i}=\sum_{k=1}^{i} P_{k}
$$

Average stress in element i :

$$
\begin{aligned}
\text { Area } & =A_{i}=\frac{1}{4} \pi d_{i}^{2} \\
\text { Ave stress } & =\frac{F_{i}}{A_{i}}
\end{aligned}
$$

Program Outputs

	Problem 1.2 Element Stress (ksi)	Problem 1.4 Element Stress (MPa)	
1	42.441	1	12.732
2	38.651	2	-2.829

PROBLEM 1.C2

A $20-\mathrm{kN}$ load is applied as shown to the horizontal member $A B C$.
 Member $A B C$ has a $10 \times 50-\mathrm{mm}$ uniform rectangular cross section and is supported by four vertical links, each of $8 \times 36-\mathrm{mm}$ uniform rectangular cross section. Each of the four pins at A, B, C, and D has the same diameter d and is in double shear. (a) Write a computer program to calculate for values of d from 10 to 30 mm , using $1-\mathrm{mm}$ increments, (1) the maximum value of the average normal stress in the links connecting Pins B and D, (2) the average normal stress in the links connecting Pins C and E, (3) the average shearing stress in Pin B, (4) the average shearing stress in Pin C, (5) the average bearing stress at B in member $A B C$, (6) the average bearing stress at C in member $A B C$. (b) Check your program by comparing the values obtained for $d=16 \mathrm{~mm}$ with the answers given for Probs 1.7 and 1.27. (c) Use this program to find the permissible values of the diameter d of the pins, knowing that the allowable values of the normal, shearing, and bearing stresses for the steel used are, respectively, $150 \mathrm{MPa}, 90 \mathrm{MPa}$, and 230 MPa. (d) Solve Part c, assuming that the thickness of member $A B C$ has been reduced from 10 to 8 mm .

SOLUTION

Forces in links

F.B. diagram of $A B C$:

$$
\begin{aligned}
+) \Sigma M_{C} & =0: \quad 2 F_{B D}(B C)-P(A C)=0 \\
F_{B D} & =P(A C) / 2(B C) \quad \text { (tension) } \\
+) \Sigma M_{B} & =0: \quad 2 F_{C E}(B C)-P(A B)=0 \\
F_{C E} & =P(A B) / 2(B C) \quad \text { (comp.) }
\end{aligned}
$$

$$
\mathrm{P}=20 \mathrm{kN}
$$

(1) Link $B D$

Thickness $=t_{L}$
$A_{B D}=t_{L}\left(w_{L}-d\right)$
$\sigma_{B D}=+F_{B D} / A_{B D}$
(3) $\operatorname{Pin} B$

$\tau_{B}=F_{B D} /\left(\pi d^{2} / 4\right)$
(5) Bearing stress at B

Thickness of Member $A C=t_{A C}$
Sig Bear $B=F_{B D} /\left(d t_{A C}\right)$
(6) Bearing stress at C

Sig Bear $C=F_{C E} /\left(d t_{A C}\right)$
(2) Link $C E$

Thickness $=t_{L}$

$$
\begin{aligned}
A_{C E} & =t_{L} w_{L} \\
\sigma_{C E} & =-F_{C E} / A_{C E}
\end{aligned}
$$

(4) $\operatorname{Pin} C$

$$
\tau_{C}=F_{C E} /\left(\pi d^{2} / 4\right)
$$

Shearing stress in $A B C$ under $\operatorname{Pin} B$

$$
\begin{aligned}
F_{B} & =\tau_{A C} t_{A C}\left(w_{A C} / 2\right) \\
\Sigma F_{y} & =0: \quad 2 F_{B}=2 F_{B D} \\
\tau_{A C} & =\frac{2 F_{B D}}{\tau_{A C} w_{A C}}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 1.C2 (Continued)

Program Outputs

Input data for Parts (a), (b), (c):

$$
\begin{aligned}
P=20 \mathrm{kN}, & A B=0.25 \mathrm{~m}, \quad B C=0.40 \mathrm{~m}, \quad A C=0.65 \mathrm{~m}, \\
T L & =8 \mathrm{~mm}, \quad W L=36 \mathrm{~mm}, \quad T A C=10 \mathrm{~mm}, \quad W A C=50 \mathrm{~mm}
\end{aligned}
$$

Check: For $d=22 \mathrm{~mm}, \tau_{A C}=65 \mathrm{MPa}<90 \mathrm{MPa}$ O.K.

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 1.C2 (Continued)

Program Outputs (Continued)

Input data for Part (d) $P=20 \mathrm{kN}$,

$$
\begin{aligned}
A B & =0.25 \mathrm{~m}, \quad B C=0.40 \mathrm{~m}, \\
A C & =0.65 \mathrm{~m}, \quad T L=8 \mathrm{~mm}, \quad W L=36 \mathrm{~mm}, \\
T A C & =8 \mathrm{~mm}, \quad W A C=50 \mathrm{~mm}
\end{aligned}
$$

d Sigma BD Sigma CE Tau B Tau C SigBear B SigBear C

10.00	78.13	-21.70	30690	79.58	2	156.25
11.00	81.25	-21.70		65.77	2	156.25
12.00	84.64	-21.70		65.77		142.05
13.00	88.32	-21.70		57.26		130.21
14.00	92.33	-21.70		47.09		120
15.00	96.73	-21.70		35		111.61
16.00	101.56	-21.70	80.82	31. 08		104.17
17.00	106.91	-21.70	71.59	27.54	.	97.66
18.00	112.85	-21.70	63.86	24.56	225.69	
19.00	119.49	-21.70	57.31	22.04	213.82	82.24
20.00	126.95	-21.70	51.73	19.89	203.12	78.13
21.00	135.42	-21.70	46.92	18.04	193.45	74.40
22.00	145.09	-21.70	42.75	16.44	184.66	71.02
23.00	1756.2.5	-21.70	39.11	15.04	176.63	67.93
24.00	69.27	-21.70	35.92	13.82	169.27	65.10
25.00	66	-21.70	33.10	12.73	162.50	62.50
26.00		-21.70	30.61	11.77	156.25	60.10
27.00		-21.70	28.38	10.92	150.46	57.87
28.00	1.	-21.70	26.39	10.15	145.09	55.80
29.00	290, 18	-21.70	24.60	9.46	140.09	53.88
30.00	-388,54	-21.70	22.99	8.84	135.42	52.08

(d) Answer: $18 \mathrm{~mm} \leqslant d \leqslant 22 \mathrm{~mm}$
(d)

Check: For $d=22 \mathrm{~mm}, \tau_{A C}=81.25 \mathrm{MPa}<90 \mathrm{MPa}$ O.K.

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

SOLUTION

Forces in members $A B$ and $B C$

Free body: $\operatorname{Pin} B$

From force triangle:

$$
\begin{aligned}
\frac{F_{A B}}{\sin 45^{\circ}} & =\frac{F_{B C}}{\sin 60^{\circ}}=\frac{2 P}{\sin 75^{\circ}} \\
F_{A B} & =2 P\left(\sin 45^{\circ} / \sin 75^{\circ}\right) \\
F_{B C} & =2 P\left(\sin 60^{\circ} / \sin 75^{\circ}\right)
\end{aligned}
$$

(1) Max. ave. stress in $A B$

Width $=w$
Thickness $=t$
$A_{A B}=(w-d) t$
$\sigma_{A B}=F_{A B} / A_{A B}$

(3) $\underline{\operatorname{Pin} A}$

$$
\tau_{A}=\left(F_{A B} / 2\right) /\left(\pi d^{2} / 4\right)
$$

(5) Bearing stress at A

Sig Bear $A=F_{A B} / d t$
(7) Bearing stress at B in member $B C$

Sig Bear $B=F_{B C} / 2 d t$
(2) Ave. stress in $B C$

$$
\begin{aligned}
& A_{B C}=w t \\
& \sigma_{B C}=F_{B C} / A_{B C}
\end{aligned}
$$

(4) $\operatorname{Pin} C$

$$
\tau_{C}=\left(F_{B C} / 2\right) /\left(\pi d^{2} / 4\right)
$$

(6) Bearing stress at C

Sig Bear $C=F_{B C} / d t$

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 1.C3 (Continued)									
Input data for Parts (a), (b), (c):									
$P=5 \mathrm{kips}, w=1.8 \mathrm{in} ., t=0.5 \mathrm{in}$.									
$\begin{gathered} \text { D } \\ \text { in. } \end{gathered}$	SIGAB ksi	$\underset{\text { ksi }}{\text { SIGBC }}$	TAUA ksi	$\underset{\text { ksi }}{\text { TAUC }} \mathrm{S}$	$\underset{k s i}{\text { SIGBRGA }}$	$\underset{\text { ksi }}{\text { SIGBRGC }}$	SIGBRGB ksi		
0.500	11.262	-9.962	28.642	32.837	29.282	35.863	17.932		
0.550	11.713	-9.962	15400	18.869	26.620	32.603	16.301		
0.600	12.201	-9.962	12.945	18.855	24.402	29.886	14.943		
0.650	12.731	-9.962	11.030	18.510	22.525	27.587	13.793		
0.700	13.310	-9.962	9.511	11.649	20.916	25.616	12.808		
0.750	13.944	-9.962	8.285	10.147	19.521	23.909	11.954		
0.800	14.641	-9.962	7.282	8.918	18.301	22.414	11.207		
0.850	15.412	-9.962	6.450	7.900	17.225	21.096	10.548		
0.900	16.268	-9.962	5.754	7.047	16.268	19.924	9.962		
0.950	17.225	-9.962	5.164	6.324	15.412	18.875	9.438		
1.000	18.301	-9.962	4.660	5.708	14.641	17.932	8.966		
1.050	19.521	-9.962	4.227	5.177	13.944	17.078	8.539		
1.100	20.916	-9.962	3.852	4.717	13.310	16.301	8.151		
1.150	22.828	-9.962	3.524	4.316	12.731	15.593	7.796		
1.200	24.402	-9.962	3.236	3.964	12.201	14.943	7.471		
1.250	26. 628	-9.962	2.983	3.653	11.713	14.345	7.173		
1.300	29.282	-9.962	2.758	3.377	11.262	13.793	6.897		
1.350	152.836	-9.962	2.557	3.132	10.845	13.283	6.641		
1.400	38.803	-9.962	2.378	2.912	10.458	12.808	6.404		
1.450	41.831	-9.962	2.217	2.715	10.097	12.367	6.183		
1.500	48.883.	-9.962	2.071	2.537	9.761	11.954	5.977		
(c) Answer: $0.70 \mathrm{in} . \leqslant d \leqslant 1.10 \mathrm{in}$.									

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 1.C3 (Continued)

Input data for Part (d),

$$
P=5 \mathrm{kips}, \quad w=2.4 \mathrm{in} ., t=0.3 \mathrm{in} .
$$

(d) Answer: 0.85 in. $\leqslant d \leqslant 1.25$ in.
(d)

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 1.C4

A 4-kip force \mathbf{P} forming an angle α with the vertical is applied as shown to member $A B C$, which is supported by a pin and bracket at C and by a cable $B D$ forming an angle β with the horizontal. (a) Knowing that the ultimate load of the cable is 25 kips, write a computer program to construct a table of the values of the factor of safety of the cable for values of α and β from 0 to 45°, using increments in α and β corresponding to 0.1 increments in $\tan \alpha$ and $\tan \beta$. (b) Check that for any given value of α the maximum value of the factor of safety is obtained for $\beta=38.66^{\circ}$ and explain why. (c) Determine the smallest possible value of the factor of safety for $\beta=38.66^{\circ}$, as well as the corresponding value of α, and explain the result obtained.

SOLUTION

(a) Draw F.B. diagram of $A B C$:

$$
\begin{aligned}
+\Sigma M_{C}=0: \quad & (P \sin \alpha)(1.5 \mathrm{in} .)+(P \cos \alpha)(30 \mathrm{in} .) \\
& \quad-(F \cos \beta)(15 \mathrm{in} .)-(F \sin \beta)(12 \mathrm{in} .)=0 \\
F= & P \frac{15 \sin \alpha+30 \cos \alpha}{15 \cos \beta+12 \sin \beta} \\
F . S .= & F_{\mathrm{ult}} / F
\end{aligned}
$$

Output for $P=4$ kips and $F_{\mathrm{ult}}=20 \mathrm{kips}$
VALUES OF FS
BETA

	0	5.71	11.31	16.70	21.80	26.56	30.96	34.99	38.66	41.99	45.00
ALPHA											
0.000	3.125	3.358	3.555	3.712	3.830	3.913	3.966	3.994	4.002	3.995	3.977
5.711	2.991	3.214	3.402	3.552	3.666	3.745	3.796	3.823	3.830	3.824	3.807
11.310	2.897	3.113	3.295	3.441	3.551	3.628	3.677	3.703	3.710	3.704	3.687
16.699	2.837	3.049	3.227	3.370	3.477	3.553	3.600	3.626	3.633	3.627	3.611
21.801	2.805	3.014	3.190	3.331	3.438	3.512	3.560	3.585	3.592	3.586	3.570
26.565	2.795	3.004	3.179	3.320	3.426	3.500	3.547	3.572	3.579	3.573	3.558
30.964	2.803	3.013	3.189	3.330	3.436	3.510	3.558	3.583	3.590	3.584	3.568
34.992	2.826	3.036	3.214	3.356	3.463	3.538	3.586	3.611	3.619	3.612	3.596
38.660	2.859	3.072	3.252	3.395	3.503	3.579	3.628	3.653	3.661	3.655	3.638
41.987	2.899	3.116	3.298	3.444	3.554	3.631	3.680	3.706	3.713	3.707	3.690
45.000	2.946	3.166	3.351	3.499	3.611	3.689	3.739	3.765	3.773	3.767	3.750
									\hat{F}		

(b) When $\beta=38.66^{\circ} ; \tan \beta=0.8$ and cable $B D$ is perpendicular to the lever $\operatorname{Arm} B C$.
(c) $\quad F . S .=3.579$ for $\alpha=26.6^{\circ} ; P$ is perpendicular to the lever Arm $A C$.

Note: The value $F . S .=3.579$ is the smallest of the values of $F . S$. corresponding to $\beta=38.66^{\circ}$ and the largest of those corresponding to $\alpha=26.6^{\circ}$. The point $\alpha=26.6^{\circ} ; \beta=38.66^{\circ}$ is a "saddle point", or "minimax" of the function $F . S .(\alpha, \beta)$.

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 1.C5

A load \mathbf{P} is supported as shown by two wooden members of uniform rectangular cross section that are joined by a simple glued scarf splice. (a) Denoting by σ_{U} and τ_{U}, respectively, the ultimate strength of the joint in tension and in shear, write a computer program which, for given values of a, b, P, σ_{U} and τ_{U}, expressed in either SI or U.S. customary units, and for values of α from 5 to 85° at 5° intervals, can be used to calculate (1) the normal stress in the joint, (2) the shearing stress in the joint, (3) the factor of safety relative to failure in tension, (4) the factor of safety relative to failure in shear, (5) the overall factor of safety for the glued joint. (b) Apply this program, using the dimensions and loading of the members of Probs 1.29 and 1.31, knowing that $\sigma_{U}=1.26 \mathrm{MP}$ and $\tau_{U}=1.50 \mathrm{MPa}$ for the glue used in Probs 1.29, and that $\sigma_{U}=150 \mathrm{psi}$ and $\tau_{U}=214 \mathrm{psi}$ for the glue used in Probs 1.31. (c) Verify in each of these two cases that the shearing stress is maximum for $a=45^{\circ}$.

SOLUTION

(1) and (2) Draw the F.B. diagram of lower member:

$$
\begin{array}{lll}
+\Sigma F_{x}=0: & -V+P \cos \alpha=0 & V=P \cos \alpha \\
+\mathcal{A} \Sigma F_{y}=0: & F-P \sin \alpha=0 & F=P \sin \alpha
\end{array}
$$

Area $=a b / \sin \alpha$

Normal stress:

$$
\sigma=\frac{F}{\text { Area }}=(P / a b) \sin ^{2} \alpha
$$

Shearing stress:

$$
\tau=\frac{V}{\text { Area }}=(P / a b) \sin \alpha \cos \alpha
$$

(3) F.S. for tension (normal stresses)

$$
F S N=\sigma_{U} / \sigma
$$

(4) F.S. for shear:

$$
F S S=\tau_{U} / \tau
$$

(5) Overall F.S.:
$F . S .=$ The smaller of FSN and FSS.

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 1.C5 (Continued)

Program Outputs

Problem 1.29

$$
\begin{aligned}
a & =5 \mathrm{in} . \\
b & =3 \mathrm{in} . \\
P & =1400 \mathrm{lb} \\
\sigma_{U} & =150 \mathrm{psi} \\
\tau_{U} & =214 \mathrm{psi}
\end{aligned}
$$

ALPHA	SIG(psi)	TAU(psi)	FSN	FSS	FS	
5	0.709	8.104	211.574	26.408	26.408	
10	2.814	15.961	53.298	13.408	13.408	
15	6.252	23.333	23.992	9.171	9.171	
20	10.918	29.997	13.739	7.134	7.134	
25	16.670	35.749	8.998	5.986	5.986	
30	23.333	40.415	6.429	5.295	5.295	
35	30.706	43.852	4.885	4.880	4.880	
40	38.563	45.958	3.890	4.656	3.890	
45	46.667	46.667	3.214	4.586	3.214	(c)
50	54.770	45.958	2.739	4.656	2.739	
55	62.628	43.852	2.395	4.880	2.395	
60	70.000	40.415	2.143	5.295	2.143	(b)
65	76.663	35.749	1.957	5.986	1.957	
70	82.415	29.997	1.820	7.134	1.820	
75	87.081	23.333	1.723	9.171	1.723	
80	90.519	15.961	1.657	13.408	1.657	
85	92.624	8.104	1.619	26.408	1.619	

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 1.C5 (Continued)							
Program Outputs (Continued)							
Problem 1.31							
$a=150 \mathrm{~mm}$							
$b=75 \mathrm{~mm}$							
$P=11 \mathrm{kN}$							
$\sigma_{U}=1.26 \mathrm{MPa}$							
$\tau_{U}=1.50 \mathrm{MPa}$							
ALPHA	SIG(MPa)	TAU(MPa)	FSN	FSS	FS		
5	0.007	0.085	169.644	17.669	17.669		
10	0.029	0.167	42.736	8.971	8.971		
15	0.065	0.244	19.237	6.136	6.136		
20	0.114	0.314	11.016	4.773	4.773		
25	0.175	0.375	7.215	4.005	4.005		
30	0.244	0.423	5.155	3.543	3.543		
35	0.322	0.459	3.917	3.265	3.265		
40	0.404	0.481	3.119	3.116	3.116		
45	0.489	0.489	2.577	3.068	2.577	(b), (c)	4
50	0.574	0.481	2.196	3.116	2.196		
55	0.656	0.459	1.920	3.265	1.920		
60	0.733	0.423	1.718	3.543	1.718		
65	0.803	0.375	1.569	4.005	1.569		
70	0.863	0.314	1.459	4.773	1.459		
75	0.912	0.244	1.381	6.136	1.381		
80	0.948	0.167	1.329	8.971	1.329		
85	0.970	0.085	1.298	17.669	1.298		

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 1.C6

Member $A B C$ is supported by a pin and bracket at A and by two links, which are pin-connected to the member at B and to a fixed support at D. (a) Write a computer program to calculate the allowable load $P_{\text {all }}$ for any given values of (1) the diameter d_{1} of the pin at A, (2) the common diameter d_{2} of the pins at B and D, (3) the ultimate normal stress σ_{U} in each of the two links, (4) the ultimate shearing stress σ_{U} in each of the three pins, (5) the desired overall factor of safety F.S. Your program should also indicate which of the following three stresses is critical: the normal stress in the links, the shearing stress in the pin at A, or the shearing stress in the pins at B and D. (b and c) Check your program by using the data of Probs 1.55 and 1.56 , respectively, and comparing the answers obtained for $P_{\text {all }}$ with those given in the text. (d) Use your program to determine the allowable load $P_{\text {all }}$, as well as which of the stresses is critical, when $d_{1}=d_{2}=15 \mathrm{~mm}, \sigma_{U}=110 \mathrm{MP}$ for aluminum links, $\tau_{U}=100 \mathrm{MPa}$ for steel pins, and F.S. $=3.2$.

SOLUTION

(a) F.B. diagram of $A B C$:

$$
\begin{array}{ll}
\Sigma M_{A}=0: & P=\frac{200}{380} F_{B D} \\
\Sigma M_{B}=0: & P=\frac{200}{180} F_{A}
\end{array}
$$

(1) For given d_{1} of $\operatorname{Pin} A$:

$$
F_{A}=2\left(\tau_{U} / F S\right)\left(\pi d_{1}^{2} / 4\right), \quad P_{1}=\frac{200}{180} F_{A}
$$

(2) For given d_{2} of Pins B and $D: \quad F_{B D}=2\left(\tau_{U} / F S\right)\left(\pi d_{2}^{2} / 4\right), \quad P_{2}=\frac{200}{380} F_{B D}$
(3) For ultimate stress in links $B D: \quad F_{B D}=2\left(\sigma_{U} / F S\right)(0.02)(0.008), \quad P_{3}=\frac{200}{380} F_{B D}$
(4) For ultimate shearing stress in pins: $\quad P_{4}$ is the smaller of P_{1} and P_{2}
(5) For desired overall F.S.: $\quad P_{5}$ is the smaller of P_{3} and P_{4}
$P_{3}<P_{4}$, stress is critical in links
If
$P_{4}<P_{3}$ and $P_{1}<P_{2}$, stress is critical in $\operatorname{Pin} A$
If
$P_{4}<P_{3}$ and $P_{2}<P_{1}$, stress is critical in Pins B and D

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 1.C6 (Continued)

Program Outputs

(b) Problem 1.53. Data: $d_{1}=8 \mathrm{~mm}, d_{2}=12 \mathrm{~mm}, \sigma_{U}=250 \mathrm{MPa}, \quad \tau_{U}=100 \mathrm{MPa}, \quad F . S .=3.0$
$P_{\text {all }}=3.72 \mathrm{kN}$. Stress in Pin A is critical
(c) Problem 1.54

Data: $\quad d_{1}=10 \mathrm{~mm}, \quad d_{2}=12 \mathrm{~mm}, \quad \sigma_{U}=250 \mathrm{MPa}, \quad \tau_{U}=100 \mathrm{MPa}, \quad F . S .=30$
$P_{\text {all }}=3.97 \mathrm{kN}$. Stress in Pins B and D is critical
(d) Data:
$d_{1}=d_{2}=15 \mathrm{~mm}, \quad \sigma_{U}=110 \mathrm{MPa}, \quad \tau_{U}=100 \mathrm{MPa}, \quad F . S .=3.2$
$P_{\mathrm{all}}=5.79 \mathrm{kN}$. Stress in links is critical

PROBLEM 2.C1

A rod consisting of n elements, each of which is homogeneous and
 of uniform cross section, is subjected to the loading shown. The length of element i is denoted by L_{i}, its cross-sectional area by A_{i}, modulus of elasticity by E_{i}, and the load applied to its right end by P_{i}, the magnitude P_{i} of this load being assumed to be positive if \mathbf{P}_{i} is directed to the right and negative otherwise. (a) Write a computer program that can be used to determine the average normal stress in each element, the deformation of each element, and the total deformation of the rod. (b) Use this program to solve Probs 2.20 and 2.126.

SOLUTION

For each element, enter

$$
L_{i}, \quad A_{i}, \quad E_{i}
$$

Compute deformation

Update axial load $P=P+P_{i}$
Compute for each element

$$
\begin{aligned}
\sigma_{i} & =P / A_{i} \\
\delta_{i} & =P L_{i} / A_{i} E_{i}
\end{aligned}
$$

Total deformation:
Update through n elements

$$
\delta=\delta+\delta_{i}
$$

Program Outputs

Problem 2.20

Element	Stress (MPa)	Deformation (mm)
1	19.0986	0.1091
2	-12.7324	-0.0909
Total Deformation $=$	0.0182 mm	

Problem 2.126

Element	Stress (ksi)	Deformation (in.)
1	12.7324	0.0176
2	-2.8294	-0.0057
Total Deformation $=$	0.01190 in.	

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 2.C2

Rod $A B$ is horizontal with both ends fixed; it consists of n elements, each
 of which is homogeneous and of uniform cross section, and is subjected to the loading shown. The length of element i is denoted by L_{i}, its crosssectional area by A_{i}, its modulus of elasticity by E_{i}, and the load applied to its right end by \mathbf{P}_{i}, the magnitude P_{i} of this load being assumed to be positive if \mathbf{P}_{i} is directed to the right and negative otherwise. (Note that $P_{1}=0$.) (a) Write a computer program which can be used to determine the reactions at A and B, the average normal stress in each element, and the deformation of each element. (b) Use this program to solve Probs 2.41 and 2.42 .

SOLUTION

We Consider the reaction at B redundant and release the rod at B

Compute δ_{B} with $R_{B}=0$

For each element, enter

$$
L_{i}, \quad A_{i}, \quad E_{i}
$$

Update axial load

$$
P=P+P_{i}
$$

Compute for each element

$$
\begin{aligned}
\sigma_{i} & =P / A_{i} \\
\delta_{i} & =P L_{i} / A_{i} E_{i}
\end{aligned}
$$

Update total deformation

$$
\delta_{B}=\delta_{B}+\delta_{i}
$$

Compute δ_{B} due to unit load at B

$$
\begin{array}{ll}
\text { Unit } & \sigma_{i}=1 / A_{i} \\
\text { Unit } & \delta_{i}=L_{i} / A_{i} E_{i}
\end{array}
$$

Update total unit deformation

$$
\text { Unit } \delta_{B}=\text { Unit } \delta_{B}+\text { Unit } \delta_{i}
$$

Superposition

$$
\begin{array}{llrl}
\text { For total displacement at } & B & =0 \\
\qquad \delta_{B}+R_{B} & \text { Unit } & \delta_{B} & =0
\end{array}
$$

Solving:

$$
R_{B}=-\delta_{B} / \text { Unit } \delta_{B}
$$

Then:

$$
R_{A}=\Sigma P_{i}+R_{B}
$$ distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 2.C2 (Continued)

For each element

$$
\begin{array}{ll}
\sigma=\sigma_{i}+R_{B} & \text { Unit } \sigma_{i} \\
\delta=\delta_{i}+R_{B} & \text { Unit } \delta_{i}
\end{array}
$$

Program Outputs

Problem 2.41

$$
\begin{aligned}
& \mathrm{RA}=-62.809 \mathrm{kN} \\
& \mathrm{RB}=-37.191 \mathrm{kN}
\end{aligned}
$$

Element Stress (MPa) Deformation (mm)

1	-52.615	-0.05011
2	3.974	0.00378
3	2.235	0.00134
4	49.982	0.04498

Problem 2.42

$$
\begin{aligned}
& \mathrm{RA}=-45.479 \mathrm{kN} \\
& \mathrm{RB}=-54.521 \mathrm{kN}
\end{aligned}
$$

Element Stress (MPa) Deformation (mm)

1	-77.131	-0.03857
2	-20.542	-0.01027
3	-11.555	-0.01321
4	36.191	0.06204

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 2.C3

Rod $A B$ consists of n elements, each of which is homogeneous and of uniform cross section. End A is fixed, while initially there is a gap δ_{0} between end B and the fixed vertical surface on the right. The length of element i is denoted by L_{i}, its cross-sectional area by A_{i}, its modulus of elasticity by E_{i}, and its coefficient of thermal expansion by α_{i}. After the temperature of the rod has been increased by ΔT, the gap at B is closed and the vertical surfaces exert equal and opposite forces on the rod. (a) Write a computer program which can be used to determine the magnitude of the reactions at A and B, the normal stress in each element, and the deformation of each element. (b) Use this program to solve Probs 2.51, 2.59, and 2.60.

SOLUTION

We compute the displacements at B
Assuming there is no support at B :
Enter

$$
L_{i}, \quad A_{i}, \quad E_{i}, \quad \alpha_{i}
$$

Enter temperature change T compute for each element

$$
\delta_{i}=\alpha_{i} L_{i} T
$$

Update total deformation

$$
\delta_{B}=\delta_{B}+\delta_{i}
$$

Compute δ_{B} due to unit load at B

$$
\text { Unit } \quad \delta_{i}=L_{i} / A_{i} E_{i}
$$

Update total unit deformation

$$
\text { Unit } \delta_{B}=\text { Unit } \delta_{B}+\text { Unit } \delta_{i}
$$

Compute Reactions

From superposition

$$
R_{B}=\left(\delta_{B}-\delta_{0}\right) / \text { Unit } \delta_{B}
$$

Then

$$
R_{A}=-R_{B}
$$

$\underline{\text { For each element }}$

$$
\begin{aligned}
\sigma_{i} & =-R_{B} / A_{i} \\
\delta_{i} & =\alpha_{i} L_{i} T+R_{B} L_{i} / A_{i} E_{i}
\end{aligned}
$$

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 2.C3 (Continued)

Program Outputs

Problem 2.51

$R=125.628 \mathrm{kN}$		
Element	Stress (MPa)	Deformation (microm)
1	-44.432	0.500
2	-99.972	-0.500

Problem 2.59

$R=52.279 \mathrm{kips}$		
Element	Stress (ksi)	Deformation (10*-3 in.)
1	-21.783	9.909
2	-18.671	10.091

Problem 2.60

$$
R=232.390 \mathrm{kN}
$$

Element	Stress (MPa)	Deformation (microm)
1	-116.195	363.220
2	-290.487	136.780

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 2.C4

Bar $A B$ has a length L and is made of two different materials of given cross-sectional area, modulus of elasticity, and yield strength. The bar is subjected as shown to a load \mathbf{P} which is gradually increased from zero until the deformation of the bar has reached a maximum value δ_{m} and then decreased back to zero. (a) Write a computer program which, for each of 25 values of δ_{m} equally spaced over a range extending from 0 to a value equal to 120% of the deformation causing both materials to yield, can be used to determine the maximum value P_{m} of the load, the maximum normal stress in each material, the permanent deformation δ_{P} of the bar, and the residual stress in each material. (b) Use this program to solve Probs 2.111 and 2.112.

SOLUTION

Note: The following assumes $\quad\left(\sigma_{Y}\right)_{1}<\left(\sigma_{Y}\right)_{2}$
Displacement increment

$$
\delta_{m}=0.05\left(\sigma_{Y}\right)_{2} L / E_{2}
$$

Displacements at yielding

$$
\delta_{A}=\left(\sigma_{Y}\right)_{1} L / E_{1} \quad \delta_{B}=\left(\sigma_{Y}\right)_{2} L / E_{2}
$$

$\underline{\text { For each displacement }}$
If $\quad \delta_{m}<\delta_{A}$:
$\sigma_{1}=\delta_{m} E_{1} / L$
$\sigma_{2}=\delta_{m} E_{2} / L$
$P_{m}=\left(\delta_{m} / L\right)\left(A_{1} E_{1}+A_{2} E_{2}\right)$
If $\quad \delta_{A}<\delta_{m}<\delta_{B}$:
$\sigma_{1}=\left(\sigma_{Y}\right)_{1}$
$\sigma_{2}=\delta_{m} E_{2} / L$
$P_{m}=A_{1} \sigma_{1}+\left(\delta_{m} / L\right) A_{2} E_{2}$

If $\quad \delta_{m}>\delta_{B}$:
$\sigma_{1}=\left(\sigma_{Y}\right)_{1}$
$\sigma_{2}=\left(\sigma_{Y}\right)_{2}$
$P_{m}=A_{1} \sigma_{1}+A_{2} \sigma_{2}$

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

PROBLEM 2.C4 (Continued)

Permanent deformations, residual stresses

Slope of first (elastic) segment

$$
\begin{aligned}
\text { Slope } & =\left(A_{1} E_{1}+A_{2} E_{2}\right) / L \\
\delta_{P} & =\delta_{m}-\left(P_{m} / \text { Slope }\right) \\
\left(\sigma_{1}\right)_{\text {res }} & =\sigma_{1}-\left(E_{1} P_{m} /(L \text { Slope })\right) \\
\left(\sigma_{2}\right)_{\text {res }} & =\sigma_{2}-\left(E_{2} P_{m} /(L \text { Slope })\right)
\end{aligned}
$$

Program Outputs

Problems 2.111 and 2.112

DM $10^{* *}-3$ in.	PM kips	SIGM (1) ksi	SIGM (2) ksi	DP $10^{* *}-3$ in.	SIGR (1) ksi	SIG (2) ksi	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2.414	8.750	5.000	5.000	0.000	0.000	0.000	
4.828	17.500	10.000	10.000	0.000	0.000	0.000	
7.241	26.250	15.000	15.000	0.000	0.000	0.000	
9.655	35.000	20.000	20.000	0.000	0.000	0.000	
12.069	43.750	25.000	25.000	0.000	0.000	0.000	
14.483	52.500	30.000	30.000	0.000	0.000	0.000	
16.897	61.250	35.000	35.000	0.000	0.000	0.000	
19.310	70.000	40.000	40.000	0.000	0.000	0.000	
21.724	78.750	45.000	45.000	0.000	0.000	0.000	
24.138	87.500	50.000	50.000	0.000	0.000	0.000	
26.552	91.250	50.000	55.000	1.379	-2.143	2.857	
28.966	95.000	50.000	60.000	2.759	-4.286	5.714	
31.379	98.750	50.000	65.000	4.138	-6.429	8.571	2.112
33.793	102.500	50.000	70.000	5.517	-8.571	11.429	
36.207	106.250	50.000	75.000	6.897	-10.714	14.286	
38.621	110.000	50.000	80.000	8.276	-12.857	17.143	2.111
41.034	113.750	50.000	85.000	9.655	-15.000	20.000	2.14
43.448	117.500	50.000	90.000	11.034	-17.143	22.857	
45.862	121.250	50.000	95.000	12.414	-19.286	25.714	
48.276	125.000	50.000	100.000	13.793	-21.429	28.571	
50.690	125.000	50.000	100.000	16.207	-21.429	28.571	
53.103	125.000	50.000	100.000	18.621	-21.429	28.571	
55.517	125.000	50.000	100.000	21.034	-21.429	28.571	
57.931	125.000	50.000	100.000	23.448	-21.429	28.571	

PROPRIETARY MATERIAL. © 2012 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. A student using this manual is using it without permission.

